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C H A P T E R 7

Survey Sampling

7.1 Introduction
Resting on the probabilistic foundations of the preceding chapters, this chapter marks
the beginning of our study of statistics by introducing the subject of survey sampling.
As well as being of considerable intrinsic interest and practical utility, the development
of the elementary theory of survey sampling serves to introduce several concepts and
techniques that will recur and be amplified in later chapters.

Sample surveys are used to obtain information about a large population by exam-
ining only a small fraction of that population. Sampling techniques have been used
in many fields, such as the following:

• Governments survey human populations; for example, the U.S. government con-
ducts health surveys and census surveys.

• Sampling techniques have been extensively employed in agriculture to estimate
such quantities as the total acreage of wheat in a state by surveying a sample of
farms.

• The Interstate Commerce Commission has carried out sampling studies of rail and
highway traffic. In one such study, records of shipments of household goods by
motor carriers were sampled to evaluate the accuracy of preshipment estimates of
charges, claims for damages, and other variables.

• In the practice of quality control, the output of a manufacturing process may be
sampled in order to examine the items for defects.

• During audits of the financial records of large companies, sampling techniques may
be used when examination of the entire set of records is impractical.

The sampling techniques discussed here are probabilistic in nature—each mem-
ber of the population has a specified probability of being included in the sample, and
the actual composition of the sample is random. Such techniques differ markedly from
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the type of sampling scheme in which particular population members are included
in the sample because the investigator thinks they are typical in some way. Such a
scheme may be effective in some situations, but there is no way mathematically to
guarantee its unbiasedness (a term that will be precisely defined later) or to estimate
the magnitude of any error committed, such as that arising from estimating the popu-
lation mean by the sample mean. We will see that using a random sampling technique
has a consequence that estimates can be guaranteed to be unbiased and probabilistic
bounds on errors can be calculated. Among the advantages of using random sampling
are the following:

• The selection of sample units at random is a guard against investigator biases, even
unconscious ones.

• A small sample costs far less and is much faster to survey than a complete enumer-
ation.

• The results from a small sample may actually be more accurate than those from a
complete enumeration. The quality of the data in a small sample can be more easily
monitored and controlled, and a complete enumeration may require a much larger,
and therefore perhaps more poorly trained, staff.

• Random sampling techniques make possible the calculation of an estimate of the
error due to sampling.

• In designing a sample, it is frequently possible to determine the sample size neces-
sary to obtain a prescribed error level.

Peck et al. (2005) contains several interesting papers about applications of
sampling.

7.2 Population Parameters
This section defines those numerical characteristics, or parameters, of the population
that we will estimate from a sample. We will assume that the population is of size
N and that associated with each member of the population is a numerical value of
interest. These numerical values will be denoted by x1, x2, · · ·, xN . The variable xi

may be a numerical variable such as age or weight, or it may take on the value 1 or
0 to denote the presence or absence of some characteristic such as gender. We will
refer to the latter situation as the dichotomous case.

E X A M P L E A This is the first of many examples in this chapter in which we will illustrate ideas
by using a study by Herkson (1976). The population consists of N = 393 short-
stay hospitals. We will let xi denote the number of patients discharged from the i th
hospital during January 1968. A histogram of the population values is shown in Fig-
ure 7.1. The histogram was constructed in the following way: The number of hospitals
that discharged 0–200, 201– 400, . . . , 2801–3000 patients were graphed as horizon-
tal lines above the respective intervals. For example, the figure indicates that about
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F I G U R E 7.1 Histogram of the numbers of patients discharged during January 1968
from 393 short-stay hospitals.

40 hospitals discharged from 601 to 800 patients. The histogram is a convenient
graphical representation of the distribution of the values in the population, being
more quickly assimilated than would a list of 393 values. ■

We will be particularly interested in the population mean, or average,

µ = 1

N

N∑
i=1

xi

For the population of 393 hospitals, the mean number of discharges is 814.6. Note
the location of this value in Figure 7.1. In the dichotomous case, where the presence
or absence of a characteristic is to be determined, µ equals the proportion, p, of
individuals in the population having the particular characteristic, because in the sum
above, each xi is either 0 or 1. The sum thus reduces to the number of 1s and when
divided by N , gives the proportion, p.

The population total is

τ =
N∑

i=1

xi = Nµ

The total number of people discharged from the population of hospitals is τ =
320,138. In the dichotomous case, the population total is the total number of members
of the population possessing the characteristic of interest.

We will also need to consider the population variance,

σ 2 = 1

N

N∑
i=1

(xi − µ)2
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A useful identity can be obtained by expanding the square in this equation:

σ 2 = 1

N

(
N∑

i=1

x2
i − 2µ

N∑
i=1

xi + Nµ2

)

= 1

N

(
N∑

i=1

x2
i − 2Nµ2 + Nµ2

)

= 1

N

N∑
i=1

x2
i − µ2

In the dichotomous case, the population variance reduces to p(1 − p):

σ 2 = 1

N

N∑
i=1

x2
i − µ2

= p − p2

= p(1 − p)

Here we used the fact that because each xi is 0 or 1, each x2
i is also 0 or 1.

The population standard deviation is the square root of the population variance
and is used as a measure of how spread out, dispersed, or scattered the individual values
are. The standard deviation is given in the same units (for example, inches) as are the
population values, whereas the variance is given in those units squared. The variance
of the discharges is 347,766, and the standard deviation is 589.7; examination of
the histogram in Figure 7.1 makes it clear that the latter number is the more reasonable
description of the spread of the population values.

7.3 Simple Random Sampling
The most elementary form of sampling is simple random sampling (s.r.s.): Each
particular sample of size n has the same probability of occurrence; that is, each of the(N

n

)
possible samples of size n taken without replacement has the same probability.

We assume that sampling is done without replacement so that each member of the
population will appear in the sample at most once. The actual composition of the
sample is usually determined by using a table of random numbers or a random number
generator on a computer. Conceptually, we can regard the population members as
balls in an urn, a specified number of which are selected for inclusion in the sample
at random and without replacement.

Because the composition of the sample is random, the sample mean is random.
An analysis of the accuracy with which the sample mean approximates the population
mean must therefore be probabilistic in nature. In this section, we will derive some
statistical properties of the sample mean.
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7.3.1 The Expectation and Variance of the Sample Mean
We will denote the sample size by n (n is less than N ) and the values of the sample
members by X1, X2, . . . , Xn . It is important to realize that each Xi is a random vari-
able. In particular, Xi is not the same as xi : Xi is the value of the i th member of the sam-
ple, which is random and xi is that of the i th member of the population, which is fixed.

We will consider the sample mean,

X = 1

n

n∑
i=1

Xi

as an estimate of the population mean. As an estimate of the population total, we will
consider

T = N X

Properties of T will follow readily from those of X . Since each Xi is a random
variable, so is the sample mean; its probability distribution is called its sampling
distribution. In general, any numerical value, or statistic, computed from a random
sample is a random variable and has an associated sampling distribution. The sampling
distribution of X determines how accurately X estimates µ; roughly speaking, the
more tightly the sampling distribution is centered on µ, the better the estimate.

E X A M P L E A To illustrate the concept of a sampling distribution, let us look again at the population
of 393 hospitals. In practice, of course, the population would not be known, and only
one sample would be drawn. For pedagogical purposes here, we can consider the
sampling distribution of the sample mean from this known population. Suppose, for
example, that we want to find the sampling distribution of the mean of a sample of size
16. In principle, we could form all

(393
16

)
samples and compute the mean of each one—

this would give the sampling distribution. But because the number of such samples is
of the order 1033, this is clearly not practical. We will thus employ a technique known
as simulation. We can estimate the sampling distribution of the mean of a sample of
size n by drawing many samples of size n, computing the mean of each sample, and
then forming a histogram of the collection of sample means. Figure 7.2 shows the
results of such a simulation for sample sizes of 8, 16, 32, and 64 with 500 replications
for each sample size. Three features of Figure 7.2 are noteworthy:

1. All the histograms are centered about the population mean, 814.6.
2. As the sample size increases, the histograms become less spread out.
3. Although the shape of the histogram of population values (Figure 7.1) is not

symmetric about the mean, the histograms in Figure 7.2 are more nearly so.

These features will be explained quantitatively. ■

As we have said, X is a random variable whose distribution is determined by
that of the Xi . We thus examine the distribution of a single sample element, Xi . It
should be noted that the following lemma holds whether sampling is with or without
replacement.
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F I G U R E 7.2 Histograms of the values of the mean number of discharges in 500
simple random samples from the population of 393 hospitals. Sample sizes: (a) n = 8,
(b) n = 16, (c) n = 32, (d) n = 64.

We need to be careful about the values that the random variable Xi can assume.
The i th sample member is equally likely to be any of the N population members. If
all the population values were distinct, we would then have P(X1 = x j ) = 1/N .
But the population values may not be distinct (for example, in the dichotomous case
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there are only two values, 0 and 1). If k members of the population have the same
value ζ , then P(Xi = ζ ) = k/N . We use this construction in proving the following
lemma.

L E M M A A

Denote the distinct values assumed by the population members by ζ1, ζ2, . . . , ζm,

and denote the number of population members that have the value ζ j by n j , j =
1, 2, . . . , m. Then Xi is a discrete random variable with probability mass
function

P(Xi = ζ j ) = n j

N
Also,

E(Xi ) = µ

Var(Xi ) = σ 2

Proof

The only possible values that Xi can assume are ζ1, ζ2, . . . , ζm . Since each mem-
ber of the population is equally likely to be the i th member of the sample, the
probability that Xi assumes the value ζ j is thus n j/N . The expected value of the
random variable Xi is then

E(Xi ) =
m∑

j=1

ζ j P(Xi = ζ j ) = 1

N

m∑
j=1

n jζ j = µ

The last equation follows because n j population members have the value ζ j

and the sum is thus equal to the sum of the values of all the population members.
Finally,

Var(Xi ) = E
(

X 2
i

) − [E(Xi )]
2

= 1

N

m∑
j=1

n jζ
2
j − µ2

= σ 2

Here we have used the fact that
∑

N
i=1x2

i = ∑
m
j=1n jζ

2
j and the identity for the

population variance derived in Section 7.2. ■

As a measure of the center of the sampling distribution, we will use E(X). As a
measure of the dispersion of the sampling distribution about this center, we will use
the standard deviation of X . The key results that will be obtained shortly are that the
sampling distribution is centered at µ and that its spread is inversely proportional to
the square root of the sample size, n. We first show that the sampling distribution is
centered at µ.
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T H E O R E M A

With simple random sampling, E(X) = µ.

Proof

Since, from Lemma A, E(Xi ) = µ, it follows from Theorem A in Section 4.1.2
that

E(X) = 1

n

n∑
i=1

E(Xi ) = µ ■

From Theorem A, we have the following corollary.

C O R O L L A R Y A

With simple random sampling, E(T ) = τ.

Proof

E(T ) = E(N X)

= N E(X)

= Nµ

= τ ■

In the dichotomous case, µ = p, and X is the proportion of the sample that
possesses the characteristic of interest. In this case, X will be denoted by p̂. We have
shown that E( p̂) = p.

It is important to keep in mind that X is random. The result E(X) = µ can be
interpreted to mean that “on the average” X = µ. In general, if we wish to estimate
a population parameter, θ say, by a function θ̂ of the sample, X1, X2, . . . , Xn , and
E(θ̂) = θ , whatever the value of θ may be, we say that θ̂ is unbiased. Thus, X
and T are unbiased estimates of µ and τ . On average they are correct. We next
investigate how variable they are, by deriving their variances and standard deviations.
Section 4.2.1 introduced the concepts of bias and variance in the context of a model
of measurement error, and these concepts are also relevant in this new context. In
Chapter 4, it was shown that

Mean squared error = variance + bias2

Since X and T are unbiased, their mean squared errors are equal to their variances.
We next find Var(X). Since X = n−1

∑n
i=1 Xi , it follows from Corollary A of

Section 4.3 that

Var(X) = 1

n2

n∑
i=1

n∑
j=1

Cov(Xi , X j )
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Suppose that sampling were done with replacement. Then the Xi would be inde-
pendent, and for i �= j we would have Cov(Xi , X j ) = 0, whereas Cov(Xi , Xi ) =
Var(Xi ) = σ 2. It would then follow that

Var X = 1

n2

n∑
i=1

Var(Xi )

= σ 2

n

and that the standard deviation of X , also called its standard error, would be

σX = σ√
n

Sampling without replacement induces dependence among the Xi , which com-
plicates this simple result. However, we will see that if the sample size n is small
relative to the population size N , the dependence is weak and this simple result holds
to a good approximation.

To find the variance of the sample mean in sampling without replacement we
need to find Cov(Xi , X j ) for i �= j .

L E M M A B

For simple random sampling without replacement,

Cov(Xi , X j ) = −σ 2/(N − 1) if i �= j

Using the identity for covariance established at the beginning of Section 4.3,

Cov(Xi , X j ) = E(Xi X j ) − E(Xi )E(X j )

and

E(Xi X j ) =
m∑

k=1

m∑
l=1

ζkζl P(Xi = ζk and X j = ζl)

=
m∑

k=1

ζk P(Xi = ζk)

m∑
l=1

ζl P(X j = ζl |Xi = ζk)

from the multiplication law for conditional probability. Now,

P(X j = ζl |Xi = ζk) =
{

nl/(N − 1), if k �= l
(nl − 1)/(N − 1), if k = l

Now if we express
m∑

l=1

ζl P(X j = ζl |Xi = ζk) =
∑
l �=k

ζl
nl

N − 1
+ ζk

nk − 1

N − 1

=
m∑

l=1

ζl
nl

N − 1
− ζk

1

N − 1
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the expression for E(Xi X j ) becomes
m∑

k=1

ζk
nk

N

(
m∑

l=1

ζl
nl

N − 1
− ζk

N − 1

)
= 1

N (N − 1)

(
τ 2 −

m∑
k=1

ζ 2
k nk

)

= τ 2

N (N − 1)
− 1

N (N − 1)

m∑
k=1

ζ 2
k nk

= Nµ2

N − 1
− 1

N − 1
(µ2 + σ 2)

= µ2 − σ 2

N − 1

Finally, subtracting E(Xi )E(X j ) = µ2 from the last equation, we have

Cov(Xi , X j ) = − σ 2

N − 1
for i �= j . ■

(Alternative proofs of Lemma B are outlined in Problems 25 and 26 at the end of
this chapter.) This lemma shows that Xi and X j are not independent of each other for
i �= j , but that the covariance is very small for large values of N . We are now able to
derive the following theorem.

T H E O R E M B

With simple random sampling,

Var(X) = σ 2

n

(
N − n

N − 1

)

= σ 2

n

(
1 − n − 1

N − 1

)

Proof

From Corollary A of Section 4.3,

Var(X) = 1

n2

n∑
i=1

n∑
j=1

Cov(Xi , X j )

= 1

n2

n∑
i=1

Var(Xi ) + 1

n2

n∑
i=1

∑
j �=i

Cov(Xi , X j )

= σ 2

n
− 1

n2
n(n − 1)

σ 2

N − 1
After some algebra, this gives the desired result. ■
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Notice that the variance of the sample mean in sampling without replacement
differs from that in sampling with replacement by the factor(

1 − n − 1

N − 1

)

which is called the finite population correction. The ratio n/N is called the sampling
fraction. Frequently, the sampling fraction is very small, in which case the standard
error (standard deviation) of X is

σX ≈ σ√
n

We see that, apart from the usually small finite population correction, the spread of the
sampling distribution and therefore the precision of X are determined by the sample
size (n) and not by the population size (N ). As will be made more explicit later,
the appropriate measure of the precision of the sample mean is its standard error,
which is inversely proportional to the square root of the sample size. Thus, in order
to double the accuracy, the sample size must be quadrupled. (You might examine
Figure 7.2 with this in mind.) The other factor that determines the accuracy of the
sample mean is the population standard deviation, σ . If σ is small, the population
values are not very dispersed and a small sample will be fairly accurate. But if the
values are widely dispersed, a much larger sample will be required in order to attain
the same accuracy.

E X A M P L E B If the population of hospitals is sampled without replacement and the sample size is
n = 32,

σX = σ√
n

√
1 − n − 1

N − 1

= 589.7√
32

√
1 − 31

392

= 104.2 × .96

= 100.0

Notice that because the sampling fraction is small, the finite population correction
makes little difference. To see that σX = 100.0 is a reasonable measure of accuracy,
examine part (b) of Figure 7.2 and observe that the vast majority of sample means
differed from the population mean (814) by less than two standard errors; i.e., the
vast majority of sample means were in the interval (614, 1014). ■

E X A M P L E C Let us apply this result to the problem of estimating a proportion. In the population of
hospitals, a proportion p = .654 had fewer than 1000 discharges. If this proportion
were estimated from a sample as the sample proportion p̂, the standard error of p̂
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could be found by applying Theorem B to this dichotomous case:

σ p̂ =
√

p(1 − p)

n

√
1 − n − 1

N − 1

For example, for n = 32, the standard error of p̂ is

σ p̂ =
√

.654 × .346

32

√
1 − 31

392
= .08 ■

The precision of the estimate of the population total does depend on the population
size, N .

C O R O L L A R Y B

With simple random sampling,

Var(T ) = N 2

(
σ 2

n

)
N − n

N − 1

Proof

Since T = N X ,

Var(T ) = N 2 Var(X) ■

7.3.2 Estimation of the Population Variance
A sample survey is used to estimate population parameters, and it is desirable also
to assess and quantify the variability of the estimates. In the previous section, we
saw how the standard error of an estimate may be determined from the sample size
and the population variance. In practice, however, the population variance will not
be known, but as we will show in this section, it can be estimated from the sample.
Since the population variance is the average squared deviation from the population
mean, estimating it by the average squared deviation from the sample mean seems
natural:

σ̂ 2 = 1

n

n∑
i=1

(Xi − X)2
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The following theorem shows that this estimate is biased.

T H E O R E M A

With simple random sampling,

E(σ̂ 2) = σ 2

(
n − 1

n

)
N

N − 1

Proof

Expanding the square and proceeding as in the identity for the population variance
in Section 7.2, we find

σ̂ 2 = 1

n

n∑
i=1

X 2
i − X 2

Thus,

E(σ̂ 2) = 1

n

n∑
i=1

E
(

X 2
i

) − E(X 2)

Now, we know that

E
(

X 2
i

) = Var(Xi ) + [E(Xi )]
2

= σ 2 + µ2

Similarly, from Theorems A and B of Section 7.3.1,

E(X 2) = Var(X) + [E(X)]2

= σ 2

n

(
1 − n − 1

N − 1

)
+ µ2

Substituting these expressions for E(X 2
i ) and E(X 2) in the preceding equation

for E(σ̂ 2) gives the desired result. ■

Because N > n, it follows with a little algebra that

n − 1

n

N

N − 1
< 1

so that E(σ̂ 2) < σ 2; σ̂ 2 thus tends to underestimate σ 2. From Theorem A, we see
that an unbiased estimate of σ 2 may be obtained by multiplying σ̂ 2 by the factor
n(N −1)/[(n−1)N ]. Thus, an unbiased estimate of σ 2 is 1

n−1 (1− 1
N )

∑n
i=1(Xi − X)2.

We also have the following corollary.
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C O R O L L A R Y A

An unbiased estimate of Var(X) is

s2
X

= σ̂ 2

n

(
n

n − 1

) (
N − 1

N

) (
N − n

N − 1

)

= s2

n

(
1 − n

N

)
where

s2 = 1

n − 1

n∑
i=1

(Xi − X)2

Proof

Since

Var(X) = σ 2

n

(
N − n

N − 1

)

an unbiased estimate of Var(X) may be obtained by substituting in an unbiased
estimate of σ 2. Algebra then yields the desired result. ■

Similarly, an unbiased estimate of the variance of T , the estimator of the popu-
lation total, is

s2
T = N 2s2

X

For the dichotomous case, in which each Xi is 0 or 1, note that

1

n

n∑
i=1

(Xi − X)2 = 1

n

n∑
i=1

X 2
i − X

2

= p̂(1 − p̂)

Therefore,

s2 = n

n − 1
p̂(1 − p̂)

Thus, as a special case of Corollary A, we have the following corollary.

C O R O L L A R Y B

An unbiased estimate of Var( p̂) is

s2
p̂ = p̂(1 − p̂)

n − 1

(
1 − n

N

)
■

In many cases, the sampling fraction, n/N , is small and may be neglected. Fur-
thermore, it often makes little difference whether n − 1 or n is used as the divisor.
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The quantities sX , sT , and sp̂ are called estimated standard errors. If we knew
them, the actual standard errors, σX , σT and σ p̂, would be used to gauge the accuracy
of the estimates X , T and p̂. If they are not known, which is the typical case, the
estimated standard errors are used in their place.

E X A M P L E A A simple random sample of 50 of the 393 hospitals was taken. From this sample,
X = 938.5 (recall that, in fact, µ = 814.6) and s = 614.53 (σ = 590). An estimate
of the variance of X is

s2
X

= s2

n

(
1 − n

N

)
= 6592

The estimated standard error of X is

sX = 81.19

(Note that the true value is σX = σ√
50

√
1 − 49

392 = 78.) This estimated standard error

gives a rough idea of how accurate the value of X is; in this case, we see that the
magnitude of the error is of the order 80, as opposed to 8 or 800, say. In fact, the error
was 123.9, or about 1.5 sX . ■

E X A M P L E B From the same sample, the estimate of the total number of discharges in the population
of hospitals is

T = N X = 368,831

Recall that the true value of the population total is 320,139. The estimated standard
error of T is

sT = NsX = 31,908

Again, this estimated standard error can be used as a rough gauge of the estimation
error. ■

E X A M P L E C Let p be the proportion of hospitals that had fewer than 1000 discharges—that is,
p = .654. In the sample of Example A, 26 of 50 hospitals had fewer than 1000
discharges, so

p̂ = 26

50
= .52

The variance of p̂ is estimated by

s2
p̂ = p̂(1 − p̂)

n − 1

(
1 − n

N

)
= .0045

Thus, the estimated standard error of p̂ is

sp̂ = .067
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Crudely, this tells us that the error of p̂ is in the second or first decimal place—that
we are probably not so fortunate as to have an error only in the third decimal place.
In fact, the error was .134 or about 2 × sp̂. ■

These examples show how, in simple random sampling, we can not only form
estimates of unknown population parameters, but can also gauge the likely size of the
errors of the estimates, by estimating their standard errors from the data in the sample.

We have covered a lot of ground, and the presence of the finite population cor-
rection complicates the expressions we have derived. It is thus useful to summarize
our results in the following table:

Population
Parameter Estimate Variance of Estimate Estimated Variance

µ X = 1
n

∑n
i=1 Xi σ 2

X
= σ 2

n

(
N−n
N−1

)
s2

X
= s2

n

(
1 − n

N

)
p p̂ = sample proportion σ 2

p̂ = p(1−p)

n

(
N−n
N−1

)
s2

p̂ = p̂(1− p̂)

n−1

(
1 − n

N

)
τ T = N X σ 2

T = N 2σ 2
X

s2
T = N 2s2

X

σ 2
(

1 − 1
N

)
s2

where s2 = 1
n−1

∑n
i=1(Xi − X)2.

The square roots of the entries in the third column are called standard errors,
and the square roots of the entries in the fourth column are called estimated standard
errors. The former depend on unknown population parameters, so the latter are used
to gauge the accuracy of the parameter estimates. When the population is large relative
to the sample size, the finite population correction can be ignored, simplifying the
preceding expressions.

7.3.3 The Normal Approximation to the Sampling
Distribution of X
We have found the mean and the standard deviation of the sampling distribution of X .
Ideally, we would like to know the sampling distribution, since it would tell us every-
thing we could hope to know about the accuracy of the estimate. Without knowledge
of the population itself, however, we cannot determine the sampling distribution. In
this section, we will use the central limit theorem to deduce an approximation to
the sampling distribution—the normal, or Gaussian, distribution. This approximation
will be used to find probabilistic bounds for the estimation error.

In Section 5.3, we considered a sequence of independent and identically dis-
tributed (i.i.d.) random variables, X1, X2, . . . having the common mean and variance
µ and σ 2. The sample mean of X1, X2, . . . , Xn is

Xn = 1

n

n∑
i=1

Xi
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This sample mean has the properties

E(Xn) = µ

and

Var(Xn) = σ 2

n
The central limit theorem says that, for a fixed number z,

P

(
Xn − µ

σ/
√

n
≤ z

)
→ �(z) as n → ∞

where � is the cumulative distribution function of the standard normal distribution.
Using a more compact and suggestive notation, we have

P

(
Xn − µ

σXn

≤ z

)
→ �(z)

The context of survey sampling is not exactly like that of the central limit theorem
as stated above—as we have seen, in sampling without replacement, the Xi are not
independent of each other, and it makes no sense to have n tend to infinity while N
remains fixed. But other central limit theorems have been proved that are appropriate
to the sampling context. These show that if n is large, but still small relative to N ,
then Xn , the mean of a simple random sample, is approximately normally distributed.

To demonstrate the use of the central limit theorem, we will apply it to approx-
imate P(|X − µ| ≤ δ), the probability that the error made in estimating µ by X is
less than some constant δ

P(|X − µ| ≤ δ) = P(−δ ≤ X − µ ≤ δ)

= P

(
− δ

σX

≤ X − µ

σX

≤ δ

σX

)

≈ �

(
δ

σX

)
− �

(
− δ

σX

)

= 2�

(
δ

σX

)
− 1

since �(−z) = 1 − �(z), from the symmetry of the standard normal distribution
about zero.

E X A M P L E A Let us again consider the population of 393 hospitals. The standard deviation of the
mean of a sample of size n = 64 is, using the finite population correction,

σX = σ√
n

√
1 − n − 1

N − 1

= 589.7

8

√
1 − 63

392
= 67.5

We can use the central limit theorem to approximate the probability that the
sample mean differs from the population mean by more than 100 in absolute value; i.e.,
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P(|X − µ| > 100). First, from the symmetry of the normal distribution,

P(|X − µ| > 100) ≈ 2P(X − µ > 100)

and
P(X − µ > 100) = 1 − P(X − µ < 100)

= 1 − P

(
X − µ

σX

<
100

σX

)

≈ 1 − �

(
100

67.5

)
= .069

Thus the probability that the sample mean differs from the population mean by more
than 100 is approximately .14. In fact, among the 500 samples of size 64 in Example
A in Section 7.3.1, 82, or 16.4%, differed by more than 100 from the population mean.
Similarly, the central limit theorem approximation gives .026 as the probability of
deviations of more than 150 from the population mean. In the simulation in Example
A in Section 7.3.1, 11 of 500, or 2.2%, differed by more than 150. If we are not too
finicky, the central limit theorem gives us reasonable and useful approximations. ■

E X A M P L E B For a sample of size 50, the standard error of the sample mean number of discharges
is

σX = 78

For the particular sample of size 50 discussed in Example A in Section 7.3.2, we
found X = 938.35, so X − µ = 123.9. We now calculate an approximation of the
probability of an error this large or larger:

P(|X − µ| ≥ 123.9) = 1 − P(|X − µ| < 123.9)

≈ 1 −
[

2�

(
123.9

78

)
− 1

]
= 2 − 2�(1.59)

= .11

Thus, we can expect an error this large or larger to occur about 11% of the time. ■

E X A M P L E C In Example C in Section 7.3.2, we found from the sample of size 50 an estimate
p̂ = .52 of the proportion of hospitals that discharged fewer than 1000 patients; in
fact, the actual proportion in the population is .65. Thus, | p̂ − p | = .13. What is the
probability that an estimate will be off by an amount this large or larger?

We have

σ p̂ =
√

p(1 − p)

n

√
1 − n − 1

N − 1
= .068 × .94 = .064
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We can therefore calculate

P(|p − p̂| > .13) = 1 − P(|p − p̂| ≤ .13)

= 1 − P

( |p − p̂|
σ p̂

≤ .13

σ p̂

)
≈ 2[1 − �(2.03)] = .04

We see that the sample was rather “unlucky”—an error this large or larger would
occur only about 4% of the time. ■

We can now derive a confidence interval for the population mean, µ. A confi-
dence interval for a population parameter, θ , is a random interval, calculated from the
sample, that contains θ with some specified probability. For example, a 95% confi-
dence interval for µ is a random interval that contains µ with probability .95; if we
were to take many random samples and form a confidence interval from each one,
about 95% of these intervals would contain µ. If the coverage probability is 1 − α,
the interval is called a 100(1 − α)% confidence interval. Confidence intervals are
frequently used in conjunction with point estimates to convey information about the
uncertainty of the estimates.

For 0 ≤ α ≤ 1, let z(α) be that number such that the area under the standard
normal density function to the right of z(α) is α (Figure 7.3). Note that the symmetry
of the standard normal density function about zero implies that z(1 − α) = −z(α).

If Z follows a standard normal distribution, then, by definition of z(α),

P(−z(α/2) ≤ Z ≤ z(α/2)) = 1 − α

From the central limit theorem, (X − µ)/σX has approximately a standard normal
distribution, so

P

(
−z(α/2) ≤ X − µ

σX

≤ z(α/2)

)
≈ 1 − α

0

.1

�2 �1 0 1

f(
z)

z

.2

.3

.4

�3 2

�

3

z (�)

F I G U R E 7.3 A standard normal density showing α and z(α).
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Elementary manipulation of the inequalities gives

P(X − z(α/2)σX ≤ µ ≤ X + z(α/2)σX ) ≈ 1 − α

That is, the probability that µ lies in the interval X ± z(α/2)σX is approximately
1 − α. The interval is thus called a 100(1 − α)% confidence interval. It is important
to understand that this interval is random and that the preceding equation states that
the probability that this random interval covers µ is 1 −α. In practice, α is assigned a
small value, such as .1, .05, or .01, so that the probability that the interval covers µ will
be large. Also, since the population variance is typically not known, sX is substituted
for σX . For large samples, it can be shown that the effect of this substitution is
practically negligible. It is impossible to give a precise answer to the question “How
large is large?” As a rule of thumb, a value of n greater than 25 or 30 is usually
adequate.

To illustrate the concept of a confidence interval, 20 samples each of size n = 25
were drawn from the population of hospital discharges. From each of these 20 samples,
an approximate 95% confidence interval for µ, the mean number of discharges, was
computed. These 20 confidence intervals are displayed as vertical lines in Figure 7.4;
the dashed line in the figure is drawn at the true value, µ = 814.6. Notice that it so
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F I G U R E 7.4 Vertical lines are 20 approximate 95% confidence intervals for µ. The
horizontal line is the true value of µ.
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happened that all the confidence intervals included µ; since these are 95% intervals,
on the average 5%, or 1 out of 20, would not include µ.

The following example illustrates the procedure for calculating confidence
intervals.

E X A M P L E D A particular area contains 8000 condominium units. In a survey of the occupants, a
simple random sample of size 100 yields the information that the average number of
motor vehicles per unit is 1.6, with a sample standard deviation of .8. The estimated
standard error of X is thus

sX = s√
n

√
1 − n

N

= .8

10

√
1 − 100

8000
= .08

Note that the finite population correction makes almost no difference. Since z(.025) =
1.96, a 95% confidence interval for the population average is X ± 1.96sX , or (1.44,
1.76).

An estimate of the total number of motor vehicles is T = 8000 × 1.6 = 12,800.

The estimated standard error of T is

sT = NsX = 640

A 95% confidence interval for the total number of motor vehicles is T ± 1.96sT , or
(11,546, 14,054).

In the same survey, 12% of the respondents said they planned to sell their condos
within the next year; p̂ = .12 is an estimate of the population proportion p. The
estimated standard error is

sp̂ =
√

p̂(1 − p̂)

n − 1

√
1 − 100

8000
= .03

A 95% confidence interval for p is p̂ ± 1.96sp̂, or (.06, .18).
The total number of owners planning to sell is estimated as T = N p̂ = 960. The

estimated standard error of T is sT = Nsp̂ = 240. A 95% confidence interval for the
number in the population planning to sell is T ± 1.96sT , or (490, 1430). The proper
interpretation of this interval, (490, 1430), is a little subtle. We cannot state that the
probability is 0.95 and that the number of owners planning to sell is between 490 and
1430, because that number is either in this interval or not. What is true is that 95% of
intervals formed in this way will contain the true number in the long run. This interval
is like one of those shown in Figure 7.4; in the long run, 95% of those intervals will
contain the true number of discharges, but in the figure any particular interval either
does or doesn’t contain the true number. ■

The width of a confidence interval is determined by the sample size n and the
population standard deviation σ . If σ is known approximately, perhaps from earlier
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samples of the population, n can be chosen so as to obtain a confidence interval close
to some desired length. Such analysis is usually an important aspect of planning the
design of a sample survey.

E X A M P L E E The interval for the total number of owners planning to sell in Example D might be
considered too wide for practical purposes; reducing its width would require a larger
sample size. Suppose that an interval with a half-width of 200 is desired. Neglecting
the finite population correction, the half-width is

1.96sT = 1.96N

√
p̂(1 − p̂)

n − 1
= 5095√

n − 1

Setting the last expression equal to 200 and solving for n yields n = 650 as the
necessary sample size. ■

Let us summarize: The fundamental result of this section is that the sampling
distribution of the sample mean is approximately Gaussian. This approximation can be
used to quantify the error committed in estimating the population mean by the sample
mean, thus giving us a good understanding of the accuracy of estimates produced
by a simple random sample. We next introduced the idea of a confidence interval,
a random interval that contains a population parameter with a specified probability
and thus provides an assessment of the accuracy of the corresponding estimate of that
parameter. We have seen in our examples that the width of the confidence interval is a
multiple of the estimated standard deviation of the estimate; for example, a confidence
interval for µ is X ± ksX , where the constant k depends on the coverage probability
of the interval.

7.4 Estimation of a Ratio
The foundations of the theory of survey sampling have been laid in the preceding sec-
tions on simple random sampling. This and the next section build on that foundation,
developing some advanced topics in survey sampling.

In this section, we consider the estimation of a ratio. Suppose that for each member
of a population, two values, x and y, may be measured. The ratio of interest is

r =

N∑
i=1

yi

N∑
i=1

xi

= µy

µx

Ratios arise frequently in sample surveys; for example, if households are sampled,
the following ratios might be calculated:

• If y is the number of unemployed males aged 20–30 in a household and x is the
number of males aged 20–30 in a household, then r is the proportion of unemployed
males aged 20–30.
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• If y is weekly food expenditure and x is number of inhabitants, then r is weekly
food cost per inhabitant.

• If y is the number of motor vehicles and x is the number of inhabitants of driving
age, then r is the number of motor vehicles per inhabitant of driving age.

In a survey of farms, y might be the acres of wheat planted and x the total acreage.
In an inventory audit, y might be the audited value of an item and x the book value.

In this section, we first consider directly the problem of estimating a ratio. Later,
we will use the estimation of a ratio as a technique for estimating µy . We will produce
a new estimate, the ratio estimate, which we will compare to the ordinary estimate, Y .

Before continuing, we note the elementary but sometimes overlooked fact that

r �= 1

N

N∑
i=1

yi

xi

Suppose that a sample is drawn consisting of the pairs (Xi , Yi ); the natural
estimate of r is R = Y/X . We wish to derive expressions for E(R) and Var(R), but
since R is a nonlinear function of the random variables X and Y , we cannot do this
in closed form. We will therefore employ the approximate methods of Section 4.6.

In order to calculate the approximate variance of R, we need to know Var(X),
Var(Y ), and Cov(X , Y ). The first two quantities we know from Theorem B of Section
7.3.1. For the last quantity, we define the population covariance of x and y to be

σxy = 1

N

N∑
i=1

(xi − µx)( yi − µy)

It can then be shown, in a manner entirely analogous to the proof of Theorem B in
Section 7.3.1, that

Cov(X , Y ) = σxy

n

(
1 − n − 1

N − 1

)
From Example C in Section 4.6, we have the following theorem.

T H E O R E M A

With simple random sampling, the approximate variance of R = Y/X is

Var(R) ≈ 1

µ2
x

(
r 2σ 2

X
+ σ 2

Y
− 2rσXY

)

= 1

n

(
1 − n − 1

N − 1

)
1

µ2
x

(
r 2σ 2

x + σ 2
y − 2rσxy

)
■

The population correlation coefficient is defined as

ρ = σxy

σxσy

and is used as a measure of the strength of the linear relationship between the x and
y values in the population. It can be shown that −1 ≤ ρ ≤ 1; large values of ρ
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indicate a strong positive relationship between x and y, and small values indicate a
strong negative relationship. (See Figure 4.7 for some illustrations of correlation.)
The equation in Theorem A can be expressed in terms of the population correlation
coefficient as follows:

Var(R) ≈ 1

n

(
1 − n − 1

N − 1

)
1

µ2
x

(
r 2σ 2

x + σ 2
y − 2rρσxσy

)
From this expression, we see that strong correlation of the same sign as r decreases the
variance. We also note that the variance is affected by the size of µx —if µx is small,
the variance is large, essentially because small values of X in the ratio R = Y/X
cause R to fluctuate wildly.

We now consider the approximate expectation of R. From Example C in Section
4.6 and the preceding calculations, we have the following theorem.

T H E O R E M B

With simple random sampling, the expectation of R is given approximately by

E(R) ≈ r + 1

n

(
1 − n − 1

N − 1

)
1

µ2
x

(
rσ 2

x − ρσxσy

)
■

From the equation in Theorem B, we see that strong correlation of the same
sign as r decreases the bias and that the bias is large if µx is small. Furthermore,
note that the bias is of the order 1/n, so its contribution to the mean squared error is
of the order 1/n2. In comparison, the contribution of the variance is of the order 1/n.
Therefore, for large samples, the bias is negligible compared to the standard error of
the estimate.

For large samples, truncating the Taylor series after the linear term provides a
good approximation, since the deviations X − µX and Y − µY are likely to be small.
To this order of approximation, R is expressed as a linear combination of X and Y ,
and an argument based on the central limit theorem can be used to show that R is
approximately normally distributed. Approximate confidence intervals can thus be
formed for r by using the normal distribution.

In order to estimate the standard error of R, we substitute R for r in the formula
of Theorem A. The x and y population variances are estimated by s2

x and s2
y . The

population covariance is estimated by

sxy = 1

n − 1

n∑
i=1

(Xi − X)(Yi − Y )

= 1

n − 1

(
n∑

i=1

Xi Yi − nXY

)

(as can be seen by expanding the product), and the population correlation is estimated
by

ρ̂ = sxy

sx sy
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The estimated variance of R is thus

s2
R = 1

n

(
1 − n − 1

N − 1

)
1

X
2 (R2s2

x + s2
y − 2Rsxy)

An approximate 100(1 − α)% confidence interval for r is R ± z(α/2)sR .

E X A M P L E A Suppose that 100 people who recently bought houses are surveyed, and the monthly
mortgage payment and gross income of each buyer are determined. Let y denote the
mortgage payment and x the gross income. Suppose that

X = $3100 Y = $868

sy = $250 sx = $1200

ρ̂ = .85 R = .28

Neglecting the finite population correction, the estimated standard error of R is

sR = 1

10

(
1

3100

) √
.282 × 12002 + 2502 − 2 × .28 × .85 × 250 × 1200

= .006

An approximate 95% confidence interval for r is .28 ±(1.96)× (.006), or .28± .012.
Note that the high correlation between x and y causes the standard error of R to be
small. We can use the observed values for the variances, covariances, and means to
gauge the order of magnitude of the bias by substituting them in place of the population
parameters in the formula of Theorem B. Doing so, and again neglecting the finite
population correction, gives the value .00015 for the bias, which is negligible relative
to sR . Note that the large value of X and the large positive correlation coefficient
cause the bias to be small. ■

Ratios may also be used as tools for estimating population means and totals.
To illustrate the concept, we return to the example of hospital discharges. For this
population, the number of beds in each hospital is also known; let us denote the number
of beds in the i th hospital by xi and the number of discharges by yi . Suppose that
all the xi are known, perhaps from an earlier enumeration, before a sample has been
taken to estimate the number of discharges, and that we would like to take advantage
of this information. One way to do this is to form a ratio estimate of µy :

Y R = µx

X
Y = µx R

where X is the average number of beds and Y is the average number of discharges in
the sample. The idea is fairly simple: We expect xi and yi to be closely related in the
population, since a hospital with a large number of beds should tend to have a large
number of discharges. This is borne out by Figure 7.5, a scatterplot of the number
of discharges versus the number of beds. If X < µx , the sample underestimates the
number of beds and probably the number of discharges as well; multiplying Y by
µx/X increases Y to Y R .
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F I G U R E 7.5 Scatterplot of the number of discharges versus the number of beds for
the 393 hospitals.
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F I G U R E 7.6 (a) A histogram of the means of 500 simple random samples of size 64
from the population of discharges; (b) a histogram of the values of 500 ratio estimates
of the mean number of discharges from samples of size 64.

To see how this ratio estimate works in practice, it was simulated from 500 sam-
ples of size 64 from the population of hospitals. The histogram of the results is shown
in Figure 7.6 along with the histogram of the means of 500 simple random samples
of size 64. The comparison shows dramatically how effective the ratio estimate is at
reducing variability.
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Two more examples will illustrate the scope of the ratio estimation method.

E X A M P L E B Suppose that we want to estimate the total number of unemployed males aged 20–30
from a sample of households and that we know τx , the total number of males aged
20–30, from census data. The ratio estimate is

TR = τx
Y

X

where Y is the average number of unemployed males aged 20–30 per household in
the sample, and X is the sample average number of males aged 20–30 per house-
hold. ■

E X A M P L E C A sample of items in an inventory is taken to estimate the total value of the inventory.
Let Yi be the audited value of the i th sample item, and let Xi be its book value. We
assume that τx , the total book value of the inventory, is known, and we estimate the
total audited value by

TR = τx
Y

X
■

We will now analyze the observed success of the ratio estimate. Since Y R = µX R,

Var(Y R) = µ2
X Var(R). From Theorem A, we thus have the following.

C O R O L L A R Y A

The approximate variance of the ratio estimate of µy is

Var(Y R) ≈ 1

n

(
1 − n − 1

N − 1

) (
r 2σ 2

x + σ 2
y − 2rρσxσy

)
■

Similarly, from Theorem B, we have another corollary.

C O R O L L A R Y B

The approximate bias of the ratio estimate of µy is

E(Y R) − µY ≈ 1

n

(
1 − n − 1

N − 1

)
1

µx

(
rσ 2

x − ρσxσy

)
■

When will the ratio estimate YR be better than the ordinary estimate Y ? In the fol-
lowing, the finite population correction is neglected for simplicity. Since the variance
of the ordinary estimate Y is

Var(Y ) = σ 2
y

n
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the ratio estimate has a smaller variance if

r 2σ 2
x − 2rρσxσy < 0

or (provided r > 0, for example)

2ρσy > rσx

Letting Cx = σx/µx and Cy = σy/µy , this last inequality is equivalent to

ρ >
1

2

(
Cx

Cy

)
Cx and Cy are called coefficients of variation and give the standard deviation as a
proportion of the mean. (Coefficients of variation are often more meaningful than
standard deviations. For example, a standard deviation of 10 means one thing if the
true value of the quantity being measured is 100 and something entirely different if
the true value is 10,000.)

In order to assess the accuracy of Y R , Var(Y R) can be estimated from the sample.

C O R O L L A R Y C

The variance of Y R can be estimated by

s2
Y R

= 1

n

(
1 − n − 1

N − 1

) (
R2s2

x + s2
y − 2Rsxy

)
and an approximate 100(1 − α)% confidence interval for µy is (Y R ±
z( α

2 )sY R
). ■

E X A M P L E D For the population of 393 hospitals, we have

µx = 274.8 σx = 213.2
µy = 814.6 σy = 589.7
r = 2.96 ρ = .91

Thus,

Var(Y R) ≈ 1

n
(2.962 × 213.22 + 589.72 − 2 × 2.96 × .91 × 213.2 × 589.7)

= 68,697.4

n
and

σY R
≈ 262.1√

n

Including the finite population correction, the linearized approximation predicts that,
with n = 64,

σY R
= 1

8
(262.1)

√
1 − 63

392
= 30.0
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The actual standard deviation of the 500 sample values displayed in Figure 7.6 is
29.9, which is remarkably close. The mean of the 500 values is 816.2, compared to
the population mean of 814.6; the slight apparent bias is consistent with Corollary B.

In contrast, the standard deviation of Y from a simple random sample of size
n = 64 is

σY = σ√
n

√
1 − n − 1

N − 1

= 589.7

8

√
1 − 63

329
= 66.3

The comparison of σY to σY R
is consistent with the substantial reduction in variability

accomplished by using a ratio estimate of µy shown in Figure 7.6.
The following is another way of interpreting this comparison. If a simple random

sample of size n1 is taken, the variance of the estimate is Var(Y ) = 589.72/n1. A
ratio estimate from a sample of size n2 will have the same variance if

262.12

n2
= 589.72

n1

or

n2 = n1

(
262.1

589.7

)2

= .1975n1

Thus, in this case, we can obtain the same precision from a ratio estimate using a
sample about 80% smaller than the simple random sample. Note that this comparison
neglects the bias of the ratio estimate, which is justifiable in this case because the bias
is quite small. Here is a case in which a biased estimate performs substantially better
than an unbiased estimate, the bias being quite small and the reduction in variance
being quite large. ■

7.5 Stratified Random Sampling

7.5.1 Introduction and Notation
In stratified random sampling, the population is partitioned into subpopulations, or
strata, which are then independently sampled. The results from the strata are then
combined to estimate population parameters, such as the mean.

Following are some examples that suggest the range of situations in which strat-
ification is natural:

• In auditing financial transactions, the transactions may be grouped into strata on
the basis of their nominal values. For example, high-value, medium-value, and
low-value strata might be formed.

• In samples of human populations, geographical areas often form natural strata.
• In a study of records of shipments of household goods by motor carriers, the carriers

were grouped into three strata: large carriers, medium carriers, and small carriers.

John  Rice
Note
63/392
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Stratified samples are used for a variety of reasons. We are often interested in
obtaining information about each of a number of natural subpopulations in addition
to information about the population as a whole. The subpopulations might be defined
by geographical areas or age groups. In an industrial application in which the popula-
tion consists of items produced by a manufacturing process, relevant subpopulations
might consist of items produced during different shifts or from different lots of raw
material. The use of a stratified random sample guarantees a prescribed number of
observations from each subpopulation, whereas the use of a simple random sample
can result in underrepresentation of some subpopulations. A second reason for using
stratification is that, as will be shown below, the stratified sample mean can be con-
siderably more precise than the mean of a simple random sample, especially if the
population members within each stratum are relatively homogeneous and if there is
considerable variation between strata.

In the next section, properties of the stratified sample mean are derived. Since
a simple random sample is taken within each stratum, the results will follow easily
from the derivations of earlier sections. The section after that takes up the problem
of how to allocate the total number of observations, n, among the various strata.
Comparisons will be made of the efficiencies of different allocation schemes and
also of the precisions of these allocation schemes relative to that of a simple random
sample of the same total size.

7.5.2 Properties of Stratified Estimates
Suppose there are L strata in all. Let the number of population elements in stratum
1 be denoted by N1, the number in stratum 2 be N2, etc. The total population size
is N = N1 + N2 + . . . + NL . The population mean and variance of the lth stratum
are denoted by µl and σ 2

l . The overall population mean can be expressed in terms of
the µl as follows. Let xil denote the i th population value in the lth stratum and let
Wl = Nl/N denote the fraction of the population in the lth stratum. Then

µ = 1

N

L∑
l=1

Nl∑
i=1

xil

= 1

N

L∑
l=1

Nlµl

=
L∑

l=1

Wlµl

Within each stratum, a simple random sample of size nl is taken. The sample
mean in stratum l is denoted by

Xl = 1

nl

nl∑
i=1

Xil

Here Xil denotes the i th sample value in the lth stratum. Note that Xl is the mean of
a simple random sample from the population consisting of the lth stratum, so from
Theorem A of Section 7.3.1, E(Xl) = µl . By analogy with the preceding relationship
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between the overall population mean and the population means of the various strata,
the obvious estimate of µ is

Xs =
L∑

l=1

Nl Xl

N

=
L∑

l=1

Wl Xl

T H E O R E M A

The stratified estimate, Xs , of the population mean is unbiased.

Proof

E(Xs) =
L∑

l=1

Wl E(Xl)

= 1

N

L∑
l=1

Nlµl

= µ ■

Since we assume that the samples from different strata are independent of one
another and that within each stratum a simple random sample is taken, the variance
of Xs can be easily calculated.

T H E O R E M B

The variance of the stratified sample mean is given by

Var(Xs) =
L∑

l=1

W 2
l

(
1

nl

) (
1 − nl − 1

Nl − 1

)
σ 2

l

Proof

Since the Xl are independent,

Var(Xs) =
L∑

l=1

W 2
l Var(Xl)

From Theorem B of Section 7.3.1, we have

Var(Xl) = 1

nl

(
1 − nl − 1

Nl − 1

)
σ 2

l

Therefore, the desired result follows. ■
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If the sampling fractions within all strata are small,

Var(Xs) ≈
L∑

l=1

W 2
l σ 2

l

nl

E X A M P L E A We again consider the population of hospitals. As we did in the discussion of ratio
estimates, we assume that the number of beds in each hospital is known but that the
number of discharges is not. We will try to make use of this knowledge by stratifying
the hospitals according to the number of beds. Let stratum A consist of the 98 smallest
hospitals, stratum B of the 98 next larger, stratum C of the 98 next larger, and stratum
D of the 99 largest. The following table shows the results of this stratification of
hospitals by size:

Stratum Nl Wl µl σl

A 98 .249 182.9 103.4
B 98 .249 526.5 204.8
C 98 .249 956.3 243.5
D 99 .251 1591.2 419.2

Suppose that we use a sample of total size n and let

n1 = n2 = n3 = n4 = n

4
so that we have equal sample sizes in each stratum. Then, from Theorem B, neglecting
the finite population corrections and using the numerical values in the preceding table,
we have

Var(Xs) =
4∑

l=1

W 2
l σ 2

l

n1

= 4

n

4∑
l=1

W 2
l σ 2

l

= 72, 042.6

n
and

σXs
= 268.4√

n

The standard deviation of the mean of a simple random sample is

σX = 587.7√
n

Comparing the two standard deviations, we see that a tremendous gain in precision
has resulted from the stratification. The ratio of the variances is .20; thus a stratified
estimate based on a total sample size of n/5 is as precise as a simple random sample
of size n. The reduction in variance due to stratification is comparable to that achieved
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by using a ratio estimate (Example D in Section 7.4). In later parts of this section, we
will look more analytically at why the stratification done here produced such dramatic
improvement. ■

Let us next consider the stratified estimate of the population total, Ts = N Xs .
From Theorem B, we have the following corollary.

C O R O L L A R Y A

The expectation and variance of the stratified estimate of the population total are

E(Ts) = τ

and

Var(Ts) = N 2Var(Xs)

=
L∑

l=1

N 2
l

(
1

nl

) (
1 − nl − 1

Nl − 1

)
σ 2

l ■

In order to estimate the standard errors of Xs and Ts , the variances of the individual
strata must be separately estimated and substituted into the preceding formulae. The
estimate of σ 2

l is given by

s2
l = 1

nl − 1

nl∑
i=1

(Xil − Xl)
2

Var(Xs) is estimated by

s2
Xs

=
L∑

l=1

W 2
l

(
1

nl

) (
1 − nl

Nl

)
s2

l

The next example illustrates how this variance estimate can be used to find
approximate confidence intervals for µ based on Xs .

E X A M P L E B A sample of size 10 was drawn from each of the four strata of hospitals described in
Example A, yielding the following:

X 1 = 240.6 s2
1 = 6827.6

X 2 = 507.4 s2
2 = 23,790.7

X 3 = 865.1 s2
3 = 42,573.0

X 4 = 1716.5 s2
4 = 152,099.6
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Therefore, Xs = 832.5. The variance of the stratified sample mean is estimated by

s2
Xs

= 1

10

4∑
l=1

W 2
l

(
1 − nl − 1

Nl − 1

)
s2

l

= 1282.0

Thus,

sXs
= 35.8

An approximate 95% confidence interval for the population mean number of dis-
charges is Xs ± 1.96sx̄s , or (762.4, 902.7).

The total number of discharges is estimated by Ts = 393Xs = 327,172. The
standard error of Ts is estimated by sTs = 393sXs

= 14,069. An approximate
95% confidence interval for the population total is Ts ± 1.96sTs , or (299,596, 354,
748). ■

7.5.3 Methods of Allocation
In Section 7.5.2, it was shown that, neglecting the finite population correction,

Var(Xs) =
L∑

l=1

W 2
l σ 2

l

nl

If the resources of a survey allow only a total of n units to be sampled, the question
arises of how to choose n1, . . . , nL to minimize Var(Xs) subject to the constraint
n1 + · · · + nL = n.

For the sake of simplicity, the calculations in this section ignore the finite popu-
lation correction within each stratum. The analysis may be extended to include these
corrections, but at the cost of some additional algebra. More complete results are
contained in Cochran (1977).

T H E O R E M A

The sample sizes n1, . . . , nL that minimize Var(Xs) subject to the constraint
n1 + · · · + nL = n are given by

nl = n
Wlσl

L∑
k=1

Wkσk

where l = 1, . . . , L .
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Proof

We introduce a Lagrange multiplier, and we must then minimize

L(n1, . . . , nL , λ) =
L∑

l=1

W 2
l σ 2

l

nl
+ λ

(
L∑

l=1

nl − n

)

For l = 1, . . . , L , we have

∂L

∂nl
= −W 2

l σ 2
l

n2
l

+ λ

Setting these partial derivatives equal to zero, we have the system of equations

nl = Wlσl√
λ

for l = 1, . . . , L . To determine λ, we first sum these equations over l:

n = 1√
λ

L∑
l=1

Wlσl

Thus,
1√
λ

= n
L∑

l=1
Wlσl

and
nl = n

Wlσl

L∑
l=1

Wlσl

which proves the theorem. ■

This theorem shows that those strata for which Wlσl is large should be sampled
heavily. This makes sense intuitively. If Wl is large, the stratum contains a large
fraction of the population; if σl is large, the population values in the stratum are
quite variable, and in order to obtain a good determination of the stratum’s mean, a
relatively large sample size must be used. This optimal allocation scheme is called
Neyman allocation.

Substituting the optimal values of nl as given in Theorem A into the equation for
Var(Xs) given in Theorem B in Section 7.5.2 gives us the following corollary.

C O R O L L A R Y A

Denoting by Xso, the stratified estimate using the optimal allocations as given in
Theorem A and neglecting the finite population correction,

Var(Xso) =

(
L∑

l=1
Wlσl

)2

n
■
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E X A M P L E A For the population of hospitals, the weights for optimal allocation, Wlσl/
∑

Wlσl ,
are, from the table of Example A of Section 7.5.2,

Stratum

A B C D
Weight .106 .210 .250 .434

Note that, because of its larger standard deviation, stratum D is sampled more than
four times as heavily as stratum A. ■

The optimal allocations depend on the individual variances of the strata, which
generally will not be known. Furthermore, if a survey measures several attributes
for each population member, it is usually impossible to find an allocation that is
simultaneously optimal for all of those variables. A simple and popular alternative
method of allocation is to use the same sampling fraction in each stratum,

n1

N1
= n2

N2
= · · · = nL

NL

which holds if

nl = n
Nl

N
= nWl

for l = 1, . . . , L . This method is called proportional allocation. The estimate of the
population mean based on proportional allocation is

Xsp =
L∑

l=1

Wl Xl

=
L∑

l=1

Wl
1

nl

nl∑
i=1

Xil

= 1

n

L∑
l=1

nl∑
i=1

Xil

since Wl/nl = 1/n. This estimate is simply the unweighted mean of the sample
values.

T H E O R E M B

With stratified sampling based on proportional allocation, ignoring the finite
population correction,

Var(Xsp) = 1

n

L∑
l=1

Wlσ
2
l
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Proof

From Theorem B of Section 7.5.2, we have

Var(Xsp) =
L∑

l=1

W 2
l Var(Xl)

=
L∑

l=1

W 2
l

σ 2
l

nl

Using nl = nWl , the result follows. ■

We now compare Var(Xsp) and Var(Xso) in order to discover the circumstances
under which optimal allocation is substantially better than proportional allocation.

T H E O R E M C

With stratified random sampling, the difference between the variance of the
estimate of the population mean based on proportional allocation and the variance
of that estimate based on optimal allocation is, ignoring the finite population
correction,

Var(Xsp) − Var(Xso) = 1

n

L∑
l=1

Wl(σl − σ̄ )2

where

σ̄ =
L∑

l=1

Wlσl

Proof

Var(Xsp) − Var(Xso) = 1

n


 L∑

l=1

Wlσ
2
l −

(
L∑

l=1

Wlσl

)2



The term within the large brackets equals
∑L

l=1 Wl(σl − σ̄ )2, which may be
verified by expanding the square and collecting terms. ■

According to Theorem C, if the variances of the strata are all the same, propor-
tional allocation yields the same results as optimal allocation. The more variable these
variances are, the better it is to use optimal allocation.



Rice-15149 book March 16, 2006 12:53

236 Chapter 7 Survey Sampling

E X A M P L E B Let us calculate how much better optimal allocation is than proportional allocation
for the population of hospitals. From Theorem C and Corollary A, we have

Var(Xsp) = Var(Xso) + 1

n

∑
Wl(σl − σ̄ )2

Therefore,

Var(Xsp)

Var(Xso)
= 1 +

1

n

∑
Wl(σl − σ̄ )2

Var(Xso)

= 1 +
∑

Wl(σl − σ̄ )2

(
∑

Wlσl)2

= 1 + .218

Thus, under proportional allocation, the variance of the mean is about 20% larger
than it is under optimal allocation. ■

We can also compare the variance under simple random sampling with the vari-
ance under proportional allocation. The variance under simple random sampling is,
neglecting the finite population correction,

Var(X) = σ 2

n

In order to compare this equation with that for the variance under proportional allo-
cation, we need a relationship between the overall population variance, σ 2, and the
strata variances, σ 2

l . The overall population variance may be expressed as

σ 2 = 1

N

L∑
l=1

Nl∑
i=1

(xil − µ)2

Also,

(xil − µ)2 = [(xil − µl) + (µl − µ)]2

= (xil − µl)
2 + 2(xil − µl)(µl − µ) + (µl − µ)2

When both sides of this last equation are summed over l, the middle term on the
right-hand side becomes zero since Nlµl = ∑Nl

l=1 xil , so we have

Nl∑
i=1

(xil − µ)2 =
nl∑

i=1

(xil − µl)
2 + Nl(µl − µ)2

= Nlσ
2
l + Nl(µl − µ)2

Dividing both sides by N and summing over l, we have

σ 2 =
L∑

l=1

Wlσ
2
l +

L∑
l=1

Wl(µl − µ)2
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Substituting this expression for σ 2 into Var(X) = σ 2/n and using the formula for
Var(Xsp) given in Theorem B completes a proof of the following theorem.

T H E O R E M D

The difference between the variance of the mean of a simple random sample and
the variance of the mean of a stratified random sample based on proportional
allocation is, neglecting the finite population correction,

Var(X) − Var(Xsp) = 1

n

L∑
l=1

Wl(µl − µ)2
■

Thus, stratified random sampling with proportional allocation always gives a
smaller variance than does simple random sampling, providing that the finite popu-
lation correction is ignored. Comparing the equations for the variances under simple
random sampling, proportional allocation, and optimal allocation, we see that strat-
ification with proportional allocation is better than simple random sampling if the
strata means are quite variable and that stratification with optimal allocation is even
better than stratification with proportional allocation if the strata standard deviations
are variable.

E X A M P L E C We calculate the improvement that would result from using stratification with propor-
tional allocation rather than simple random sampling for the population of hospitals.
From Theorems B and D, we have

Var(Xsrs)

Var(Xsp)
= 1 +

∑
Wl(µl − µ̄)2∑

Wlσ
2
l

= 1 + 3.83

As is frequently the case, the gain from using stratification with proportional allocation
rather than simple random sampling is much greater than the gain from using optimal
allocation rather than proportional allocation. Furthermore, proportional allocation
requires knowledge only of the sizes of the strata, whereas optimal allocation requires
knowledge of the standard deviations of the strata, and such knowledge is usually
unavailable. ■

Typically, stratified random sampling can result in substantial increases in preci-
sion for populations containing values that vary greatly in size. For example, a pop-
ulation of transactions, a sample of which is to be audited for errors, might contain
transactions in the hundreds of thousands of dollars and transactions in the hundreds
of dollars. If such a population were divided into several strata according to the dollar
amounts of the transactions, there might well be considerable variation in the mean
transaction errors between the strata, since there may be rather large errors on large
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transactions and small errors on small transactions. The variability of the errors might
also be larger in the former strata as well.

We have not addressed the question of how many strata to form and how to
define the strata. In order to construct the optimal number of strata, the population
values themselves, which are of course unknown, would have to be used. Stratification
must therefore be done on the basis of some related variable that is known (such as
transaction amount in the preceding paragraph) or on the results of earlier samples.
In practice, it usually turns out that such relationships are not strong enough to make
it worthwhile constructing more than a few strata.

7.6 Concluding Remarks
This chapter introduced survey sampling. It first covered the most elementary method
of probability sampling—simple random sampling. The theory of this method under-
lies the theory of more complex sampling techniques. Stratified sampling was also in-
troduced and shown to increase the precision of estimates substantially in many cases.

Several concepts and techniques introduced here recur throughout statistics: the
concept of a random estimate of a population parameter, such as the population mean;
bias; the standard error of an estimate; confidence intervals based on the central limit
theorem; and linearization, or propagation of error.

The theory and technique of survey sampling go far beyond the material in
this introduction. One method that deserves mention because of its widespread use
is systematic sampling. The population members are given in a list. If, say, a 10%
sample is desired, every tenth member of the list is sampled starting from some random
point among the first ten. If the list is in totally random order, this method is similar
to simple random sampling. If, however, there is some correlation or relationship
between successive members, the method is more similar to stratified sampling. The
clear danger of this method is that there may be some periodic structure in the list, in
which case bias can ensue.

Another commonly used method is cluster sampling. In sampling residential
households, a survey might choose blocks randomly and then either sample every
dwelling on each chosen block or further subsample the dwellings. Because one
would expect dwellings within a single block to be relatively homogeneous, this
method is typically less precise than a simple random sample of the same size.

We have developed a mathematical model for survey sampling and have deduced
consequences of that model, including probabilistic error bounds for the estimates.
As is always the case, reality never quite matches the mathematical model. The
basic assumptions of the model are (1) that every population member appears in
the sample with a specified probability and (2) that an exact measurement or response
is obtained from every sample member. In practice, neither assumption will hold pre-
cisely. Converse and Traugott (1986) provide an interesting discussion of the practical
difficulties of polls and surveys and consequences for the variability of the estimates.

The first assumption may fail because of the difficulty of obtaining an ex-
act enumeration of the population or because of imprecision in its definition. For
example, political surveys can be putatively based on all adults, all registered voters,
or all “likely” voters. However, the most serious problem with respect to the first
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assumption is that of nonresponse. Response levels of only 60% to 70% are common
in surveys of human populations. The possibility of substantial bias clearly arises if
there is a relationship of potential answers to survey questions to the propensity to
respond to those questions. For example, adults living in families are easier to contact
by a telephone survey than those living alone, and the opinions of these two groups
may well differ on certain issues. It is important to realize that the standard errors
of estimates that we have developed earlier in this chapter account only for random
variability in sample composition, not for systematic biases.

The Literary Digest poll of 1936, which predicted a 57% to 43% victory for
Republican Alfred Landon over incumbent president Franklin Roosevelt, is one of
the most famous of flawed surveys. Questionnaires were mailed to about 10 million
voters, who were selected from lists such as telephone books and club memberships,
and approximately 2.4 million of the questionnaires were returned. There were two
intrinsic problems: (1) nonresponse—those who did not respond may have voted dif-
ferently from those who did—and (2) selection bias—even if all 10 million voters
had responded, they would not have constituted a random sample; those in lower
socioeconomic classes (who were more likely to vote for Roosevelt) were less likely
to have telephone service or belong to clubs and thus less likely to be included in
the sample than were wealthier voters. The assumption that an exact measurement is
obtained from every member of the sample may also be in error. In surveys conducted
by interviewers, the interviewer’s approach and personality may affect the response.
In surveys that use questionnaires, the wording of the questions and the context within
which they are lodged can have an effect. An interesting example is a poll conducted
by Stanley Presser, (New Yorker, Oct 18, 2004). Half of the sample was asked, “Do
you think the United States should allow public speeches against democracy?” The
other half was asked, “Do you think the United States should forbid public speeches
against democracy?” 56% said no to the first question, and 39% said yes to the second.
The interesting paper by Hansen in Tanur et al. (1972) reports on efforts of the U.S.
Bureau of the Census to investigate these sorts of problems.

7.7 Problems
1. Consider a population consisting of five values—1, 2, 2, 4, and 8. Find the

population mean and variance. Calculate the sampling distribution of the mean
of a sample of size 2 by generating all possible such samples. From them, find
the mean and variance of the sampling distribution, and compare the results to
Theorems A and B in Section 7.3.1.

2. Suppose that a sample of size n = 2 is drawn from the population of the preceding
problem and that the proportion of the sample values that are greater than 3 is
recorded. Find the sampling distribution of this statistic by listing all possible
such samples. Find the mean and variance of the sampling distribution.

3. Which of the following is a random variable?

a. The population mean
b. The population size, N
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c. The sample size, n
d. The sample mean
e. The variance of the sample mean
f. The largest value in the sample
g. The population variance
h. The estimated variance of the sample mean

4. Two populations are surveyed with simple random samples. A sample of size n1

is used for population I, which has a population standard deviation σ1; a sample of
size n2 = 2n1 is used for population II, which has a population standard deviation
σ2 = 2σ1. Ignoring finite population corrections, in which of the two samples
would you expect the estimate of the population mean to be more accurate?

5. How would you respond to a friend who asks you, “How can we say that the
sample mean is a random variable when it is just a number, like the population
mean? For example, in Example A of Section 7.3.2, a simple random sam-
ple of size 50 produced x̄ = 938.5; how can the number 938.5 be a random
variable?”

6. Suppose that two populations have equal population variances but are of different
sizes: N1 = 100,000 and N2 = 10,000,000. Compare the variances of the sample
means for a sample of size n = 25. Is it substantially easier to estimate the mean
of the smaller population?

7. Suppose that a simple random sample is used to estimate the proportion of families
in a certain area that are living below the poverty level. If this proportion is roughly
.15, what sample size is necessary so that the standard error of the estimate is .02?

8. A sample of size n = 100 is taken from a population that has a proportion
p = 1/5.

a. Find δ such that P(| p̂ − p| ≥ δ) = 0.025.
b. If, in the sample, p̂ = 0.25, will the 95% confidence interval for p contain

the true value of p?

9. In a simple random sample of 1,500 voters, 55% said they planned to vote for a
particular proposition, and 45% said they planned to vote against it. The estimated
margin of victory for the proposition is thus 10%. What is the standard error of
this estimated margin? What is an approximate 95% confidence interval for the
margin?

10. True or false (and state why):
If a sample from a population is large, a histogram of the values in the sample
will be approximately normal, even if the population is not normal.

11. Consider a population of size four, the members of which have values x1, x2, x3, x4.

a. If simple random sampling were used, how many samples of size two are
there?

b. Suppose that rather than simple random sampling, the following sampling
scheme is used. The possible samples of size two are

{x1, x2}, {x2, x3}, {x3, x4}, {x1, x4}
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and the sampling is done in such a way that each of these four possible samples
is equally likely. Is the sample mean unbiased?

12. Consider simple random sampling with replacement.

a. Show that

s2 = 1

n − 1

n∑
i=1

(Xi − X)2

is an unbiased estimate of σ 2.
b. Is s an unbiased estimate of σ?
c. Show that n−1s2 is an unbiased estimate of σ 2

X
.

d. Show that n−1 N 2s2 is an unbiased estimate of σ 2
T .

e. Show that p̂(1 − p̂)/(n − 1) is an unbiased estimate of σ 2
p̂ .

13. Suppose that the total number of discharges, τ , in Example A of Section 7.2 is
estimated from a simple random sample of size 50. Denoting the estimate by T ,
use the central limit theorem to sketch the approximate probability density of the
error T − τ .

14. The proportion of hospitals in Example A of Section 7.2 that had fewer than 1000
discharges is p = .654. Suppose that the total number of hospitals having fewer
than 1000 discharges is estimated from a simple random sample of size 25. Use
the central limit theorem to sketch the approximate sampling distribution of the
estimate.

15. Consider estimating the mean of the population of hospital discharges (Exam-
ple A of Section 7.2) from a simple random sample of size n. Use the normal
approximation to the distribution of X in answering the following:

a. Sketch P(|X − µ| > 200) as a function of n for 20 ≤ n ≤ 100.
b. For n = 20, 40, and 80, find � such that P(|X − µ| > �) ≈ .10. Similarly,

find � such that P(|X − µ| > �) ≈ .50.

16. True or false?

a. The center of a 95% confidence interval for the population mean is a random
variable.

b. A 95% confidence interval for µ contains the sample mean with probability
.95.

c. A 95% confidence interval contains 95% of the population.
d. Out of one hundred 95% confidence intervals for µ, 95 will contain µ.

17. A 90% confidence interval for the average number of children per household
based on a simple random sample is found to be (.7, 2.1). Can we conclude that
90% of households have between .7 and 2.1 children?

18. From independent surveys of two populations, 90% confidence intervals for the
population means are constructed. What is the probability that neither interval
contains the respective population mean? That both do?

19. This problem introduces the concept of a one-sided confidence interval. Using
the central limit theorem, how should the constant k be chosen so that the interval
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(−∞, X + ksX ) is a 90% confidence interval for µ—i.e., so that P(µ ≤ X +
ksX ) = .9? This is called a one-sided confidence interval. How should k be
chosen so that (X − ksX , ∞) is 95% one-sided confidence interval?

20. In Example D of Section 7.3.3, a 95% confidence interval for µ was found to be
(1.44, 1.76). Because µ is some fixed number, it either lies in this interval or it
doesn’t, so it doesn’t make any sense to claim that P(1.44 ≤ µ ≤ 1.76) = .95.
What do we mean, then, by saying this is a “95% confidence interval?”

21. In order to halve the width of a 95% confidence interval for a mean, by what factor
should the sample size be increased? Ignore the finite population correction.

22. An investigator quantifies her uncertainty about the estimate of a population mean
by reporting X ± sX . What size confidence interval is this?

23. a. Show that the standard error of an estimated proportion is largest when p =
1/2.

b. Use this result and Corollary B of Section 7.3.2 to conclude that the
quantity

1

2

√
N − n

N (n − 1)

is a conservative estimate of the standard error of p̂ no matter what the value
of p may be.

c. Use the central limit theorem to conclude that the interval

p̂ ±
√

N − n

N (n − 1)

contains p with probability at least .95.

24. For a random sample of size n from a population of size N , consider the following
as an estimate of µ:

Xc =
n∑

i=1

ci Xi

where the ci are fixed numbers and X1, . . . , Xn is the sample.

a. Find a condition on the ci such that the estimate is unbiased.
b. Show that the choice of ci that minimizes the variances of the estimate subject

to this condition is ci = 1/n, where i = 1, . . . , n.

25. Here is an alternative proof of Lemma B in Section 7.3.1. Consider a random
permutation Y1, Y2, . . . , YN of x1, x2, . . . , xN . Argue that the joint distribution of
any subcollection, Yi1 , . . . , Yin , of the Yi is the same as that of a simple random
sample, X1, . . . , Xn. In particular,

Var(Yi ) = Var(Xk) = σ 2

and

Cov(Yi , Y j ) = Cov(Xk, Xl) = γ
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if i �= j and k �= l. Since Y1 + Y2 + · · · + YN = τ ,

Var

(
N∑

i=1

Yi

)
= 0

(Why?) Express Var(
∑N

i=1 Yi ) in terms of σ 2 and the unknown covariance, γ .
Solve for γ , and conclude that

γ = − σ 2

N − 1
for i �= j .

26. This is another proof of Lemma B in Section 7.3.1. Let Ui be a random vari-
able with Ui = 1 if the i th population member is in the sample and equal to 0
otherwise.

a. Show that the sample mean X = n−1
∑N

i=1 Ui xi .
b. Show that P(Ui = 1) = n/N . Find E(Ui ), using the fact that Ui is a Bernoulli

random variable.
c. What is the variance of the Bernoulli random variable Ui ?
d. Noting that UiU j is a Bernoulli random variable, find E(UiU j ), i �= j . (Be

careful to take into account that the sample is drawn without replacement.)
e. Find Cov(Ui , U j ), i �= j .
f. Using the representation of X above, find Var(X).

27. Suppose that the population size N is not known, but it is known that n ≤ N .
Show that the following procedure will generate a simple random sample of
size n. Imagine that the population is arranged in a long list that you can read
sequentially.

a. Let the sample initially consist of the the first n elements in the list.
b. For k = 1, 2, . . . , as long as the end of the list has not been encountered:

i. Read the (n + k)-th element in the list.
ii. Place it in the sample with probability n/(n + k) and, if it is placed in the

sample, randomly drop one of the exisiting sample members.

28. In surveys, it is difficult to obtain accurate answers to sensitive questions such as
“Have you ever used heroin?” or “Have you ever cheated on an exam?” Warner
(1965) introduced the method of randomized response to deal with such sit-
uations. A respondent spins an arrow on a wheel or draws a ball from an urn
containing balls of two colors to determine which of two statements to respond
to: (1) “I have characteristic A,” or (2) “I do not have characteristic A.” The inter-
viewer does not know which statement is being responded to but merely records
a yes or a no. The hope is that an interviewee is more likely to answer truthfully
if he or she realizes that the interviewer does not know which statement is being
responded to. Let R be the proportion of a sample answering Yes. Let p be the
probability that statement 1 is responded to (p is known from the structure of
the randomizing device), and let q be the proportion of the population that has
characteristic A. Let r be the probability that a respondent answers Yes.

a. Show that r = (2p−1)q+(1− p). [Hint: P(yes) = P(yes given question 1) ×
P(question 1) + P(yes given question 2) × P(question 2).]
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b. If r were known, how could q be determined?
c. Show that E(R) = r , and propose an estimate, Q, for q. Show that the estimate

is unbiased.
d. Ignoring the finite population correction, show that

Var(R) = r(1 − r)

n

where n is the sample size.
e. Find an expression for Var(Q).

29. A variation of the method described in Problem 28 has been proposed. Instead
of responding to statement 2, the respondent answers an unrelated question for
which the probability of a “yes” response is known, for example, “Were you born
in June?”

a. Propose an estimate of q for this method.
b. Show that the estimate is unbiased.
c. Obtain an expression for the variance of the estimate.

30. Compare the accuracies of the methods of Problems 28 and 29 by comparing their
standard deviations. You may do this by substituting some plausible numerical
values for p and q.

31. Referring to Example D in Section 7.3.3, how large should the sample be in order
that the 95% confidence interval for the total number of owners planning to sell
will have a width of 500?

32. Referring again to Example D in Section 7.3.3, suppose that a survey is done of
another condominium project of 12,000 units. The sample size is 200, and the
proportion planning to sell in this sample is .18.

a. What is the standard error of this estimate? Give a 90% confidence interval.
b. Suppose we use the notation p̂1 = .12 and p̂2 = .18 to refer to the proportions

in the two samples. Let d̂ = p̂1 − p̂2 be an estimate of the difference, d, of
the two population proportions p1 and p2. Using the fact that p̂1 and p̂2 are
independent random variables, find expressions for the variance and standard
error of d̂ .

c. Because p̂1 and p̂2 are approximately normally distributed, so is d̂. Use this
fact to construct 99%, 95%, and 90% confidence intervals for d. Is there clear
evidence that p1 is really different from p2?

33. Two populations are independently surveyed using simple random samples of
size n, and two proportions, p1 and p2, are estimated. It is expected that both
population proportions are close to .5. What should the sample size be so that the
standard error of the difference, p̂1 − p̂2, will be less than .02?

34. In a survey of a very large population, the incidences of two health problems are
to be estimated from the same sample. It is expected that the first problem will
affect about 3% of the population and the second about 40%. Ignore the finite
population correction in answering the following questions.
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a. How large should the sample be in order for the standard errors of both esti-
mates to be less than .01? What are the actual standard errors for this sample
size?

b. Suppose that instead of imposing the same limit on both standard errors, the
investigator wants the standard error to be less than 10% of the true value in
each case. What should the sample size be?

35. A simple random sample of a population of size 2000 yields the following
25 values:

104 109 111 109 87
86 80 119 88 122
91 103 99 108 96

104 98 98 83 107
79 87 94 92 97

a. Calculate an unbiased estimate of the population mean.
b. Calculate unbiased estimates of the population variance and Var(X).
c. Give approximate 95% confidence intervals for the population mean and total.

36. With simple random sampling, is X
2

an unbiased estimate of µ2? If not, what is
the bias?

37. Two surveys were independently conducted to estimate a population mean, µ.
Denote the estimates and their standard errors by X 1 and X 2 and σX1

and σX2
.

Assume that X 1 and X 2 are unbiased. For some α and β, the two estimates can
be combined to give a better estimator:

X = αX 1 + β X 2

a. Find the conditions on α and β that make the combined estimate unbiased.
b. What choice of α and β minimizes the variances, subject to the condition of

unbiasedness?

38. Let X1, . . . , Xn be a simple random sample. Show that
1

n

n∑
i=1

X 3
i is an unbiased

estimate of
1

N

N∑
i=1

x3
i .

39. Suppose that of a population of N items, k are defective in some way. For exam-
ple, the items might be documents, a small proportion of which are fraudulent.
How large should a sample be so that with a specified probability it will contain
at least one of the defective items? For example, if N = 10,000, k = 50, and
p = .95, what should the sample size be? Such calculations are useful in planning
sample sizes for acceptance sampling.

40. This problem presents an algorithm for drawing a simple random sample from a
population in a sequential manner. The members of the population are considered
for inclusion in the sample one at a time in some prespecified order (for example,
the order in which they are listed). The i th member of the population is included
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in the sample with probability

n − ni

N − i + 1

where ni is the number of population members already in the sample before the
i th member is examined. Show that the sample selected in this way is in fact
a simple random sample; that is, show that every possible sample occurs with
probability

1(
N

n

)

41. In accounting and auditing, the following sampling method is sometimes used to
estimate a population total. In estimating the value of an inventory, suppose that
a book value exists for each item and is readily accessible. For each item in the
sample, the difference D, audited value minus book value, is determined. The
inventory value is estimated by the sum of the book values of the population and
N D, where N is the population size.

a. Show that the estimate is unbiased.
b. Find an expression for the variance of the estimate.
c. Compare the expression obtained in part (b) to the variance of the usual es-

timate, which is the product of N and the average audited value. Under what
circumstances would the proposed method be more accurate?

d. How could a ratio estimate be employed in this situation? Would there be any
advantage or disadvantage to using a ratio estimate rather than the proposed
method?

42. Show that the population correlation coefficient is less than or equal to 1 in
absolute value.

43. Suppose that for Example D in Section 7.3.3, the average number of occupants
per condominium unit in the sample is 2.2 with a sample standard deviation of
.7 and the sample correlation coefficient between the number of occupants and
the number of motor vehicles is .85. Estimate the population ratio of the number
of motor vehicles per occupant and its standard error. Find an approximate 95%
confidence interval for the estimate.

44. Show that

Var(Y R)

Var(Y )
≈ 1 + Cx

Cy

(
Cx

Cy
− 2ρ

)

Sketch the graph of this ratio as a function of Cx/Cy .

45. In the population of hospitals, the correlation of the number of beds and the num-
ber of discharges is ρ = .91 (Example D of Section 7.4). To see how Var(Y R)

would be different if the correlation were different, plot Var(Y R) for n = 64 as
a function of ρ for −1 < ρ < 1.
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46. Use the central limit theorem to sketch the approximate sampling distribution
of Y R for n = 64 for the population of hospitals. Compare to the approximate
sampling distribution of Y .

47. For the population of hospitals and a sample size of n = 64, find the approxi-
mate bias of Y R by applying Corollary B of Section 7.4 and compare it to the
approximate standard deviation of the estimate. Repeat for n = 128.

48. A simple random sample of 100 households located in a city recorded the number
of people living in the household, X , and the weekly expenditure for food, Y . It
is known that there are 100,000 households in the city. In the sample∑

Xi = 320∑
Yi = 10,000∑
X 2

i = 1250∑
Y 2

i = 1,100,000∑
Xi Yi = 36,000

Neglect the finite population correction in answering the following.

a. Estimate the ratio r = µy/µx .
b. Form an approximate 95% confidence interval for µy/µx .
c. Using only the data on Y estimate the total weekly food expenditure, τ , for

households in the city and form a 90% confidence interval.

49. In a wildlife survey, an area of desert land was divided into 1000 squares, or
“quadrats,” a simple random sample of 50 of which were surveyed. In each sur-
veyed quadrat, the number of birds, Y , and the area covered by vegetation, X ,
were determined. It was found that∑

Xi = 3000∑
Yi = 150∑
X 2

i = 225,000∑
Y 2

i = 650∑
Xi Yi = 11,000

a. Estimate the ratio of the average number of birds per quadrat to the average
vegetation cover per quadrat.

b. Estimate the standard error of your estimate and find an approximate 90%
confidence interval for the population average.

c. Estimate the total number of birds and find an approximate 95% confidence
interval for the population total.

d. Suppose that from an aerial survey, the total area covered by vegetation could
easily be determined. How could this information be used to provide another
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estimate of the number of birds? Would you expect this estimate to be better
than or worse than that found in part (c)?

50. Hartley and Ross (1954) derived the following exact bound on the relative size
of the bias and standard error of a ratio estimate:

|E(R) − r |
σR

≤ σX

µx
= σx

µx

√
1

n

(
1 − n − 1

N − 1

)

a. Derive this bound from the relation

Cov(R, X) = E

(
Y

X
X

)
− E

(
Y

X

)
E(X)

b. Apply the bound to Problem 43 using sample estimates in place of the given
population parameters.

51. This problem introduces a technique called the “jackknife,” originally proposed
by Quenouille (1956) for reducing bias. Many nonlinear estimates, including the
ratio estimator, have the property that

E(θ̂) = θ + b1

n
+ b2

n2
+ · · ·

where θ̂ is an estimate of θ . The jackknife forms an estimate θ̂J , which has a
leading bias term of the order n−2 rather than n−1. Thus, for sufficiently large
n, the bias of θ̂J is substantially smaller than that of θ̂ . The technique involves
splitting the sample into several subsamples, computing the estimate for each
subsample, and then combining the several estimates. The sample is split into p
groups of size m, where n = mp. For j = 1, . . . , p, the estimate θ̂ j is calculated
from the m(p − 1) observations left after the j th group has been deleted. From
the preceding expression,

E(θ̂ j ) = θ + b1

m(p − 1)
+ b2

[m(p − 1)]2
+ · · ·

Now, p “pseudovalues” are defined:

Vj = pθ̂ − ( p − 1)θ̂ j

The jackknife estimate, θ̂J , is defined as the average of the pseudovalues:

θ̂J = 1

p

p∑
j=1

Vj

Show that the bias of θ̂J is of the order n−2.

52. A population consists of three strata with N1 = N2 = 1000 and N3 = 500.
A stratified random sample with 10 observations in each stratum yields the



Rice-15149 book March 16, 2006 12:53

7.7 Problems 249

following data:

Stratum 1 94 99 106 106 101 102 122 104 97 97
Stratum 2 183 183 179 211 178 179 192 192 201 177
Stratum 3 343 302 286 317 289 284 357 288 314 276

Estimate the population mean and total and give a 90% confidence interval.

53. The following table (Cochran 1977) shows the stratification of all farms in a
county by farm size and the mean and standard deviation of the number of acres
of corn in each stratum.

Farm Size Nl µl σl

0–40 394 5.4 8.3
41–80 461 16.3 13.3
81–120 391 24.3 15.1
121–160 334 34.5 19.8
161–200 169 42.1 24.5
201–240 113 50.1 26.0
241 + 148 63.8 35.2

a. For a sample size of 100 farms, compute the sample sizes from each stratum
for proportional and optimal allocation, and compare them.

b. Calculate the variances of the sample mean for each allocation and compare
them to each other and to the variance of an estimate formed from simple
random sampling.

c. What are the population mean and variance?
d. Suppose that ten farms are sampled per stratum. What is Var(Xs)? How large

a simple random sample would have to be taken to attain the same variance?
Ignore the finite population correction.

e. Repeat part (d) using proportional allocation of the 70 samples.

54. a. Suppose that the cost of a survey is C = C0 + C1n, where C0 is a startup
cost and C1 is the cost per observation. For a given cost C , find the al-
location n1, . . . , nL to L strata that is optimal in the sense that it mini-
mizes the variance of the estimate of the population mean subject to the cost
constraint.

b. Suppose that the cost of an observation varies from stratum to stratum—in
some strata the observations might be relatively cheap and in others relatively
expensive. The cost of a survey with an allocation n1, . . . , nL is

C = C0 +
L∑

l=1

Clnl

For a fixed total cost C , what choice of n1, · · ·, nL minimizes the variance?
c. Assuming that the cost function is as given in part (b), for a fixed variance,

find nl to minimize cost.
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55. The designer of a sample survey stratifies a population into two strata, H and L.
H contains 100,000 people, and L contains 500,000. He decides to allocate 100
samples to stratum H and 200 to stratum L, taking a simple random sample in
each stratum.

a. How should the designer estimate the population mean?
b. Suppose that the population standard deviation in stratum H is 20 and the

standard deviation in stratum L is 10. What will be the standard error of his
estimate?

c. Would it be better to allocate 200 samples to stratum H and 100 to stratum L?
d. Would it be better to use proportional allocation?

56. How might stratification be used in each of the following sampling problems?

a. A survey of household expenditures in a city.
b. A survey to examine the lead concentration in the soil in a large plot of land.
c. A survey to estimate the number of people who use elevators in a large building

with a single bank of elevators.
d. A survey of programs on a television station, taken to estimate the proportion

of time taken up by advertising on Monday through Friday from 6 P.M. until
10 P.M. Assume that 52 weeks of recorded broadcasts are available for analysis.

57. Consider stratifying the population of Problem 1 into two strata: (1, 2, 2) and (4,
8). Assuming that one observation is taken from each stratum, find the sampling
distribution of the estimate of the population mean and the mean and standard
deviation of the sampling distribution. Compare to Theorems A and B in Section
7.5.2 and the results of Problem 1.

58. (Computer Exercise) Construct a population consisting of the integers from 1 to
100. Simulate the sampling distribution of the sample mean of a sample of size
12 by drawing 100 samples of size 12 and making a histogram of the results.

59. (Computer Exercise) Continuing with Problem 58, divide the population into
two strata of equal size, allocate six observations per stratum, and simulate
the distribution of the stratified estimate of the population mean. Do the same
thing with four strata. Compare the results to each other and to the results of
Problem 58.

60. A population consists of two strata, H and L , of sizes 100,000 and 500,000 and
standard deviations 20 and 12, respectively. A stratified sample of size 100 is to
be taken.

a. Find the optimal allocation for estimating the population mean.
b. Find the optimal allocation for estimating the difference of the means of the

strata, µH − µL .

61. The value of a population mean increases linearly through time: µ(t) = α + βt
while the variance remains constant. Independent simple random samples of size
n are taken at times t = 1, 2, and 3.

a. Find conditions on w1, w2, and w3 such that

β̂ = w1 X 1 + w2 X 2 + w3 X 3
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is an unbiased estimate of the rate of change, β. Here Xi denotes the sample
mean at time ti .

b. What values of the wi minimize the variance subject to the constraint that the
estimate is unbiased?

62. In Example B of Section 7.5.2, the standard error of Xs was estimated to be
sXs

= 35.8. How good is this estimate—what is the actual standard error of Xs?

63. (Open-ended) Monte Carlo evaluation of an integral was introduced in Example
A of Section 5.2. Refer to that example for the following notation. Try to interpret
that method from the point of view of survey sampling by considering an “infinite
population” of numbers in the interval [0, 1], each population member x having
a value f (x). Interpret Î ( f ) as the mean of a simple random sample. What is
the standard error of Î ( f )? How could it be estimated? How could a confidence
interval for I ( f ) be formed? Do you think that anything could be gained by
stratifying the “population?” For example, the strata could be the intervals [0, .5)
and [.5, 1]. You might find it helpful to consider some examples.

64. The value of an inventory is to be estimated by sampling. The items are stratified
by book value in the following way:

Stratum Nl µl σl

$1000 + 70 3000 1250
$200–1000 500 500 100
$1–200 10,000 90 30

a. What should the relative sampling fraction in each stratum be for proportional
and for optimal allocation? Ignore the finite population correction.

b. How do the variances under each type of allocation compare to each other and
to the variance under simple random sampling?

65. The disk file cancer contains values for breast cancer mortality from 1950 to
1960 (y) and the adult white female population in 1960 (x) for 301 counties in
North Carolina, South Carolina, and Georgia.

a. Make a histogram of the population values for cancer mortality.
b. What are the population mean and total cancer mortality? What are the pop-

ulation variance and standard deviation?
c. Simulate the sampling distribution of the mean of a sample of 25 observations

of cancer mortality.
d. Draw a simple random sample of size 25 and use it to estimate the mean and

total cancer mortality.
e. Estimate the population variance and standard deviation from the sample of

part (d).
f. Form 95% confidence intervals for the population mean and total from the

sample of part (d). Do the intervals cover the population values?
g. Repeat parts (d) through (f) for a sample of size 100.
h. Suppose that the size of the total population of each county is known and that

this information is used to improve the cancer mortality estimates by forming
a ratio estimator. Do you think this will be effective? Why or why not?
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i. Simulate the sampling distribution of ratio estimators of mean cancer mortal-
ity based on a simple random sample of size 25. Compare this result to that
of part (c).

j. Draw a simple random sample of size 25 and estimate the population mean and
total cancer mortality by calculating ratio estimates. How do these estimates
compare to those formed in the usual way in part (d) from the same data?

k. Form confidence intervals about the estimates obtained in part ( j).
l. Stratify the counties into four strata by population size. Randomly sample six

observations from each stratum and form estimates of the population mean
and total mortality.

m. Stratify the counties into four strata by population size. What are the sam-
pling fractions for proportional allocation and optimal allocation? Compare
the variances of the estimates of the population mean obtained using simple
random sampling, proportional allocation, and optimal allocation.

n. How much better than those in part (m) will the estimates of the population
mean be if 8, 16, 32, or 64 strata are used instead?

66. A photograph of a large crowd on a beach is taken from a helicopter. The photo
is of such high resolution that when sections are magnified, individual people
can be identified, but to count the entire crowd in this way would be very time-
consuming. Devise a plan to estimate the number of people on the beach by using
a sampling procedure.

67. The data set families contains information about 43,886 families living in
the city of Cyberville. The city has four regions: the Northern region has 10,149
families, the Eastern region has 10,390 families, the Southern region has 13,457
families, and the Western region has 9,890. For each family, the following infor-
mation is recorded:

1. Family type
1: Husband-wife family
2: Male-head family
3: Female-head family

2. Number of persons in family
3. Number of children in family
4. Family income
5. Region

1: North
2: East
3: South
4: West

6. Education level of head of household
31: Less than 1st grade
32: 1st, 2nd, 3rd, or 4th grade
33: 5th or 6th grade
34: 7th or 8th grade
35: 9th grade
36: 10th grade
37: 11th grade
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38: 12th grade, no diploma
39: High school graduate, high school diploma, or equivalent
40: Some college but no degree
41: Associate degree in college (occupation/vocation program)
42: Associate degree in college (academic program)
43: Bachelor’s degree (e.g., B.S., B.A., A.B.)
44: Master’s degree (e.g., M.S., M.A., M.B.A.)
45: Professional school degree (e.g., M.D., D.D.S., D.V.M., LL.B., J.D.)
46: Doctoral degree (e.g., Ph.D., Ed.D.)

In these exercises, you will try to learn about the families of Cyberville by using
sampling.

a. Take a simple random sample of 500 families. Estimate the following popula-
tion parameters, calculate the estimated standard errors of these estimates, and
form 95% confidence intervals:

i. The proportion of female-headed families
ii. The average number of children per family

iii. The proportion of heads of households who did not receive a high school
diploma

iv. The average family income

Repeat the preceding parameters for five different simple random samples of
size 500 and compare the results.

b. Take 100 samples of size 400.

i. For each sample, find the average family income.
ii. Find the average and standard deviation of these 100 estimates and make

a histogram of the estimates.
iii. Superimpose a plot of a normal density with that mean and standard devi-

ation of the histogram and comment on how well it appears to fit.
iv. Plot the empirical cumulative distribution function (see Section 10.2). On

this plot, superimpose the normal cumulative distribution function with
mean and standard deviation as earlier. Comment on the fit.

v. Another method for examining a normal approximation is via a normal
probability plot (Section 9.9). Make such a plot and comment on what it
shows about the approximation.

vi. For each of the 100 samples, find a 95% confidence interval for the pop-
ulation average income. How many of those intervals actually contain the
population target?

vii. Take 100 samples of size 100. Compare the averages, standard deviations,
and histograms to those obtained for a sample of size 400 and explain how
the theory of simple random sampling relates to the comparisons.

c. For a simple random sample of 500, compare the incomes of the three family
types by comparing histograms and boxplots (see Chapter 10.6).

d. Take simple random samples of size 400 from each of the four regions.

i. Compare the incomes by region by making parallel boxplots.
ii. Does it appear that some regions have larger families than others?

iii. Are there differences in education level among the four regions?
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e. Formulate a question of your choice and attempt to answer it with a simple
random sample of size 400.

f. Does stratification help in estimating the average family income? From a simple
random sample of size 400, estimate the average income and also the standard
error of your estimate. Form a 95% confidence interval. Next, allocate the 400
observations proportionally to the four regions and estimate the average income
from the stratified sample. Estimate the standard error and form a 95% confi-
dence interval. Compare your results to the results of the simple random sample.


