Stat205B: Probability Theory (Spring 2003) Lecture: 9

Stationary Processes and the Invariant o-field

Lecturer: James W. Pitman Scribe: Rui Dong ruidong@stat.berkeley.edu

We first consider stationary processes, which will lead us to the basic setup for ergodic theory. Basic concepts
are the invariant o-field 7 and ergodicity. The intuitive meaning of these concepts becomes evident from
examples.

Definition 9.1 (Stationary Process). (Xy, X1, Xo,...) is said to be a stationary process if for k = 1,
and hence for all k =1,2,...,

(X0, X1, Xo, ) = (Xiy X1, Xas - - )

That is, for each n =1,2,.. .,
(X0, Xn) = (Xpy oo, Xpgn)

In words, distribution of the sequence is invariant under shifts. Recall some examples we’ve seen before:
Example 9.2. A sequence Xg, X1, Xo, ... which is i.i.d., or more generally an exchangeable sequence.

Example 9.3. Markov chain (X,,) with stationary distribution 7, started with X, distributed according to
.

For a more general construction of a stationary process, introduce

Definition 9.4. In probability space (2, F, P), a measurable map ¢ : & — Q is said to be measure
preserving if P(¢p~1A) = P(A) for any A € F.

Example 9.5 (general construction). We have a probability space (2, F, P) and a measure preserving
map ¢. Let ¢ be the nth iterate of ¢, ¢° is identity map. Then for any F-measurable function X,
X, (-) == X(¢"(+)) defines a stationary process. To see this, notice for any B € R"™ and A = {w :
(Xo(w),..., X, (w)) € B},

P((Xg,..., Xpn) € B) = P(¢*w € A) = P(w € A) = P((Xo,...,X,) € B)

Remark. If (Y,,) is an arbitrary stationary process, then there exists (X,,) of the form just described, with
(X,) = (Yp). If (Y;) has values in S, let P be the distribution induced by (Y;) on the sequence space
SxSx-,8§x8x---, and let X, (wp,w1,...) = wy. Let ¢ to be the shift operator, i.e. p(wp,ws,...) =
(wi,ws,...) and X (w) = wg. Then ¢ preserves P and X, (w) = X (p"w). This observation brings us to the

basic setup for ergodic theory.

The basic setup for ergodic theory consists of

(Q,F,P) a probability space
a P-preserving map
Xn(w) = X(p"w) where X is anF-measurable r.v.

The main subject of ergodic theory is the behavior of the averages
1 o0
22X
n
=0

as n — OQ.
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Definition 9.6 (Invariant o-field). A set A € F is said to be invariant if o' 4 = A. The collection of
all such A € F is the invariant o-field 7.

Remark. By first considering indicators, one can easily show that a random variable X is Z-measurable iff
X = X oy. Then X is called invariant.

Notice that when ¢ is the shift on sequence space, the invariant o-field Z is contained in 7, the tail o-field
of Xg, X1,.... To see this, notice that if A € Z, then by definition,

A={w:weAt={w:pwe A} € 0{X1,Xs,...}

Iterating gives
Aen0(Xn, Xnt1,...) =T

soZ CT
Definition 9.7 (ergodicity). In the general setup, the P-preserving map ¢ is said to be ergodic if the
invariant o-field is trivial, that is P(I) = 0 or 1 for each I € 7.
To decide in specific examples whether the invariant o-field is trivial is not always easy. But here are some
cases we can handle:

Example 9.8 (i.i.d. sequence). Here

OQ=RxRx---
F=BxBx---

P = procuct measure
@ = 0, shift operator
Xn(w) =wy

By Kolmogorov’s 0-1 law, the tail o-field of the sequence is trivial, since Z C 7, the sequence is ergodic (i.e.
under the setup, the shift is).

Sometimes the tail o-field is not trivial, we have to check the ergodicity directly. See the following examples:

Example 9.9 (Markov chain). Here (X,,n > 0) is a irreducible Markov chain in countable state space
S with a stationary distribution 7(z) > 0, V&, which implies positive recurrence. Let ¢ = 6, ™ = 6,,. Then
ifAeZ, wehave 14 =14080,, solet h(z) =E,14 and F,, = 0(Xo, X1,...,Xn),

h(Xn) = ]EX,I,]-A = Eﬂ-(lA e} 0n|]:n) = Eﬁ(lA‘fﬂ,)

Lévy’s 0-1 law says that the right-hand side converges to 14 as n — oo. While the recurrence says V y € .5,
the left-hand side visits h(y) i.0., so h(-) has to be a constant, and by the last sentence, h = 1 or h = 0, so
Pr(A) =1 or P;(A) = 0. thus the invariant o-field Z is trivial.

Note that if all states have period d > 1, by previous work, we know 7 = o(X( € S, : 0 < r < d), in which
So,51,--.,54—1 is the cyclic decomposition of S. In this case the invariant o-field Z is trivial while tail
o-field 7 is not.

Example 9.10 (Rotation of the circle). Here Q = [0,1), F = B, P = Lebesgue measure. Let § € (0,1),
define ¢ as pw = (w+nfd) mod 1. If we map [0,1) into C by & — exp(2miz), we can see it’s just the rotation
of the circle.

The fact is, if we move by a rational multiple of 27, i.e. 8 € Q, then ¢ is not ergodic; otherwise, ¢ is ergodic.
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First we see the easy side, let § = m/n < 1, m,n € N, then for any B € B,
A=UZ;(B+k/n)
is invariant. Take B to be a suitable interval to get an invariant set of probability p for any p € (0, 1).

To see the case when ¢ is irrational, notice a fact from Fourier analysis: if f is a measurable function on
[0,1) with [ f?(z)dz < oo then

f(l') — cheQTrikx
k

K
- 1 2mikx
k=—K
which converges in the L?[0,1) sense. And the choice of ¢ is unique

ck:/f(x)e_%]”dx

Now by definition of ¢,

flo(z)) = chezmk(”@) — Z(Ckezmke)e%um

k k

The uniqueness of ¢; implies f(p(z)) = f(x) iff
ck(€27rik9 _ 1) — O
When 0 is irrational, we must have ¢, = 0, V k # 0, which means f is constant.

Finally, for any A € Z, apply the last fact to f = 14 shows A =0 or [0,1) a.s.



