Theorem 5.1. If P is

- irreducible
- positive recurrent (i.e., $E_i T_i < \infty$ for some or all states i. See [1, p. 307, (4.7)])
- aperiodic (i.e., $\text{g.c.d}(n : P^n(i, i) > 0) = 1$)

then

$$\lim_{n \to \infty} P^n(i, j) = \pi_j \text{ for all } i, j$$

where π_j is the unique stationary distribution of P.

Proof. The proof will be done in the next lecture. \qed

Recall the following fact from last lecture:

Fact. If P is irreducible and recurrent, and i is some fixed state, we defined

$$\mu_i(j) := E_i \left(\sum_{n=0}^{T_i} 1(X_n = j) \right)$$

This is the expected number of j's in an i-block. We showed that

$$\mu_i P = \mu_i$$

i.e., $\sum_j \mu_i(j) P(j, k) = \mu_i(k)$

Next we show that such invariant measures have some uniqueness:

Theorem 5.2. If μ and ν are two invariant measures for the above setup (i.e., $\mu > 0$, $\nu > 0$, $\mu P = \mu$, $\nu P = \nu$, and P irreducible and recurrent), then $\mu = c \nu$, for some $c \geq 0$.

Proof. This proof is based on Exercise 4.6 in [1, p. 306]. It uses a duality idea which roughly says “P acting on left versus right is like reversing time”. (The argument will be given just in the positive recurrent case, but can be generalized to cover the null-recurrent case too.)

We are considering the equation $\mu = \mu P$, where μ is a row vector. As we will see presently, it easier to deal with equations of the form $h = Ph$, where h is a column vector. Since the row sums of P are one, $h \equiv \text{constant}$ solves $h = Ph$. In fact, for an irreducible and recurrent P, this is the only possibility as shown below:

\[^{1}\text{See [1, p. 305, (4.4)] for another proof.} \]
Claim. For an irreducible and recurrent Markov chain, every non-negative harmonic function is a constant.

Proof of claim: (See also [1, p. 299, Exercise 3.9]) Consider \((X_n)\), a Markov chain with transition probability matrix \(P\). It is easy to check that \(h(X_n)\) is a non-negative martingale. Non-negativity implies that this martingale converges (by Martingale convergence theorem [1, p. 236, (2.11)]). But if \(\exists i, j\) such that \(h(i) \neq h(j)\), then \(h(X_n) = h(i)\) i.o. and \(h(X_n) = h(j)\) i.o. This is because the chain is irreducible and recurrent and therefore hits all the states infinitely often. But since \(h(X_n)\) converges, this implies that \(h(i) = h(j)\).

Now suppose \(\mu\) is an invariant probability measure and consider the chain \((X_0, X_1, \ldots, X_n)\) under \(P_\mu\). If we define
\[
\hat{P}(x, y) = \frac{\mu(y)P(y, x)}{\mu(x)}
\]
then the reversal \((X_n, X_{n-1}, \ldots, X_0)\) is a Markov chain with a homogeneous transition probability matrix \(\hat{P}\). Note that \(\hat{P}\) is a valid transition probability matrix since
\[
\sum_y \hat{P}(x, y) = \frac{\sum_y \mu(y)P(y, x)}{\mu(x)} = 1.
\]
Also \(\hat{P}(x, y) \geq 0\). Note that \(\hat{P}\) is well-defined since \(P\) irreducible \(\Rightarrow \mu(x) > 0\) as shown below:

- \(P\) irreducible \(\Rightarrow \forall x, y \exists n : P^n(y, x) > 0\). But, \(\mu = \mu P \Rightarrow \mu = \mu P^n \Rightarrow \mu(x) = \sum_y \mu(y)P^n(y, x) \geq \mu(y)P^n(y, x)\). So either \(\mu \equiv 0\) or \(\mu(x) > 0\), \(\forall x\). But \(\mu\) is assumed to be a probability measure. So it cannot be identically 0.

Continuing to suppose that \(\mu\) is a probability measure we can easily verify that the reversed chain is irreducible and recurrent. If \(\nu\) is another invariant measure, let \(h(y) = \nu(y)/\mu(y)\). Then \(\nu = \nu P\) is the same as \(h = \hat{P} h\). Since \(h\) has to be constant by earlier discussion, \(\mu\) is unique up to constant multiples.

\(\square\)

An example on finding invariant measure:

Example. Consider the following population model: \(X_n=\)number of individuals at time \(n\), \(X_n \in \{0, 1, \cdots\}\). Between time \(n\) and \(n+1\), each individual dies with probability \(p\) independent of others. There is also an immigration of \(Y_{n+1}\) individuals independent of \(X_1, X_2, \cdots, X_n\) according to Poisson(\(\lambda\)). i.e.,
\[
X_{n+1} = \sum_{i=1}^{X_n} Z_i + Y_{n+1}
\]
where \(Z_1, Z_2, \cdots\) are independent Bernoulli(\(p\)) and \(P(Y_{n+1} = k) = e^{-\lambda} \lambda^k / k!\), \(k = 0, 1, \cdots\).

Notice that \((X_n)\) is a Markov chain with homogeneous probability transition matrix
\[
P(j, k) = P(X_{n+1} = k | X_n = j)
\]
and
\[
P(j, \cdot) = \text{Binomial}(j, p) \ast \text{Poisson}(\lambda).
\]
There is no simpler formula for \(P(j, k)\) than a convolution, summing over possible values of the binomial variable. So the system of equations \(\mu P = \mu\) for a stationary vector \(\mu\) is easily handled. To understand the long-run behaviour of this chain, first recall a key-fact:
\[
\text{Poisson}(\lambda) \ast \text{Poisson}(\mu) = \text{Poisson}(\lambda + \mu).
\]
Also, if in (1), we assume that \(X_n \sim \text{Poisson}(\lambda)\), then \(\sum_{i=1}^{X_n} Z_i \sim \text{Poisson}(\lambda p)\), by the thinning property of the Poisson distribution. So if we try \(X_0 \sim \text{Poisson}(\nu)\), we get \(X_1 \sim \text{Poisson}(\nu p + \lambda)\). In order to have \(X_0 \overset{d}{=} X_1\), we just need \(\nu = \lambda / (1 - p)\). We learn that \(\text{Poisson}(\lambda / (1 - p))\) is a stationary distribution. The chain is obviously irreducible since \(P(j, k) > 0 \, \forall j, k\). Using the fact below we can conclude that we have found a unique stationary probability measure for this Markov chain.
Fact. If a Markov chain P is irreducible and it has a stationary probability measure then it is recurrent. Then by previous discussion the stationary measure is unique.

Proof. Recall y is recurrent if $\sum_n P^n(y, y) = \infty$. Recall also that

$$\sum_n P^n(x, y) = \mathbb{P}_y(T_y = \infty) \sum_n P^n(y, y).$$

Let $N_y := \sum_{n=0}^\infty 1_{(X_n = y)}$ be the number of hits on y. Then

$$\mathbb{E}_\mu(N_y) = \mathbb{E}_\mu\left(\sum_{n=0}^\infty 1_{(X_n = y)}\right) = \sum_{n=0}^\infty \mathbb{P}_\mu(X_n = y) = \infty \text{ if } \mu(y) > 0$$

But

$$\mathbb{E}_\mu(N_y) = \sum_x \mu(x)\mathbb{E}_\mu(N_y) \leq \mathbb{E}_\mu(N_y) = \sum_n P^n(y, y)$$

where the inequality follows from the fact that μ is a probability measure. \hfill \Box

If π is the unique invariant probability measure, then

$$\pi(x) = 1/\mathbb{E}_\pi(T_x)$$

This follows immediately from

$$\mathbb{E}_\pi(T_x) = \sum_y \mathbb{E}_\pi(\text{number of } y\text{'s before } T_x) = \sum_y \mu_x(y)$$

But $\mu_x(y)$ is the invariant measure with $\mu_x(x) = 1$. If π is the invariant probability measure

$$\mu_x(y) = \pi(y)/\pi(x) \Rightarrow \mathbb{E}_\pi T_x = \sum_y \pi(y)/\pi(x) = 1/\pi(x).$$

References