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We first consider stationary processes, which will lead us to the basic setup for ergodic theory. Basic concepts
are the invariant σ-field I and ergodicity. The intuitive meaning of these concepts becomes evident from
examples.

Definition 9.1 (Stationary Process). (X0, X1, X2, . . .) is said to be a stationary process if for k = 1,
and hence for all k = 1, 2, . . .,

(X0, X1, X2, . . .)
d= (Xk, Xk+1, Xk+2, . . .)

That is, for each n = 1, 2, . . .,
(X0, . . . , Xn) d= (Xk, . . . , Xk+n)

In words, distribution of the sequence is invariant under shifts. Recall some examples we’ve seen before:

Example 9.2. A sequence X0, X1, X2, . . . which is i.i.d., or more generally an exchangeable sequence.

Example 9.3. Markov chain (Xn) with stationary distribution π, started with X0 distributed according to
π.

For a more general construction of a stationary process, introduce

Definition 9.4. In probability space (Ω,F , P ), a measurable map ϕ : Ω → Ω is said to be measure
preserving if P (ϕ−1A) = P (A) for any A ∈ F .

Example 9.5 (general construction). We have a probability space (Ω,F , P ) and a measure preserving
map ϕ. Let ϕ be the nth iterate of ϕ, ϕ0 is identity map. Then for any F-measurable function X,
Xn(·) := X(ϕn(·)) defines a stationary process. To see this, notice for any B ∈ Rn+1 and A = {ω :
(X0(ω), . . . , Xn(ω)) ∈ B},

P ((Xk, . . . , Xk+n) ∈ B) = P (ϕkω ∈ A) = P (ω ∈ A) = P ((X0, . . . , Xn) ∈ B)

Remark. If (Yn) is an arbitrary stationary process, then there exists (Xn) of the form just described, with
(Xn) d= (Yn). If (Yn) has values in S, let P be the distribution induced by (Yn) on the sequence space
S × S × · · · ,S × S × · · · , and let Xn(ω0, ω1, . . .) = ωn. Let ϕ to be the shift operator, i.e. ϕ(ω0, ω1, . . .) =
(ω1, ω2, . . .) and X(ω) = ω0. Then ϕ preserves P and Xn(ω) = X(ϕnω). This observation brings us to the
basic setup for ergodic theory.

The basic setup for ergodic theory consists of

(Ω,F , P ) a probability space
ϕ a P-preserving map

Xn(ω) = X(ϕnω) where X is anF-measurable r.v.

The main subject of ergodic theory is the behavior of the averages

1
n

∞∑
i=0

Xn

as n →∞.
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Definition 9.6 (Invariant σ-field). A set A ∈ F is said to be invariant if ϕ−1A = A. The collection of
all such A ∈ F is the invariant σ-field I.

Remark. By first considering indicators, one can easily show that a random variable X is I-measurable iff
X = X ◦ ϕ. Then X is called invariant.

Notice that when ϕ is the shift on sequence space, the invariant σ-field I is contained in T , the tail σ-field
of X0, X1, . . .. To see this, notice that if A ∈ I, then by definition,

A = {ω : ω ∈ A} = {ω : ϕω ∈ A} ∈ σ{X1, X2, . . .}

Iterating gives

A ∈ ∩∞n=1σ(Xn, Xn+1, . . .) = T

so I ⊆ T

Definition 9.7 (ergodicity). In the general setup, the P -preserving map ϕ is said to be ergodic if the
invariant σ-field is trivial, that is P (I) = 0 or 1 for each I ∈ I.

To decide in specific examples whether the invariant σ-field is trivial is not always easy. But here are some
cases we can handle:

Example 9.8 (i.i.d. sequence). Here

Ω = R× R× · · ·
F = B × B × · · ·
P = procuct measure
ϕ = θ, shift operator
Xn(ω) = ωn

By Kolmogorov’s 0-1 law, the tail σ-field of the sequence is trivial, since I ⊆ T , the sequence is ergodic (i.e.
under the setup, the shift is).

Sometimes the tail σ-field is not trivial, we have to check the ergodicity directly. See the following examples:

Example 9.9 (Markov chain). Here (Xn, n ≥ 0) is a irreducible Markov chain in countable state space
S with a stationary distribution π(x) > 0, ∀x, which implies positive recurrence. Let ϕ = θ, ϕn = θn. Then
if A ∈ I, we have 1A = 1A ◦ θn, so let h(x) = Ex1A and Fn = σ(X0, X1, . . . , Xn),

h(Xn) = EXn1A = Eπ(1A ◦ θn|Fn) = Eπ(1A|Fn)

Lévy’s 0-1 law says that the right-hand side converges to 1A as n →∞. While the recurrence says ∀ y ∈ S,
the left-hand side visits h(y) i.o., so h(·) has to be a constant, and by the last sentence, h ≡ 1 or h ≡ 0, so
Pπ(A) = 1 or Pπ(A) = 0. thus the invariant σ-field I is trivial.

Note that if all states have period d > 1, by previous work, we know T = σ(X0 ∈ Sr : 0 ≤ r < d), in which
S0, S1, . . . , Sd−1 is the cyclic decomposition of S. In this case the invariant σ-field I is trivial while tail
σ-field T is not.

Example 9.10 (Rotation of the circle). Here Ω = [0, 1), F = B, P = Lebesgue measure. Let θ ∈ (0, 1),
define ϕ as ϕω = (ω +nθ) mod 1. If we map [0, 1) into C by x → exp(2πix), we can see it’s just the rotation
of the circle.

The fact is, if we move by a rational multiple of 2π, i.e. θ ∈ Q, then ϕ is not ergodic; otherwise, ϕ is ergodic.
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First we see the easy side, let θ = m/n < 1, m,n ∈ N, then for any B ∈ B,

A = ∪n−1
k=0(B + k/n)

is invariant. Take B to be a suitable interval to get an invariant set of probability p for any p ∈ (0, 1).

To see the case when ϕ is irrational, notice a fact from Fourier analysis: if f is a measurable function on
[0, 1) with

∫
f2(x)dx < ∞ then

f(x) =
∑

k

cke2πikx

= lim
K→∞

K∑
k=−K

cke2πikx

which converges in the L2[0, 1) sense. And the choice of ck is unique

ck =
∫

f(x)e−2πkxdx

Now by definition of ϕ,
f(ϕ(x)) =

∑
k

cke2πik(x+θ) =
∑

k

(cke2πikθ)e2πikx

The uniqueness of ck implies f(ϕ(x)) = f(x) iff

ck(e2πikθ − 1) = 0

When θ is irrational, we must have ck = 0, ∀ k 6= 0, which means f is constant.

Finally, for any A ∈ I, apply the last fact to f = 1A shows A = ∅ or [0, 1) a.s.


