Estimating Average Proportional Changes in Large, Sparse Data

Ryan Giordano & many others at Google

Credits

Many people at Google have thought / worked on the problems described here, especially:

- Daryl Pregibon
- Hal Varian
- Matt Cary
- Chris Neff

All errors in this presentation are my own, and any views herein are not necessarily Google's.

Outline

• The problem statement

- A motivating example from internet advertising
- The general problem statement
- The nature of our "big" data
- Some techniques that won't work (and why)
 - Ratio of ratios
 - Average of logs
 - Random effects

• The Mantel-Haenszel ("MH") estimator

- Classical form
- Generalization

Motivating Example: Internet Advertising

Google mesothelioma Images Maps Shopping Abo 100 requilte /0.06 or Ads related to mesotnelloma Mesothelioma 1 (866) 942 9878 www.mesotheliomaclaimscenter.info/ Mesothelioma? Get Money You Deserve Fast! G Mesothelioma Compensation Amounts - File a I Mesothelioma 1 (877) 770 9704 www.sokolovelaw.com/Call Now Eligible For A Mesothelioma Claim? Free Legal Consult! Call 24/7. Mesothelioma 1 (800) 582 0706

www.lawfirm.com/Free_Consult Do you Have a Mesothelioma Lawsuit? Get the Settlement You Deserve. 9 Tips For Choosing a Meso Law Firm - What To Expect Filing A Law Suit

Mesothelioma - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Mesothelioma -

Mesothelioma (or, more precisely, malignant mesothelioma) is a rare form of cancer that develops from cells of the mesothelium, the protective lining that covers ...

Mesothelium - Peritoneal mesothelioma - Category: Mesothelioma

A "commercial" web search shows advertisements.

If the user clicks on one, the advertiser is then charged \$X, and the user is sent to their site.

Simmons Law Firm has 199 followers on Google+

Mesothelioma Claim Center www.mesothelioma-asbestos-law-firm.com/ Millions of Dollars Available! Get A 100% Free Consultation Today.

Mesothelioma Cancer www.mesothelioma-lung-cancer.org/ 1 (855) 284 2319

Site covers a specific and rare type of lung cancer

Mesothelioma Resource www.mesotheliomabook.com/

Motivating Example: Internet Advertising

Google Version 1 (Control)

Google Version 2 (Treatment)

Google mesothelioma Ryan Giordano J -Web Images Maps Shopping More - Search tools About 8.050.000 results (0.26 seconds) Ads ① Ads related to mesothelioma () Mesothelioma 1 (866) 942 9878 CA Mesothelioma Legal Aid www.mesotheliomaclaimscenter.info/ www.simmonsfirm.com/Mesothelioma Mesothelioma? Get Money You Deserve Fast! Get Help with Filing a Claim. 1 (888) 360 4189 Mesothelioma Diagnosis in CA? Get Mesothelioma Compensation Amounts - File a Mesothelioma Claim A Free Legal Consult. Call 24/7 Simmons Law Firm has 199 followers Mesothelioma 1 (877) 770 9704 on Google+ www.sokolovelaw.com/Call_Now Eligible For A Mesothelioma Claim? Free Legal Consult! Call 24/7. Mesothelioma Claim Center www.mesothelioma-asbestos-law-firm.com/ Mesothelioma 1 (800) 582 0706 Millions of Dollars Available! www.lawfirm.com/Free Consult Get A 100% Free Consultation Today Do you Have a Mesothelioma Lawsuit? Get the Settlement You Deserve. 9 Tips For Choosing a Meso Law Firm - What To Expect Filing A Law Suit Mesothelioma Cancer www.mesothelioma-lung-cancer.org/ Mesothelioma - Wikipedia, the free encyclopedia 1 (855) 284 2319 Site covers a specific and rare en.wikipedia.org/wiki/Mesothelioma type of lung cancer Mesothelioma (or, more precisely, malignant mesothelioma) is a rare form of cancer that develops from cells of the mesothelium, the protective lining that covers . Mesothelioma Resource Mesothelium - Peritoneal mesothelioma - Category: Mesothelioma www.mesotheliomabook.com

Imagine a randomized A/B study with two different "versions" of Google. An advertiser's average "cost per click" (CPC) may change.

Motivating Example

For advertiser i,

- X = CPC (**C**ost **P**er **C**lick)
- S = Spend
- N = Clicks

These are random due to:

- User behavior
 - Random searches
 - Random clicks
- Random allocation in the A/B study
 - State of Google's systems

Motivating Example

 $X_{1i} = S_{1i}/N_{1i} \qquad X_{2i} = S_{2i}/N_{2i}$ $E(X_{1i}) = \mu_{1i} \qquad E(X_{2i}) = \mu_{2i}$

 μ_{i} can range from pennies to hundreds of dollars (!)

=> We care about the *ratio* of the means, not the difference.

This is what we're after. For this (short) presentation we'll (mostly) assume it's the same for each *i*.

Reminder: Ratios Are Harder Than Differences

The difference of means is easier to estimate than the ratio:

$$\frac{1}{N} \sum_{i} (Y_i - Z_i) \to E(Y_i) - E(Z_i) = \mu_Y - \mu_Z \quad \text{Difference}$$
$$\frac{1}{N} \sum_{i} Y_i / Z_i \to E(Y_i / Z_i) \neq \mu_Y / \mu_Z \quad \text{Ratio}$$

Formal Problem Statement

N paired observations with independent meanzero noise:

$$\begin{aligned} &(X_{1i}, X_{2i}), 1 \leq i \leq N \\ &P(X_{1i}, X_{2i} | \mu_i) = P(X_{1i} | \mu_i) P(X_{2i} | \mu_i) \\ &E(X_{1i}) = \mu_i \\ &E(X_{2i}) = \theta \mu_i \end{aligned} \qquad \begin{array}{ll} \text{Independent} \\ &\text{Different means} \\ &\dots \text{and a proportional} \\ &\text{change} \end{aligned}$$

We want to know θ .

The Data

We're interested in cases where:

- N is large (40m), data is large (~20Gb+)
- Each pair has little data (zeroes or large variance)
- Simpson's paradox may occur (more later)

We'll (sloppily) require:

- $\bullet \quad \theta > 0$
- $\mu_i > 0$
- $var(X_{1i}) < \infty, var(X_{2i}) < \infty$
- Sane regularity conditions that will be obvious

Things You Might Try: Outline

Method	Positives	Problem
Ratio of ratios (compare totals)	Easy to calculate, very simple	Simpson's Paradox
Average of logs	Intuitive (logs are for proportions)	Sparse data
Random effects model	Theoretically sound	Data is too big

Things You Might Try #1: **Ratio of Ratios**

 $X_1 = \frac{S_1}{N_1} = \frac{\sum_i S_{1i}}{\sum_i N_{1i}}$ Total (unpaired) CPC in the control $X_2 = \frac{S_2}{N_2} = \frac{\sum_i S_{2i}}{\sum_i N_{2i}}$ Total (unpaired) in the treatment $\hat{\theta} = X_2/X_1$

Total (unpaired) CPC

...and their ratio

Problem: Simpson's Paradox

Simpson's Paradox Formally

The ratios can change with changes in the weights alone (e.g. in the distribution of clicks).

The can mask, simulate, or counteract changes in the X.

Simpson's Paradox Example

Two advertisers:

...one expensive (Adv 1) ...and one cheap (Adv. 2)

	Control (1)	Treatment (2)
Adv. 1	$x_{11} = $10, w_{11} = 10\%$	$x_{11} = $9, w_{11} = 90\%$
Adv. 2	$x_{12} = $1, w_{12} = 90\%$	$x_{12} = $0.9, w_{12} = 10\%$
Totals:	$x_1 = 1.9	$x_2 = 8.19

heta = \$9 / \$10 = \$0.9 / \$1 = 0.9

But the average goes from \$1.9 in the control to \$8.19 in the treatment because of the change in *w* (click distribution).

Things You Might Try #2a: Average of Ratios

$$(X_{1i}, X_{2i}), 1 \leq i \leq N$$
$$E(X_{1i}) = \mu_i$$
$$E(X_{2i}) = \theta_i \mu_i$$
$$\hat{\theta} = \frac{1}{N} \sum_i \frac{X_{2i}}{X_{1i}}$$

$$\hat{\theta} \to E\left[\frac{X_{2i}}{X_{1i}}\right] \neq \frac{E[X_{2i}]}{E[X_{1i}]}$$

Problem: Linearity of expectations and Sparse data (or zeroes)

Things You Might Try #2b: Average of Logs

$$(X_{1i}, X_{2i}), 1 \leq i \leq N$$

$$E(X_{1i}) = \mu_i$$

$$E(X_{2i}) = \theta_i \mu_i$$

$$\hat{\theta} = \frac{1}{N} \sum_i \left[\log(X_{2i}) - \log(X_{1i}) \right]$$

 $E\left[\log(X_{2i}) - \log(X_{1i})\right] \neq \log(E[X_{2i}]) - \log(E[X_{1i}])$

Problem: Exactly the same! Sparse data (or zeroes)

Things You Might Try #3: Random Effects Model

$$X_{1i} \sim N(\mu_i, \quad \sigma_{1i}^2)$$

$$X_{2i} \sim N(\theta \mu_i, \quad \sigma_{2i}^2)$$

$$\mu_i \sim F(\mu_i; \gamma)$$

$$\Rightarrow$$

$$E(X_{1i} | \mu_i) = \mu_i$$

$$E(X_{2i} | \mu_i) = \theta \mu_i$$

Use MLE to estimate θ, γ

Problem:

Requires multiple passes through the data. Data is too big

Classical Mantel Haenszel Estimator

2x2 contingency tables

Unit i	Success	Trials
Control	S_1i	N_1i
Treatment	S_2i	N_2i

$$S_{1i} \sim Poisson(\mu_i \cdot N_{1i})$$
$$S_{2i} \sim Poisson(\theta \cdot \mu_i \cdot N_{2i})$$

Assume $\theta pprox 1$ to derive MLE of $\, heta$:

$$\hat{\theta} = \frac{\sum_{i} w_i \cdot X_{2i}}{\sum_{i} w_i \cdot X_{1i}} \qquad \qquad w_i = \frac{N_{1i}N_{2i}}{N_{1i} + N_{2i}}$$

Classical Mantel Haenszel Estimator

Note the formal similarity to the ratio of ratios, but with no Simpson because we've made *w* the same in the numerator and denominator.

Generalized "MH" Estimator

$$\hat{\theta} = \frac{\sum_{i} w_i \cdot X_{2i}}{\sum_{i} w_i \cdot X_{1i}} \to_p \theta$$

The precise weights don't matter as long as:

- They are the same in the numerator and denominator
 E[X_{2i}|w_i] = θ · μ_i = θ · E[X_{1i}|w_i]
- The weights don't do something stupid as $\ n
 ightarrow \infty$

Example, Revisited

Step 1) Group the advertisers into rows: $(S_{1i}, N_{1i}, S_{2i}, N_{2i})$

Step 2) For each row, calculate w_i, X_{1i}, X_{2i} Step 3) Keep running totals of $w_i \cdot X_{1i}$ and $w_i \cdot X_{2i}$ Step 4) Divide the two totals to get

$$\hat{\theta} = \frac{\sum_{i} w_i \cdot X_{2i}}{\sum_{i} w_i \cdot X_{1i}}$$

This is "embarrassingly parallel" (except for step 1, which you'll probably have to do anyway, or you get Simpson).

Beyond the Scope

- Variance is straightforward (e.g. your favorite online bootstrap algorithm)
- Often approximately normal (classical hypothesis tests have good coverage)
- Robust to non-uniformity of the effect
- ...and custom weights give you a weighted average of your choice.

Some Shortcomings

- Can't easily drop into a regression context
- The denominator must be far from zero with high probability
- Potentially inefficient if you have more information

Summary

- Estimating a ratio of averages can be tricky due to:
 - Simpson's paradox (ratio of ratios)
 - Sparse data (average of logs or ratios)
 - Big data (random effects)
- Generalized MH resolves these issues:
 - Very parallelizable
 - Robust to misspecification
 - Robust to Simpson's Paradox
 - Easy to understand

Questions?

Contact Information

Ryan Giordano rgiordan@gmail.com

Extra Slides

which I probably won't have time to present

Generalized "MH" Estimator

 $\hat{\theta} = \frac{\sum_{i} w_{i} \cdot X_{2i}}{\sum_{i} w_{i} \cdot X_{1i}} \qquad w_{i} = \frac{N_{1i}N_{2i}}{N_{1i} + N_{2i}}$ $E\left[\sum_{i} w_{i} \cdot X_{2i}|w_{j}, m_{j}, \forall j\right] = \theta \sum_{i} w_{i} \cdot m_{i}$ $E\left[\sum_{i} w_{i} \cdot X_{1i}|w_{j}, m_{j}, \forall j\right] = \sum_{i} w_{i} \cdot m_{i}$

=> As a LLN kicks in,

 $\hat{\theta} \to_p \theta$

Average Proportional Changes

Now suppose that t is not constant:

$$(X_{1i}, X_{2i}), 1 \le i \le N$$

 $E(X_{1i}) = m_i$
 $E(X_{2i}) = t_i * m_i$
 $P(X_{1i}, X_{2i} | m_i) = P(X_{2i} | m_i) P(X_{2i} | m_i)$

We want to know the average t_i, weighted by some attribute of the pair, i.

Non-uniform Changes

Suppose

 $t_i \sim f_i(t)$

Then defining

W_i = m_i w_i / \sum_i m_i w_i

E_i(t_i * W_i)

Usually, m_i * w_i ~ s_i

Non-uniform Changes

Suppose we don't want spend weighting, but click weighting instead.

Use historical (out-of-sample) data to get

 $x_h = n_h / s_h$

and use

 $w'_i = x_h * w_i$

Example with non-uniform changes

Result: a spend-weighted average proportional change.