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Levy Processes and Infinitely Divisible Law

Well begin the lecture with some classical distribution theory for Levy processes and infinitely
divisible distributions.

Definition 1.1 X = {X(t)}t≥0 is said to be a Levy process if

1. X has independent increments.

2. X(0) = 0 a.s.

3. X is stochastically continuous (also called continuous in probability or P-continuous), if, for
s ≥ 0

X(t+ s)−X(s) P→ 0 as t→ 0

4. X is time homogeneous, i.e., for t ≥ 0, L(X(t+ s)−X(s)) does not depend on s ≥ 0.

5. X is rcll (right continuous with left limits) almost surely.

Without 5, X is said to be a Levy process in law.

Its easy to check that both Brownian Motion and Poisson process are Levy processes.

Theorem 1.1 The marginal distribution of X(t) is determined by X(1).

Proof: Since X(t) has independent increments and is time homogenous, we can write

ϕs+t(u) = EeiuX(s+t)

= Eeiu(X(s+t)−X(t))eiuX(t)

= Eeiu(X(s+t)−X(t))EeiuX(t)

= EeiuX(s)EeiuX(t)

= ϕs(u)ϕt(u)

The feature of P−continuity implies ϕt(u) is continuous with respect to t for all u. Hammels theorem
implies that ϕt(u) = exp(tφ(u)), and further ϕ1(u) = exp(φ(u)). Hence ϕt(u) = (ϕ1(u))t.

Definition 1.2 Two stochastic processes {Z1(t)}t∈T and {Z2(t)}t∈T are modifications (also called
indistinguishable) of each other, if

P{Z1(t) = Z2(t)} = 1 for all t ∈ T
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There is a theorem that blurs the difference between Levy processes in law and Levy processes.

Theorem 1.2 Each Levy process in law has a modification that is a Levy process.

The general proof is delicate and well skip it.

Definition 1.3 A random vector Y is infinitely divisible (id) if, for each n ∈ N, there is an i.i.d.
sequence Yn,1, . . . , Yn,n so that

Y
d= Yn,1 + · · ·+ Yn,n

The next result provides the basic link between Levy processes and triangular arrays.

Theorem 1.3 (Levy processes and infinitely divisibility) For any random vector Y in Rd, these
conditions are equivalent:

I. Y is infinitely divisible.

II. Yn,1 + · · ·+ Yn,rn

d→ Y for some i.i.d. array (Yn,j)n≥1,rn≥j≥1, where rn →∞.

III. Y d= X1 for some Levy process X in Rd.

Two lemmas are needed for the proof.

Lemma 1.4 If Yn,j are such as in II, then Yn,1
P→ 0.

Proof: Let µ and µn denote the distribution of Y and Yn,1 respectively. Choose r > 0 so small that
ϕµ 6= 0 on [−r, r], and write |ϕµ| = eψ on this interval, where ψ : [−r, r] → R is continuous with
ψ(0) = 0. For each u ∈ [−r, r], since ϕrn

µn
(u) → ϕµ(u), we see for sufficiently large n, ϕµn

(u) 6= 0.
Thus, we may write |ϕµn

(u)| = eψn(u) , where rnψn(u) → ψ(u). Hence ψn(u) → 0 and therefore
ϕµn

(u) → 1. Now let ε ≤ r−1, and note∫ r

−r
1− ϕn(u)du = 2r

∫
(1− sin rx

rx
)µn(dx) ≥ 2r(1− sin rε

rε
)µn(|x| ≥ ε)

As n→∞, the left-hand side tends to 0 by dominated convergence theorem, and we get µn
w→ δ0.

Lemma 1.5 (Kolmogorov consistency) Given distribution functions {{Ft : Rd → [0, 1]}t∈Td}d∈N,
there exists a stochastic process {Z(t)}t∈T with these distributions as its Fidis, iff, the following two
consistency conditions hold

• F...,ti−1,tj ,ti+1,...,tj−1,ti,tj+1,...(. . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . ) = Ft(x);

• limxk+1→∞Ft,tk+1(x, xk+1) = Ft(x).

Well skip the proof of this lemma.
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Proof: (of Theorem 1.3) I ⇒ II is trivial.
II ⇒ I. Write mn = [ rn

2 ] and let

S2n = (Y2n,1 + · · ·+ Y2n,mn
) + (Y2n,n+1 + · · ·+ Y2n,2mn

) = Zn,1 + Zn,2

The random vectors Zn,1 and Zn,2 are independent and have the same distribution. Lemma 1.4
implies S2n ⇒ Y . Then the distribution of Zn,1 is a tight sequence since

P (Zn,1 > z)2 = P (Zn,1 > z)P (Zn,2 > z) ≤ P (S2n > 2z)

and similarly P (Zn,1 < −z)2 ≤ P (S2n < −2z). Similarly we see that Zn,2 is also tight. So we can

take a subsequence nk so that Znk,1 ⇒ Z1 and Znk,2 ⇒ Z2. Then Y d= Z1 +Z2. A similar argument
shows that Y can be divided into k ≥ 2 pieces.
III ⇒ I. X(1) d= X 1

n
+ (X 2

n
−X 1

n
) + · · ·+ (X1 −Xn−1

n
) yields the desired result.

I ⇒ III. We specify the law of Ft1,...,tn through that of Ft1,t2−t1,...,tn−tn−1 , for 0 < t1 < . . . < tn,
as that with ch.f. ϕY (θ1)t1ϕY (θn)t2−t1 . . . ϕY (θn)tn−tn−1 . These distributions are consistent. Thus
Lemma 1.5 gives us a processX, with these Fidis, that must be a Levy process in law withX(1) d= Y .
By Theorem 1.1, these exists a Levy process with the same Fidis.

The following result is of the most fundamental importance in probability. The proof is not re-
ally difficult, but too technical to be worthwhile doing here.

Theorem 1.6 (Levy-Khintchine Formula) Let X be a Levy process in Rd. There exists a triplet
(A, γ, ν) of

A a symmetric non-negative definite d× d matrix (the Gaussian convariance)
γ a constant in Rd
ν a measure on Rd with ν0 = 0 and

∫
Rd(|y|2 ∧ 1)dν(y) <∞(the levy measure)

which in that case is uniquely determined, such that, for all u ∈ Rd and t ≥ 0, EeiuX(t) = etψu ,
where

ψu = −1
2
< u,Au > +i < u, γ > +

∫
Rd

(ei<u,y> − 1− 1(|y|≤1)i < u, y >)dν(y)

If γ0 = γ−
∫
|y|≤1

ydν(y) is well-defined and finite , then we may rewrite the Levy-Khintchine Formula
with a new triplet (A, γ0, ν)0 (the drift), as

ψu = −1
2
< u,Au > +i < u, γ0 > +

∫
Rd

(ei<u,y> − 1)dν(y)

If γ1 = γ+
∫
|y|>1

ydν(y) is well-defined and finite, then we can rewrite the Levy-Khintchine Formula
with a new triplet (A, γ1, ν)1 (the center), as

ψu = −1
2
< u,Au > +i < u, γ1 > +

∫
Rd

(ei<u,y> − 1− i < u, y >)dν(y)

Definition 1.4 A compound Poisson process is a Levy process with generating triplet (0, 0, λσ)0,
where λ > 0 is a constant and σ a probability measure on Rd with σ{0} = 0.

Theorem 1.7 Let {N(t)}t≥0 be a Poisson process with rate λ, and {Yk}∞k=1 i.i.d. rv.s, independent
of N , with L(Yk) = σ, where σ{0} = 0. Denoting S0 = 0, Sn = Σnk=1Yk for n ∈ N, X(t) = SN(t) is
a compound Poisson process with generating triplet (0, 0, λσ).
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Proof: Rcll sample path and X(0) d= 0 are immediate. P−continuity follows from

P{|X(t+ s)−X(s)| > ε} ≤ P |N(s+ t)−N(s) > 0} = 1− e−λ|t| → 0 as t→ 0

Independence and homogeneity of increments come by conditioning on the values of N involved.
The generating triplet is the claimed one, since

Eei<u,X(1)> = Σ∞n=0(Ee
i<u,S1>)n

λn

n!
e−λ = exp{λ

∫
Rd

(ei<u,y> − 1)dσ(y)}

Definition 1.5 Y is stable if, for each n ∈ N, with Y1, . . . , Yn i.i.d. copies of Y , Y1+. . .+Yn
d= bY +c

for some constants b = b(n) > 0 and c = c(n) ∈ Rd. Y is strictly stable if it is possible to take
c(n) = 0 for n ∈ N.

From the definition, its straightforward that stable rvs are id. Stable distributions are among the few
most important id distributions. Two reasons are their stability under addition and the explicitness
of their ch.f.(see below).

For an id random vector Y , Y ∗r denotes an random vectores with ch.f. ϕrY .

Definition 1.6 A stable Y is called α−stable, α ∈ (0, 2], whenever

Y ∗r
d= r1/αY + c for t > 0 and some constant c = c(r) ∈ Rd.

Y is called strictly α−stable if c(t) = 0 for t > 0.

For Y non-trivial (strictly) stable, there exists a unique constant α ∈ (0, 2] such that Y is α−stable
(strictly).

Definition 1.7 A Levy process X with X(1) (strictly) α−stable is called a (strictly) α−stable Levy
motion.

Theorem 1.8 Let X be a non-trivial Levy process in R with generating triplet (A, γ, ν). Then X
is α−stable for some α > 0 iff exactly one of these conditions holds:

1. α = 2 and ν = 0.

2. α ∈ (0, 2), A = 0, and ν(dx) = (c+1(0,∞)(x) + c−1(−∞,0)(x))|x|−(α+1)dx on R for some
c+, c− ≥ 0.

Proof: Suppose the generating triplet of Y = X(1) is (A, γ, ν). We know Y is α−stable iff Y ∗r
α d=

rY +c for t > 0 and some constant c. Since the characteristics of Y ∗r
α

and rY +c are rα(A, γ, ν) and
(r2A, rγ+ c, ν ◦S−1

r ) respectively, where Sr : x 7→ rx for any r > 0. It follows that X(t) is α−stable
iff rαA = r2A and rαν = ν ◦ S−1

r for all r > 0. Thus A = 0 when α 6= 2. Writing F (x) = ν[x,∞) or
ν(−∞, x], then rαν = ν ◦S−1

r implies rαF (rx) = F (x) for all r, x > 0, and so F (x) = x−αF (1). The
condition

∫
(x2 ∧ 1)ν(dx) <∞ implies F (1) <∞ and when α = 2 we have F (1) = 0. This complete

the proof.
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