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EXAMPLE B
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We have

Thus,

4.6 Approximate Methods
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We see that the variability of R depends on both the mean level of I and the variance
of 1. This makes sense, since if I is quite small, small variations in / will result in
large variations in R = V;)/I, whereas if [ is large, small variations will not affect R
as much. The second-order correction factor for 1t also depends on p; and is large if
w; is small. In fact, when [ is near zero, the function g(/) = V;/I is quite nonlinear,

and the linearization is not

a good approximation.

This example examines the accuracy of the approximations using a simple test case.
We choose the function g(x) = +/x and consider two cases: X uniform on [0, 1],
and X uniform on [1, 2]. The graph of g(x) in Figure 4.9 shows that g is more nearly
linear in the latter case, so we would expect the approximations to work better there.

Let Y = /X; because
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FIGURE 4.9 The function g(x) = 4/x is more nearly linear over the interval [1, 2]

than over the interval [0, 1].


John  Rice
Note
insert several spaces before g'' in order to make it clear that two equations are displayed on this line


