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Outline
● The problem statement

○ A motivating example from internet advertising
○ The general problem statement
○ The nature of our "big" data

● Some techniques that won't work (and why)
○ Ratio of ratios
○ Average of logs
○ Random effects

● The Mantel-Haenszel ("MH") estimator
○ Classical form
○ Generalization



Motivating Example:
Internet Advertising

A "commercial" web search shows 
advertisements.

If the user clicks on one, the 
advertiser is then charged $X, and 
the user is sent to their site.



Motivating Example:
Internet Advertising

Google Version 1 
(Control)

Google Version 2 
(Treatment)

Imagine a randomized A/B study with two different "versions" of 
Google.  An advertiser's average "cost per click" (CPC) may 
change.



Motivating Example
For advertiser i,

These are random due to:

● User behavior
○ Random searches
○ Random clicks 

● Random allocation in the 
A/B study

● State of Google's systems

(Cost Per Click)

(Control)

(Treatment)



Motivating Example

    can range from pennies to hundreds of dollars (!)

=> We care about the ratio of the means, not the difference.

   
This is what we're after.
For this (short) 
presentation we'll 
(mostly) assume it's the 
same for each i.



Reminder: Ratios Are 
Harder Than Differences

The difference of means is easier to estimate 
than the ratio:

Difference

Ratio



Formal Problem Statement
N paired observations with independent mean-
zero noise:

We want to know   .

Paired observations

Independent

Different means
...and a proportional 
change



The Data
We're interested in cases where:
● N is large (40m), data is large (~20Gb+)
● Each pair has little data (zeroes or large variance)
● Simpson's paradox may occur (more later)

We'll (sloppily) require:
●  
●  
●  
● Sane regularity conditions that will be obvious



Things You Might Try: 
Outline

Method Positives Problem
Ratio of ratios 
(compare totals)

Easy to calculate, 
very simple

Simpson's 
Paradox

Average of logs Intuitive (logs are 
for proportions)

Sparse data

Random effects 
model

Theoretically sound Data is too big



Things You Might Try #1:
Ratio of Ratios

Problem: Simpson's Paradox

Total (unpaired) 
CPC in the control
Total (unpaired) CPC 
in the treatment
...and their ratio



Simpson's Paradox 
Formally

The ratios can change with changes in the weights alone 
(e.g. in the distribution of clicks).

The can mask, simulate, or counteract changes in the X.



Simpson's Paradox 
Example

Two advertisers:
...one expensive (Adv 1)
...and one cheap (Adv. 2)

   = $9 / $10 = $0.9 / $1 = 0.9
But the average goes from $1.9 in the control to $8.19 in the 
treatment because of the change in w (click distribution).

Control (1) Treatment (2)

Adv. 1 X_11 = $10,   w_11 = 10% X_11 = $9,     w_11 = 90%

Adv. 2 X_12 = $1,    w_12 = 90% X_12 = $0.9,   w_12 = 10%

Totals: X_1  = $1.9 X_2  = $8.19



Things You Might Try #2a:
Average of Ratios

Problem:
Linearity of 
expectations and
Sparse data
(or zeroes)



Things You Might Try #2b:
Average of Logs

Problem:
Exactly the same!
Sparse data
(or zeroes)



Things You Might Try #3:
Random Effects Model

Use MLE to 
estimate

Problem:
Requires multiple 
passes through 
the data.
Data is too big



Classical Mantel Haenszel 
Estimator

2x2 contingency tables
Unit i Success Trials

Control S_1i N_1i

Treatment S_2i N_2i

Assume                 to derive MLE of      :



Classical Mantel Haenszel 
Estimator

Note the formal similarity to the ratio of ratios, 
but with no Simpson because we've made w 
the same in the numerator and denominator.

MH:

Ratio of 
Ratios:



Generalized "MH" 
Estimator

The precise weights don't matter as long as:

● They are the same in the numerator and denominator
●
● The weights don't do something stupid as 



Step 1)  Group the advertisers into rows:
              
Step 2) For each row, calculate
Step 3) Keep running totals of                 and 
Step 4) Divide the two totals to get

This is "embarrassingly parallel" (except for 
step 1, which you'll probably have to do 
anyway, or you get Simpson).

Example, Revisited



Beyond the Scope
● Variance is straightforward (e.g. your favorite online 

bootstrap algorithm)

● Often approximately normal (classical hypothesis tests 
have good coverage)

● Robust to non-uniformity of the effect

● ...and custom weights give you a weighted average of 
your choice.



Some Shortcomings

● Can't easily drop into a regression context

● The denominator must be far from zero with 
high probability

● Potentially inefficient if you have more 
information



Summary
● Estimating a ratio of averages can be tricky 

due to:
○ Simpson's paradox (ratio of ratios)
○ Sparse data (average of logs or ratios)
○ Big data (random effects)

● Generalized MH resolves these issues:
○ Very parallelizable
○ Robust to misspecification
○ Robust to Simpson's Paradox
○ Easy to understand



Questions?



Contact Information
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Extra Slides

which I probably won't have time to present



Generalized "MH" 
Estimator

=> As a LLN kicks in,



Average Proportional 
Changes
Now suppose that t is not constant:

(X_1i, X_2i), 1 <= i <= N

E(X_1i) = m_i

E(X_2i) = t_i * m_i

P(X_1i, X_2i | m_i) = P(X_2i | m_i) P(X_2i | m_i)

We want to know the average t_i, weighted by 
some attribute of the pair, i.



Non-uniform Changes
Suppose

t_i ~ f_i(t)

Then defining

W_i = m_i w_i / \sum_i m_i w_i

E_i(t_i * W_i)

Usually, m_i * w_i ~ s_i



Suppose we don't want spend weighting, but 
click weighting instead.

Use historical (out-of-sample) data to get

x_h = n_h / s_h

and use

w'_i = x_h * w_i

Non-uniform Changes



Example with non-uniform 
changes
        n_1i n_2i

w_i = -------------,    x_1i = s_1i / n_1i

       n_1i + n_2i

w_i ~ n

m_i w_i ~ Spend

Result: a spend-weighted average proportional change.


