
Lecture 28 : The Spectral Gap

Stat 205B Lecturer: Ben Hough Scribe: Ben Hough <jbhough@math.berkeley.edu>

28.1 Introduction

In this lecture we will attempt to give a quantitative answer to the question “How long does it
take for an irreducible finite state Markov chain to converge to equilibrium?” This is a question of
significant practical importance, as Markov Chain Monte Carlo simulations are used widely in the
scientific community to simulate Gibb’s measures and to derive approximate solutions to difficult
combinatorial questions. For example MCMC algorithms may be used to study the statistical
properties of gases, model the flow of information in a network or count the number of dimer
coverings of a finite graph.

Of course, the first question that one must answer before using an MCMC algorithm is “how long
does the program need to run?” If the program doesn’t run long enough, the distribution generated
by the simulation will differ significantly from the equilibrium distribution leading to invalid results.
On the other hand, running the simulation for too long can be very costly in terms of processing
time. Thus, it is of immense practical importance to derive sharp quantitative bounds on the rates
of convergence of Markov chains.

Unfortunately, this is a very difficult problem to solve in general, but significant progress has been
made using analytic methods. In what follows, we shall shall introduce these techniques and illustrate
their applications. For simplicity, we shall deal only with continuous time Markov Chains, although
with some work many of these results may be extended to discrete time. Our discussion is closely
based on lecture notes by Laurent Saloff-Coste1.

28.2 Basic Definitions

We shall work on a finite state space X . Recall that a Markov operator K with kernel K(x, y)
satisfies

Kf(x) =
∑
y∈X

K(x, y)f(y) (28.1)

where K(x, y) is a stochastic matrix. The continuous time semigroup associated to K is defined by

Htf(x) = e−t(I−K) = e−t
∞∑

i=0

tiKif

i!
(28.2)

with kernel

Ht(x, y) = e−t
∞∑

i=0

tiKi(x, y)
i!

. (28.3)

1Saloff-Coste, et al., Lectures on Probability and Statistics, Springer.
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We define Hx
t (y) = Ht(x, y), which is a probability measure on X specifying the distribution at time

t of a continuous time Markov chain (Xt)t>0 with transition matrix K starting from x. Conceptually,
the process (Xt) may be described as follows. We have a Poisson clock which rings according to a
Poisson(1) distribution. Each time the clock rings, the process (Xt) jumps according to the transition
matrix K(x, y).

It is a familiar fact that if the matrixK(x, y) is irreducible (which we shall henceforth assume without
mention) then there is a stationary distribution π(·) so that ||Hx

t (·) − π(·)|| → 0. For convenience,
we shall also consider the densities of the probability measures Kl

x and Hx
t with respect to π:

kl
x(y) = kl(x, y) =

Kl(x, y)
π(y)

hx
t (y) = ht(x, y) =

Hx
t (y)
π(y)

.

The adjoint K∗ of K on l2(π) has kernel K∗(x, y) = π(y)K(y, x)/π(x). Using the fact that π is the
stationary distribution for K one readily checks that K∗ is a Markov operator. It’s semigroup, which
represents the time reversal of Ht, is H∗

t = e−t(I−K∗) with kernel H∗
t (x, y) = π(y)Ht(y, x)/π(x) and

density h∗t (x, y) = ht(y, x).

The Dirichlet form associated with Ht = e−t(I−K) is defined by:

E(f, g) def= R(〈(I −K)f, g〉). (28.4)

It has the following properties:

Lemma 28.1 The Dirichlet form E satisfies

i. E(f, f) =
〈
(I − 1

2 (K +K∗))f, f
〉

ii. E(f, f) = 1
2

∑
x,y |f(x)− f(y)|2K(x, y)π(x)

iii. ∂
∂t ||Htf ||22 = −2E(Htf,Htf).

Proof:

i. Note that 〈Kf, f〉 = 〈f,K∗f〉 = 〈K∗f, f〉.

ii. Observe that E(f, f) = ||f ||22 −R(〈Kf, f〉) and compute:

1
2

∑
x,y

|f(x)− f(y)|2K(x, y)π(x) =
1
2

∑
x,y

(|f(x)|2 + |f(y)|2 − 2R(f(x)f(y)))K(x, y)π(x)

= ||f ||22 −R(〈Kf, f〉). (28.5)

iii. Calculus.

∂

∂t
||Htf ||22 =

∂

∂t
〈Htf,Htf〉

=
〈
∂

∂t
Htf,Htf

〉
+
〈
Htf,

∂

∂t
Htf

〉
= 〈−(I −K)Htf,Htf〉+ 〈Htf,−(I −K)Htf〉
= −2E(Htf,Htf) (28.6)
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Definition 28.2 Let K be a Markov kernel with Dirichlet form E. The spectral gap λ = λ(K) is
defined by:

λ = min
{
E(f, f)
V arπ(f)

;V arπ(f) 6= 0
}

(28.7)

In general, λ(K) is the smallest nonzero eigenvalue of I − 1
2 (K +K∗). If (K,π) is reversible, then

K is self adjoint so the Dirichlet form satisfies E(f, f) = 〈(I −K)f, f〉 and λ is the smallest nonzero
eigenvalue of (I −K).

28.3 A Few Results

The most elementary result concerning the convergence of Markov chains is the Perron-Frobenius
theorem for discrete time chains which asserts that an irreducible finite state Markov chain decays
to equilibrium exponentially fast. However, the constants supplied by the theorem are generally
very difficult to calculate and too conservative to be of any practical use. Fortunately, we can do
much better with the spectral gap. To see why we should be interested in the spectral gap, we note
the following exact result.

Theorem 28.3 Suppose (K,π) is reversible and let (ψi)n−1
0 be an orthonormal basis of l2(π) con-

sisting of real eigenfunctions of I − K with associated eigenvalues (λi)n−1
0 listed in nondecreasing

order. In particular, let ψ ≡ 1. Then

||hx
t − 1||22 =

n−1∑
i=1

e−2tλi |ψi(x)|2. (28.8)

Proof: Note that the functions ψi are eigenfunctions of Ht with eigenvalues e−λit. Also Ht(x, y) =
Htδy(x) where δy(z) = 1 if z = y and is 0 otherwise. Now

δy =
∑

i

〈δy, ψi〉ψi (28.9)

and 〈δy, ψi〉 = ψi(y)π(y). Thus we obtain

Ht(x, y) = Ht

(∑
i

ψi(y)π(y)ψi

)
(x)

hx
t (y) =

n−1∑
i=0

e−λitψi(y)ψi(x)

||hx
t − 1||22 =

〈
n−1∑
i=0

e−λitψiψi(x)− 1,
n−1∑
i=0

e−λitψiψi(x)− 1

〉

=
n−1∑
i=1

e−2tλi |ψi(x)|2 (28.10)

where we have used the fact that the ψi’s are orthonormal and that ψ0 ≡ 1 to deduce the last line.
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The expression above exhibits the fact that for reversible Markov chains the spectral gap controls
the rate of exponential decay to the stationary distribution.

Lemma 28.4 Let K be a Markov kernel with spectral gap λ = λ(K). Then the semigroup Ht =
e−t(I−K) satisfies

∀f ∈ l2(π), ||Htf − π(f)||22 ≤ e−2λtV arπ(f). (28.11)

Proof: Define u(t) = V arπ(Htf) = ||Ht(f −π(f))||22 = ||Htf −π(f)||22. Using the lemma above, we
obtain:

u′(t) = −2E(Ht(f − π(f)),Ht(f − π(f))) ≤ −2λu(t).

It follows that u(t) ≤ e−2λtu(0). Since u(0) = V arπ(f) the proof is complete.

From the above lemma we obtain a simple yet extremely useful quantitative bound on the rate of
convergence of a finite state Markov chain:

Theorem 28.5 Let K be a Markov kernel with spectral gap λ = λ(K). Then the density hx
t (·) =

Hx
t (·)/π(·) satisfies

||hx
t − 1||2 ≤

√
1/π(x)e−λt. (28.12)

It follows that
|Ht(x, y)− π(y)| ≤

√
π(y)/π(x)e−λt. (28.13)

Proof: Let H∗
t be the adjoint of Ht on l2(π). This is a Markov semigroup with spectral gap

λ(K∗) = λ(K). Set δx(y) = 1/π(x) if y = x and δx(y) = 0 otherwise. Then

hx
t (y) =

Hx
t (y)
π(y)

= H∗
t δx(y) (28.14)

and applying the above lemma to K∗:

||H∗
t δx − 1||22 ≤ e−2λtV arπ(δx). (28.15)

Combining the two equations above we obtain

||hx
t − 1||2 ≤

√
(1− π(x))/π(x)e−λt ≤ 1/

√
π(x)e−λt. (28.16)

Since the same result clearly holds for h∗t we readily obtain

|ht(x, y)− 1| =

∣∣∣∣∣∑
z

(ht/2(x, z)− 1)(ht/2(z, y)− 1)π(z)

∣∣∣∣∣
≤ ||hx

t/2||2||h
∗y
t/2 − 1||2

≤ 1√
π(x)π(y)

e−λt. (28.17)

Now multiply each side of the above inequality by π(y) to finish the job.

Definition 28.6 The p-mixing time for a Markov chain with kernel K(x, y) is defined to be the
constant Tp = min{t > 0 : maxx ||hx

t − 1||p ≤ 1/e}.
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Definition 28.7 Let ω = ω(K) = min{R(ψ) : ψ 6= 0 is an eigenvalue of I −K}.

We now state a result bounding the p-mixing times in terms of the spectral gap.

Theorem 28.8 Let K be an irreducible Markov kernel and let π∗ = min{π(x) : x ∈ X}. Then, for
1 ≤ p ≤ 2,

1
ω
≤ Tp ≤

1
2λ

(
2 + log

1
π∗

)
(28.18)

and for 2 < p ≤ ∞,
1
ω
≤ Tp ≤

1
λ

(
1 + log

1
π∗

)
. (28.19)

Proof: We prove only the upper bounds. By Holder’s inequality we see that if r < s then || · ||r ≤
|| · ||s. Now use (28.12) for the case p ≤ 2 and (28.17) for the case 2 ≤ p ≤ ∞.

28.4 An Example

We now illustrate how these techniques may be used to bound the mixing time of a specific Markov
chain. Let X = {0, 1}n and set K(x, y) = 0 unless |x − y| =

∑
i |xi − yi| = 1 in which case

K(x, y) = 1. The functions
fy : x 7→ (−1)y·x, y ∈ {0, 1}n (28.20)

where x · y =
∑

i xiyi form an orthonormal basis of l2(π) and it is easy to see that π(x) = 2−n is
the stationary distribution. Now observe that

Kfy(x) =
∑

z

K(x, z)fy(z)

=

(
1
n

∑
i

(−1)ei·y

)
fy(x)

=
n− 2|y|

n
fy(x) (28.21)

so fy is an eigenfuction of I −K with eigenvalue 2|y|/n where |y| denotes the number of 1’s in y.
Thus, ω = λ = 2/n and π∗ = 2−n so our theorem yields the bounds:

n

2
≤ T2 ≤ n(2 + n). (28.22)

Using the exact formula established above, a straightforward computation shows that T2 isO(n log n).

28.5 The log-Sobolev Constant

Superior bounds on the mixing time may be obtained from the log-Sobolev constant, α, which is
defined in an analogous manner to the spectral gap.
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Definition 28.9 Let K be an irreducible Markov chain with stationary measure π. The log-Sobolev
constant α = α(K) is defined by

α = min
{
E(f, f)
L(f)

;L(f) 6= 0
}

(28.23)

where

L(f) =
∑
x∈X

|f(x)|2 log
(
|f(x)|2

||f ||22

)
π(x). (28.24)

The log-Sobolev constant yields the following bounds on the mixing times.

Theorem 28.10 Let (K,π) be a finite reversible Markov chain. For 1 ≤ p ≤ 2,

1
ω
≤ Tp ≤

1
4α

(
4 + log+ log

1
π∗

)
(28.25)

and for 2 < p ≤ ∞,
1
ω
≤ Tp ≤

1
2α

(
3 + log+ log

1
π∗

)
. (28.26)


