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Finite State Continuous Time Markov Chain
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See Durrett Sec 5.6 for the theory of discrete time recurrent Markov Chains with uncountable state
space, as developed following Harris. The general idea is to recognize a suitable regenerative struc-
ture, like what happens to a discrete time, discrete space Markov chain each time it comes back
to a point. Then decompose the path into blocks which are i.i.d. This idea can also be applied to
continuous time, discrete space chains.

We now discuss a continuous time, discrete space Markov Chain, with time-homogeneous transi-
tion probabilities. Let S = state space. The theory is easiest if S is finite. Some aspects can be
extended to S countable. The book of Karlin and Taylor [5], provides details for most of the fol-
lowing discussion. See also [3, 4] for further developments. General theory of countable state space,
continuous time chains is very tricky: see Chung [1] and Freedman [2].

Suppose (Xt, t ≥ 0) is a process defined on (Ω,F , P), with values in S which is finite. For each
t, ω → Xt(ω) is a measurable map from (Ω,F) → S. Look at the path: t → Xt(ω) for fixed ω. In
the finite state space case, we expect this path to be almost surely a step function, with only a finite
number of jumps in any finite interval of time.
Make the convention that the path is right-continuous with left limits. Such a process has the
time-homogeneous Markov property if

• conditionally given Xt, the processs (Xs, 0 ≤ s ≤ t) and (Xu, t ≤ u < ∞) are independent;

• (Xt+v, v ≥ 0|Xt = i) is distributed like (Xv, v ≥ 0)|X0 = i).

Introduce the transition matrices Pt = ‖Pt(i, j)‖i,j , where

Pt(i, j) = P (Xs+t = j|Xs = i), s ≥ 0, i, j ∈ S

The definition of Pt and the time-homogeneous Markov property yield:

• Pt(i, j) ≥ 0

•
∑

j∈S Pt(i, j) = 1

• the semi-group property (Chapman-Kolmogorov equation): PsPt = Ps+t

Right-continuous paths make Xt → X0, a.s. as t → 0+, which implies

lim
t→0+

Pt = I

(the identity matrix). Combining with the semigroup property, we know

lim
r→t+

Pr = lim
s→0+

Pt+s = lim
s→0+

PsPt = IPt = Pt.
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Thus Pt is a right continuous function of t. In fact, Pt is not only right continuous but also
continuous and even differentiable. Accepting this, let

Q =
d

dt
Pt|t=0

The semi-group property easily implies the following backwards equations and forwards equations:

d

dt
Pt = QPt = PtQ

Hence there is representation:

Pt = exp(Qt) = I + Qt + Q2t2/2! + . . .

In particular,
Pt(i, j) = 1(i=j) + Q(i, j)t + o(t) as t → 0+

Note that Pt(i, j) ≥ 0, so
Q(i, j) ≥ 0 for j 6= i

And
∑

j∈S Pt(i, j) = 1 implies ∑

j∈S

Q(i, j) = 0.

Let
qi := −Q(i, i) =

∑

j 6=i

Q(i, j) ≥ 0.

Let Jr denote time of the rth jump. By the Markov property, J1 has the memoryless property

Pi(J1 > s + t|J1 > s) = Pi(J1 > t)

Notice
d
dtPi(J1 > t)|t=0 = Pi(t<J1≤t+dt)

dt |t=0

=
∑

j 6=i
Pi(Xt=i,Xt+dt=j)

dt |t=0

=
∑

j 6=i Pt(i, i)
Pdt(i,j)

dt |t=0

=
∑

j 6=i Q(i, j)

= −qi

Hence
Pi(J1 > t) = e−qit (t ≥ 0).

That is, the Pi distribution of J1 is exponential(qi). Note that qi = 0 means i is absorbing: Pt(i, i) =
1 for all t. .
Now assume qi > 0. Let

p̂(i, j) := {
Q(i,j)/qi j 6=i
0 otherwise

Then ∑

j 6=i

p̂(i, j) = 1

so p̂ is a transition probability matrix. From the exponential(qi) distribution of J1,

Pi(X first leaves i in (t, t + dt)|Xs = i, 0 ≤ s ≤ t) = qidt

Hence, for j 6= i

Pi(X jumps to j in (t, t + dt)|Xs = i, 0 ≤ s ≤ t) = Pi(XJ1
= j)qidt
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On the other hand

Pi(X jumps to j in (t, t + dt)|Xs = i, 0 ≤ s ≤ t) = Pdt(i, j) = Q(i, j)dt

Comparing the last two facts

Pi(XJ1
= j) = Q(i, j)/qi for j 6= i.

Set J0 = 0, similar arguments enable us to get for r = 0, 1, 2, . . .

P (XJr+1
= j|XJr

= i) = p̂(i, j)

Starting from i, (X0, XJ1
, XJ2

, . . .) is a discrete time Markov chain with transition matrix p̂, which
is called the embedded jump chain. Moreover, conditionally given X0 = i0, XJ1

= i1, XJ2
= i2, . . .,

the holding times J1, J2 − J1, J3 − J2, . . . are independent exponential variables with parameters
qi0 , qi1 , qi2 , . . .. And given any matrix Q with non-negative off-diagonal elements and row sums iden-
tically zero, we can construct a Markov chain with semigroup Pt = exp(Qt) as such a hold-jump
process. Say, the chain starts from i0, it stays at i0 for a period of time with exponential(qi0)
distribution. Then it jumps to another point i1 with probability p̂(i0, i1). And stays at i1 for a pe-
riod of time with exponential(qi1) distribution, then jumps to i2 with probability p̂(i1, i2). And so on.

Provided Q is bounded or not too badly unbounded, this construction also makes sense for infi-
nite S. Here are some examples:

Example 1: Poisson process. S = 0, 1, 2, . . ..

Q =




−λ λ 0 . . .
0 −λ λ . . .
0 0 −λ . . .
...

...
...

...




X = Poisson process with rate λ, and Pt(i, j) = 1(j≥i)e
−λt(λt)j−i/(j − i)!, i, j ≥ 0.

Example 2: Birth and death process

Q =




−λ0 λ0 0 . . .
µ1 −(λ1 + µ1) λ1 . . .
0 µ2 −(λ2 + µ2) . . .
...

...
...

...




Here, λis are birth rates, µis are death rates. And λi + µi must not increase too rapidly.

Example 3: Pure birth process
Now λi > 0, µi = 0. The mean holding time of state i is 1/λi. What if

∑
i 1/λi < ∞? Note

E0Jn = 1
λ1

+ . . . + 1
λn

increases and is bounded. So Jn ↑ J∞ < ∞ a.s., with E0J∞ =
∑

i 1/λi < ∞.
This phenomenon is called explosion. There is not a unique way to bring the process back from
∞: it could jump back to 0, 1, 2, . . . according to any probability distribution over these states, then
explode again,come back again independently, and so on. Note that the paths of the process can
now have infinitely many jumps in finite time. And the way the process comes back from ∞ is not
determined by the Q matrix. Much more subtle behaviour is possible with countable state space
(Markov chains with instantaneous states).

Returning to the case with S finite. Consider limit behavior of the chain as t → ∞. First ob-
serve the following are equivalent:
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• Pt is irreducible for some t > 0

• p̂, transition matrix of the embedded jumping chain, is irreducible

• Pt(i, j) > 0 for all t > 0, i, j ∈ S

These conditions imply that Pt is aperiodic. Moreover, if Pt is positive recurrent, there exists a
unique stationary distribution π so that

lim
t→∞

Pt(i, j) = πi

The semi-group property implies that for each t

πPt = π

Or

π(
Pt − I

t
) = 0.

Let t → 0+ to see that
πQ = 0.

Thus π is determined by the system of linear equations πQ = 0 and π1 = 1.
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