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Stationary Distributions

Motivation

We are working in a setting where (Xn) is a Markov chain over a countable state space S,
with initial distribution µ(j) and transition distribution P (j, k). The probability distribution

�
µ is defined so that

�
µ(X0 = j) = µ(j) and

�
µ(Xn+1 = k | Xn = j) = P (j, k). Our goal is

to understand when the distribution of Xn has a limit as n → ∞, and how to characterize
that limit.

Recall:
�

µ(Xn = k) =
∑

i

µ(i)P n(i, k).

If we regard µ as a row vector, we can write this as
�

µ(Xn = k) = (µP n)k. Suppose this
converges (pointwise) to some π as n → ∞:

(µP n)k → πk ∀k ∈ S.

The nice case is when π is a probability distribution, but it doesn’t have to be one. For
example, πk ≡ 0 is a possibility: this happens if the chain is transient (e.g., a biased random
walk on the integers) or if the chain is null-recurrent (e.g. symmetric random walk on
the integers; null recurrence discussed further below). Notice that if π is a probability

distribution, then µP n → π pointwise is equivalent to µP n d
−→ π, using the usual notion of

convergence in distribution.
Suppose µP n → π. Then we can change the indexing and deduce:

lim
n→∞

µP n+1 = π

lim
n→∞

µP nP = π

πP = π

For the last conclusion you must justify swapping the limit with a potentially infinite sum,
but this is easily done. For now the point is just that distributions π such that πP = π will
inevitably arise in the theory of limit distributions of MCs.
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Definition of stationary distribution

Definition 1. Call a non-negative function µ = (µ(i) : i ∈ S) a measure on S. We may

also regard µ as a row vector. Call µ a stationary distribution for the transition matrix P
if µP = µ, that is:

∑

i

µ(i)P (i, j) = µ(j) ∀j ∈ S (EQ)

A stationary distribution is also called an equilibrium distribution or invariant distribu-

tion. Note that this definition does not require µ to be a probability distribution. But if
∑

i µ(i) = 1, then we call µ a stationary probability distribution.
If µ is a stationary probability distribution then, under

�
µ, the process (X0, X1, . . .) is a

stationary process:

(X0, X1, X2, . . .)
d
= (X1, X2, . . .)

or equivalently:

(X0, X1, . . . , Xn−1)
d
= (X1, . . . , Xn) for each n = 1, 2, . . .

That is, the joint distribution of variables in the MC is invariant under shifts.

Reversible chains

A special kind of stationary process is a reversible chain, where:

(X0, X1, . . . , Xn−1)
d
= (Xn−1, Xn−2, . . . , X0) for eachn = 1, 2, . . .

It is easy to see that this condition holds for all n if and only if it holds for n = 2, that is,

(X0, X1)
d
= (X1, X0), or equivalently

µ(i)P (i, j) = µ(j)P (j, i) ∀i, j ∈ S (REQ)

A measure µ that satisfies this equation is called a reversible equilibrium distribution for the
transition matrix P .

Note that if µ solves (REQ), then µ solves (EQ). To see this, assume µ solves (REQ)
and evaluate the lefthand side of (EQ) as follows:

∑

i

µ(i)P (i, j) =
∑

i

µ(j)P (j, i) = µ(j)
∑

i

P (j, i) = µ(j)

We get the righthand side of (EQ).
However, the converse does not hold. If |S| = N , then (EQ) is a system of N equations

in N unknowns, while (REQ) is a highly overdetermined system of
(

N

2

)

equations in N
unknowns. So (REQ) may fail to have a solution even when (EQ) is solvable. On the other
hand, if (REQ) has a solution, it is typically very easy to identify it. So if we are trying
to find an equilibrium distribution for a given MC, it makes sense to look for a reversible
equilibrium first.

Also, notice that both (EQ) and (REQ) are linear, so solutions are only determined up
to constant multiples: if µ is a solution, then so is cµ for any constant c.
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Figure 1: An undirected graph with 6 states.

Example: Random walk on a graph. In a graph, each state i has a set of neighbors
nbrs(i). The random walk is defined as follows:

P (i, j) =

{ 1
|nbrs(i)|

if j ∈ nbrs(i)

0 otherwise

Consider the graph in Fig. 1. Lets look for a reversible equilibrium, say with µ(1) = 2. What
must µ(2) be? Well, state 1 has 2 neighbors, so P (1, 2) = 1/2. State 2 has 5 neighbors, so
P (2, 1) = 1/5. So, solving µ(1)P (1, 2) = µ(2)P (2, 1), we get µ(2) = 5.

Continuing through the graph in this way, we can determine µ(i) for all i. We find that
µ(i) = |nbrs(i)| is the unique reversible equilibrium (up to constant multiples). This is true
for general connected graphs. But if the graph has more than one connected component,
we can set the scale constants for the various components independently, so the reversible
equilibrium is not unique up to constant multiples.

We argued at the beginning of this lecture that the limit distribution must be a stationary
distribution. It can be shown (see the book) that in a connected graph, µ(i) = |nbrs(i)| is
not only the unique reversible equilibrium, but in fact the only stationary distribution of
any kind. So Xn has a limi distribution, it must be a normalized version of µ:

lim
n→∞

�
(Xn = j) =

µ(j)
∑

i µ(i)

Example: Non-reversible equilibrium. Consider the chain in Fig. 2, where p and q
are transition probabilities (hence q = 1− p). It is easy to see that the uniform distribution
is stationary for any p. However, this distribution is reversible only if p = q.

q

p

q
p

q
p

Figure 2: A 3-state Markov chain with transition probabilities p and q.
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Aside: Periodic chains. State i has period d if:

d = gcd{n : P n(i, i) > 0}

That is, if X0 = i, then the set of times when the chain may return to i are all divisible
by d. With some number theory, one can prove that this set contains all sufficiently large
multiples of d. If d > 1, then the chain is called periodic. If d = 1, then the chain may return
to i at all sufficiently large times, and the chain is called aperiodic. It is also easy to see that
if a chain is irreducible, then all the states have the same period. In the chain of Figure 2,
if p = 0 or p = 1 then the chain is periodic (with period 3).

Existence and uniqueness of stationary distributions

Theorem 1. If P governs an irreducible and recurrent Markov chain then there exists a

stationary distribution µ which is unique up to constant multiples.

This theorem allows two possibilities:

• the chain is positive recurrent :
∑

i µ(i) < ∞. Then the unique stationary probability
distribution is:

π(i) =
µ(i)

∑

j µ(j)

• the chain is null recurrent :
∑

i µ(i) = ∞. Then the chain has no stationary probability
distribution.

Note that if P is irreducible and the state space is finite, then obviously the chain is
recurrent (it obviously must hit some state infinitely often with non-zero probability). So by
the theorem above, the chain has a unique stationary probability distribution.

To prove existence, assume P governs an irreducible and recurrent MC, and construct a
stationary distribution µ as follows. Fix a base state i. Let Ti be the first n ≥ 1 such that
Xn = i. Because the chain is recurrent, we know

�
i(Ti < ∞) = 1. Also, let Nji be the

number of times the chain hits j before Ti; that is:

Nji =
∞
∑

n=0

�
(Xn = j, Ti > n)

Note that Nii = 1. Finally, define:
µi(j) = � iNji

so µi(j) is the expected number of js in an i-block. We claim that for each fixed i, the
mapping j 7→ µi(j) is a stationary distribution. Also, these stationary distributions are all
the same up to constant multiples, regardless of i.

The first claim is that for any fixed i:

∑

j

µi(j)P (j, k) = µi(k) ∀k ∈ S
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There are two cases: k = i, and k 6= i. However, the proofs for both cases rely on the
following observation:

µi(j)P (j, k) = � i(num j → k transitions in first i-block)

= � i

(

∞
∑

n=0

�
(Xn = j, Xn+1 = k, Ti > n)

)

=
∞
∑

n=0

�
i(Xn = j, Xn+1 = k, Ti > n)

=
∞
∑

n=0

�
i(Xn = j, Ti > n)P (j, k) by Markov property

Durrett derives a similar fact, and uses it to complete the proof for the two cases (k = i
and k 6= i). See the book for those cases (p. 304), and for the uniqueness part of the proof
(p. 305).
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