
Stat205B: Probability Theory (Spring 2003) Lecture: 6

Proof of The Limit Theorem

Lecturer: Manjunath Krishnapur Scribe: Rui Dong ruidong@stat.berkeley.edu

In this lecture, we will prove two limit theorem. Note here we consider Markov chains on a countable state
space S.

Theorem 6.1. Suppose p is irreducible, aperiodic and has stationary distribution π. Then as n → ∞,
pn(x, y) → π(y).

Proof. The idea is coupling. Let Xn, Yn be independent copies of the Markov chain, while X0 = x, Y0 ∼ π.
Define T = inf{n : Xn = Yn}. First, lets suppose T < ∞ a.s., under this assumption, we have for any k ≤ n

P (Xn = y, T = k) =
∑
z∈S

P (Xn = y|Xk = z)P (Xk = z, T = k)

=
∑
z∈S

P (Yn = y|Yk = z)P (Yk = z, T = k)

= P (Yn = y, T = k)

So,

P (Xn = y) =
∞∑

k=0

P (Xn = y, T = k)

=
n∑

k=0

P (Yn = y, T = k) + P (Xn = y, T > n)

The same for Yn:

P (Yn = y) =
n∑

k=0

P (Yn = y, T = k) + P (Yn = y, T > n)

Take substraction, we get

|P (Xn = y)− P (Yn = y)| ≤ P (Xn = y, T > n) + P (Yn = y, T > n)

Sum over y, ∑
y∈S

|P (Xn = y)− P (Yn = y)| ≤ 2P (T > n) → 0

which implies pn(x, y) → π(y) for any y.

Now, we only need to show the assumption T < ∞ a.s. is true. Consider a new Markov chain as (Xn, Yn)
which is on the countable states space S × S. Its transition probabilities are

p̄((x1, y1), (x2, y2)) = p(x1, x2)p(y1, y2)

We will check two things: irreducibility and recurrence. Since p is irreducible and aperiodic, there exists
K, L, s.t. pn(x1, x2) > 0 for any n > K, pn(y1, y2) > 0 for any n > L, so there exists N , for any n > N ,
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p̄n((x1, y1), (x2, y2)) > 0. As for the recurrence, it not hard to see that π̄(a, b) = π(a)π(b) defines a stationary
distribution for p̄.

The final observation is to notice T is the time for p̄ hitting the diagonal, because p̄ is irreducible and
recurrent, we get T < ∞ a.s..

The second limit theorem may help explain the terms positive and null recurrent. Let

Nn(y) =
n∑

m=1

1(Xm=y)

be the number of visits to y by time n.

Theorem 6.2. Suppose y is recurrent. For any x ∈ S, as n →∞

Nn(y)
n

→ 1
EyTy

1(Ty<∞) Px − a.s.

Proof. Suppose first we start at y. Let R(k) = min{n ≥ 1 : Nn(y) = k} =the time of the kth return to y.
Let tk = R(k) − R(k − 1) where R(0) = 0. Since X0 = y, t1, t2, . . . are i.i.d. and the strong law of large
numbers implies

R(k)
k

→ EyTy a.s.

Since R(Nn(y)) ≤ n < R(Nn(y) + 1),

R(Nn(y))
Nn(y)

≤ n

Nn(y)
<

R(Nn(y)) + 1
Nn(y) + 1

· Nn(y) + 1
Nn(y)

Let n →∞, and notice Nn(y) →∞ a.s. since y is recurrent, we have

Nn(y)
n

→ 1
EyTy

a.s.

When x 6= y, if Ty = ∞ then Nn(y) = 0 for all n, the result is true. On {Ty < ∞}, by strong Markov
property, t2, t3, . . . are i.i.d. with Px(tk = n) = Py(Ty = n), so

R(k)
k

=
t1
k

+
t2 + · · ·+ tk

k
→ EyTy a.s.

With the same reasoning above, we can get

Nn(y)
n

→ 1
EyTy

a.s.

Combining this with the case for {Ty = ∞} completes the proof.

Remark. The theorem above says if we start from x then the asymptotic fraction of time spent at x is
positive when x is positive recurrent and is 0 when x is null recurrent.

Reference: Section 5.5 of R. Durrett (1996). Probability: theory and examples.(2nd Edition) Duxbury Press.


