Stat205B: Probability Theory (Spring 2003)

Lecture: 3

Recurrence and Transience

Lecturer: James W. Pitman

Scribe: Matthieu Corneccornec@stat.berkeley.edu

Reference: Section 5.3 of Durrett. Note the following consequence of the Strong Markov Property: if T is a stopping time for a Markov Chain (X_n) such that with probability one either $T = \infty$ or $(T < \infty \text{ and } X_T = i)$, then given $T < \infty$, the process $(X_T, X_{T+1}, ...)$ is a copy of the original chain with distribution \mathbb{P}_i , independent of (X_0, \ldots, X_T) .

Notations

- $T_i = \inf\{n > 0, X_n = i\} =$ first hit of i.
- $T_i^k = \inf\{n|n > T_i^{k-1}, X_n = i\} = k$ -th hit of *i*.
- $\rho_{ji} = \mathbb{P}_j(Ti < \infty).$
- $N_i = \sum_{n=0}^{\infty} 1(X_n = i) = \text{total number of visits to } i.$

Theorem 1.1 $\mathbb{P}_j(T_i^k < \infty) = \rho_{ji}\rho_{ii}^{k-1}$

Definition 1.1 (Recurrent states, Transient states)

- The state *i* is recurrent if $\rho_{ii} = 1$.
- The state *i* is transient if $\rho_{ii} < 1$.

Proposition 1.2

- State *i* is recurrent iff $\mathbb{P}_i(N_i = \infty) = 1$.
- State j is transient iff $\mathbb{P}_i(N_i = \infty) = 0$.

Notice

$$\mathbb{E}_{i}(N_{i}) = \mathbb{E}_{i}(\sum_{n=0}^{\infty} 1_{(X_{n}=i)})$$

$$= \sum_{n=0}^{\infty} \mathbb{E}_{i}(1_{(X_{n}=i)})$$

$$= \sum_{n=0}^{\infty} \mathbb{P}_{i}(1_{(X_{n}=i)})$$

$$= \sum_{n=0}^{\infty} P_{ii}^{n}$$

This sum is infinite(finite) iff state i is recurrent (transient).

Definition 1.2 Say state *i* leads to state *j* ($i \rightsquigarrow j$) if there exists a $n \ge 0$ such that $P_{ij}^n > 0$.

Theorem 1.3 If $i \rightsquigarrow j$ and i is recurrent then j is recurrent.

Definition 1.3 (Irreducible Markov Chain) The matrix P (or the Markov Chain) is called irreducible if for all states i,j we have $i \rightsquigarrow j$ (all states communicate).

Proposition 1.4 If P is irreducible then

- either all states are recurrent and for all states ij, $\mathbb{P}_i(N_j = \infty) = 1$.
- or all states are transient, and for all states ij, $\mathbb{P}_i(N_j = \infty) = 0$.

Exercise 1.1 Let $X_n = \sum_{k=0}^n \xi_k$ be a random walk in \mathbb{Z} with $\mathbb{P}(\xi_n = 1) = p$ and $\mathbb{P}(\xi_n = -1) = q$. There are two cases,

- either $p = q = \frac{1}{2}$, then all states are recurrent.
- or $p \neq q$, then all states are transient.

Exercise 1.2 A nearest neighbour random walk in \mathbb{Z}^d is recurrent for $d \in \{1, 2\}$ and transient for $d \geq 3$.

Exercise 1.3 A Random Walk on an infinite-binary-tree is transient. (Consider the Markov Chain $D_n = distance(X_n, X_0)$).

Our next topic is to look at the behavior of the distribution of X_n for large n. More precisely, does the limit $\lim_{n \to \infty} \mathbb{P}^n_{i,j}$ exist?

A first easy case to discuss is when state j is recurrent, then $\mathbb{P}_{i,j}^n \to_{n\infty} 0$ (since $\sum_{n=0}^{\infty} P_{j,i}^n < \infty$).

If j is recurrent, then look at $C = \{i | j \rightsquigarrow i\}$. This C is a communication class and satisfies $\forall i \in C, \sum_{j \in C} P_{i,j} = 1$. So $(P_{i,j})_{i,j \in C}$ is a new transition matrix, that we can study.

This discussion shows that we can consider only the irreducible case without loss of generality.