
Stat205B: Probability Theory (Spring 2003) Lecture: 27

Feller Processes and Semigroups

Lecturer: Rui Dong Scribe: Rui Dong ruidong@stat.berkeley.edu

For convenience, we can have a look at the list of materials contained in this lecture first. Note here we
always consider the time-homogenous Markov processes.

• Transition kernels µt, t ≥ 0 ←→ transition operators semigroup Tt, t ≥ 0.

• Feller semigroup Tt, t ≥ 0

• Feller processes

• existence

• every Feller process has a cadlag version

• regularization theorem for submartingale

• strong Markov property

• Blumental 0-1 law

• Lévy processes

• Generator of Feller semigroup

• existence

• Dynkin’s formula

• extended generator for Markov process

• generator of Lévy process

• three basic building blocks

• generator of Feller process

• application (heat equation)

Now we start from the definition of the transition operator Tt. For any Markov transition kernels µt(·, ·) on
(S,S), f : S → R bounded or nonnegative, define transition operator Tt:

Ttf(x) :=
∫
µt(x, dy)f(y)

Notice

(i) It’s a positive contraction operator i.e. 0 ≤ f ≤ 1 implies 0 ≤ Ttf ≤ 1,

(ii) The identity operator I corresponds to kernels µ(x, ·) = δx

The following lemma shows you the connection between Markov property and semigroup property:
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2 Feller Processes and Semigroups

Lemma 27.1 (semigroup property). Probability kernels µt, t ≥ 0 satisfy C-K relation iff the correspond-
ing operators Tt, t ≥ 0 have the semigroup property;

Ts+t = TsTt s, t ≥ 0

Proof. Recall C-K equation: µtµs = µs+t, i.e. for any bounded or nonnegative f ,
∫
µt(x, dy)

∫
µs(y, dz)f(z) =∫

µs+t(x, dz)f(z).

For any B ∈ S,

(TtTs)1B(x) =
∫
µs(x, dy)µt(y,B)

= µs+t(x,B) C −K
= Ts+t1B(x)

Now, Markov property can be equivalent with semigroup property. Naturally, we have two questions;

• Add what kind of properties to the semigroup can we get Strong Markov property?

• Add what kind of properties to the semigroup can we guarantee the cadlag modification?

because without these two things, it’s hard to go further. There is an example which is a continuous Markov
process but not a Strong Markov process:

Example 27.2 (a continuous Markov process without Strong Markov property). (Bt, t ≥ 0) is a
Brownian motion not necessarily starting from 0. Let

Xt = Bt1B0 6=0 =
{
Bt if B0 6= 0
0 if B0 = 0

whose transition kernels are

µt(x, dy) =

{
1√
2πt

e−
(y−x)2

2t dy if x 6= 0
δ0dy if x = 0

It’s a Markov process because for any Borel set B,

E[1B(Xt+s)|Fs] = E[1B(Xt+s) · 1B0 6=0|Fs] + E[1B(Xt+s) · 1B0=0|Fs]

= 1B0 6=0 ·
∫
B

1√
2πt

e−
(Xs−y)2

2t dy + 1B0=0 · 1B(0)

= 1Xs 6=0 ·
∫
B

1√
2πt

e−
(Xs−y)2

2t dy + 1Xs=0 · 1B(Xs) + 1(B0 6=0,Xs=0) · (
∫
B

1√
2πt

e−
(Xs−y)2

2t dy − 1B(0))

= E1B(Xs)

where we use {B0 6= 0} = {B0 6= 0Xs 6= 0} + {B0 6= 0, Xs = 0}, {Xs = 0} = {B0 6= 0Xs = 0} + {B0 =
0, Xs = 0}, {B0 = 0, Xs = 0} = {B0 = 0}, {B0 6= 0, Xs 6= 0} = {Xs 6= 0} and 1(B0 6=0,Xs=0) = 0 a.s.

While it’s not a strong Markov process because if we look τ = inf t > 0, Xt = 0, then ∀ x > 0,

0 = Px(X1 6= 0, τ ≤ 1) = Px(τ ≤ 1) > 0

by Px(X1 = 0) = 0.
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And you will see among the two conditions required for Feller semigroup, here this example doesn’t satisfy
(F1).

In fact, (F2) is guaranteed by right continuous path; for (F1), if we let f(x) to be a pseudo-indicator, i.e. be
1 on [a, b], be 0 on (−∞, 0] ∪ [a+ b,∞), and be connected continuously on the gaps, here a, b > 0. Then by
definition, Ttf(x) = Exf(Xt), notice when x 6= 0, Xt ∼ N(x, t), so Ttf(x) changes continuously and reaches
maximum at x = (a+ b)/2; but when x = 0, Ttf(0) = E0f(Xt) = f(0) = 0. Thus Ttf(x) is not continuous
(at 0).

The answer for both questions is Feller semigroup:

Definition 27.3 (Feller semigroup). Let S to be a locally compact, separable metric space; C0 := C0(S)
to be all the continuous functions f : S → R and f(x)→ 0 when x→∞.(Notice C0 is a Banach space given
||f || = supx |f(x)|.)

A semigroup of positive contraction linear operator Tt, t ≥ 0 on C0 is called Feller semigroup if it has the
following regularity conditions:

(F1) TtC0 ⊂ C0, t ≥ 0;

(F2) Ttf(x)→ f(x), t ↓ 0, ∀ f ∈ C0, x ∈ S.

Remark. In fact, (F1) + (F2) + semigroup property ⇒ (F3) ||Ttf − f || → 0, t ↓ 0, ∀ f ∈ C0(strong
continuity).

• How to find a nice Markov process associated with a Feller semigroup?

In order to get probability kernels, we may need (Tt) to be conservative.

Definition 27.4 (conservative). T is conservative if ∀ x ∈ S, supf≤1 Tf(x) = 1

But in many cases, the (Tt) we know may not be conservative, for example, the particles may die out or
disappear suddenly, while the following compactification may help:

Ŝ := S ∪ {∆} is the one-point compactification of S. ∆ is usually called ”cemetry”, it can be treated as
point at infinite. Ĉ := C(Ŝ) is the set of continuous functions on Ŝ.

Remark. ∀ f ∈ C0, f has a continuous extension to Ŝ by letting f(∆) = 0.

Now, we can define a new Feller semigroup T̂t, t ≥ 0 on Ĉ which is conservative.

Lemma 27.5 (compactification). Any Feller semigroup Tt, t ≥ 0 on C0 admits an extension to a conser-
vative Feller semigroup T̂t, t ≥ 0 on Ĉ by letting

T̂tf := f(∆) + Tt(f − f(∆)) t ≥ 0, f ∈ Ĉ

Proof. The only point needing some proof is the positivity: for any f ∈ Ĉ ≥ 0, let g := f(∆) − f . Since
g ≤ f(∆), we have

Ttg ≤ Ttg+ ≤ ||g+|| ≤ f(∆)

so T̂tf = f(∆)− Ttg ≥ 0.

To see the contraction and conservation, just notice T̂1 = 1. To verify the Feller semigroup property:

(F1): ∀ f ∈ Ĉ, T̂tf = f(∆) + Tt(f − f(∆)) ∈ Ĉ, since Ttg ∈ C0;

(F2): ||T̂tf − f || = ||Ttg − g|| → 0, t ↓ 0, since g ∈ C0.
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Remark. This extension is consistent, i.e. ∀ f ∈ C0, T̂tf = Ttf .

Next step, we want to construct an associated semigroup of Markov transition kernels µt on Ŝ satisfying

Ttf(x) =
∫
f(y)µt(x, dy) ∀ f ∈ C0 (∗)

Theorem 27.6 (existence of Markov kernels). For any Feller semigroup Tt, t ≥ 0 on C0, there exists
a unique semigroup of Markov transition kernels µt, t ≥ 0 on Ŝ satisfying (∗), and s.t. ∆ is absorbing for
µt, t ≥ 0.

Proof. ∀ x ∈ S, t ≥ 0, f −→ T̂tf(x) is a positive linear functional on Ĉ, norm 1. By Reisz’s representation
theorem, there exist probability measures µt(x, ·) on Ŝ satisfying

T̂tf(x) =
∫
µt(x, dy)f(y) f ∈ Ĉ, x ∈ Ŝ, t ≥ 0

Notice x −→
∫
µt(x, dy)f(y) ∈ Ĉ, hence measurable. By DCT(or MCT) we can show, for any B measurable,

µt(x,B) is measurable. So together with the semigroup property, we can say µt(·, ·) are Markov transition
kernels. (∗) follows from the definition of µt. And ∀ f ∈ C0,∫

f(y)µt(∆, dy) = T̂tf(∆) = f(∆) = 0

so ∆ is absorbing. Uniqueness also follows from definition.

By Kolmogrov’s existence theorem, for any probability measur π on Ŝ, there exists a Markov process (Xt)
in Ŝ with initial distribution π and transition kernels µt.

Definition 27.7 (Feller process). A Markov process associated by a Feller semigroup transition operators
is called a Feller semigroup.

Now, we come to show any Feller process has a cadlag version.

Theorem 27.8 (regularization for Feller process). Let (Xt) be a Feller process in Ŝ with arbitrary
initial distribution π. Then (Xt) has a cadlag version (X̃t).

And Xt = ∆ or Xt− = ∆ implies X̃t ≡ ∆ on [t,∞). If Tt, t ≥ 0 is conservative and π(S) = 1, then (X̃t) can
be shown to be cadlag in S.

Remark. The first sentence in the theorem means for any initial π, there exists a cadlag process (X̃t) on
Ŝ, s.t. Xt = X̃t a.s.-Pπ, ∀ t ≥ 0.

The idea of the proof is, first we have regularization theorem for submartingales, then we can find a large
class of continuous functions of Feller process which are all supermartingales, thus we can apply the theorem
for submartingales to get the result.

Lemma 27.9 (regularization for submartingales). If (Xt, t ≥ 0) is a submartingale, then for a.e. ω, for
each t > 0, limr↑t,r∈Q Xr(ω) exists and for each t ≥ 0, limr↓t,r∈Q Xr(ω) exists, i.e. the right and left limits
exist along Q.

Proof. The crucial idea is to use upcrossing inequality to control the time of upcrossing. The theorem
says, if (Xt) is a submartingale, T is a countable index set, for any a < b, define the upcrossing time on T
by

UT := sup
Ffinite,F⊂T

{UF , time of upcrossing along F}
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then
(b− a)EUT ≤ sup

t∈T
E(Xt − a)+

Now, to prove the lemma, it’s enough to show ∀ t ∈ I the lemma is true, where I is a compact subset of
T (here take T = Q), td is the right end of I. ∀ t ∈ I, Xt ≤ E(Xtd |Ftd) ≤ E(X+

td
|Ftd), so X+

t ≤ E(X+
td
|Ftd)

i.e. EX+
t ≤ EX+

td
, which implies

E(Xt − a)+ ≤ EX+
t + a− ≤ EX+

td
+ a− <∞

i.e.
EUI∩T ≤ sup

t∈I∩T
(Xt − a)+ <∞

We have UI∩T <∞ a.s.

This shows you the right and left limit at t must exist along Q, otherwise, take a, b to be the different limits
of different sequences, then the upcrossing times will be infinite.

To find a large class of continuous functions of Feller process which are supermartingales, we need

Definition 27.10 (resolvent). ∀ λ > 0, resolvent Rλ is defined as

Rλf(x) :=
∫ ∞

0

e−λtTtf(x)dt

Remark. ∀ t, λ > 0, TtRλ = RλTt and ||λRλf − f || → 0, λ→∞.

Lemma 27.11 (resolvents). If f ∈ C+
0 , (Xt, t ≥ 0) is a Feller process, then the process Y λt := e−λtRλf(Xt), t ≥

0 is a supermartingale for any λ > 0 under Pπ, ∀ π.

Remark. In fact, repeat the proof here, you can see the lemma is true for any nonnegative measurable f .

Proof. Denote the filtration induced by (Xt) as (Gt), then ∀ t, h ≥ 0,

E(Y λt+h) = E(e−(t+h)λRλf(Xt+h)|Gt)
= e−(t+h)λThRλf(Xt)

= e−(t+h)λRλThf(Xt)

= e−(t+h)λ

∫ ∞

0

e−λsTs+hf(Xt)ds

= e−λt
∫ ∞

h

e−λsTsf(Xt)ds

≤ Y λt .

Proof of regularization of Feller processes. Let’s fix any initial π first. By the separability of C+
0 , we

can choose (fn) to be a sequence in C+
0 which separate points, i.e. ∀ x 6= y, x, y ∈ Ŝ, there exists n s.t.

fn(x) 6= fn(y). Since ||λRλf − f || → 0 uniformly when λ → ∞, we have the countable set H := {Rλfn :
λ ∈ N, n ∈ N} also separates points and H ⊂ C+

0 .

∀ h ∈ H, by the lemma, h(Xt) has right limit along Q for a.e. ω. Since H is countable, we can choose the null
set to be independent with the choice of h. Now, the statement is, for a.e. ω, h(Xt(ω)) has right limit along
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Q for every h ∈ H. This can imply that for a.e. ω, Xt(ω) has right limit along Q. If not, you can choose a, b
to be the different limits of different sequences from the right, then choose h ∈ H which separates a, b, thus
we can get two different limits h(a) and h(b) of two different sequences for h(Xt), which is a contradiction
with the existence of right limit for h(Xt).

Now, set X̃t(ω) := limr↓t,r∈Q Xr(ω) for those ω the right limit exists; X̃t(ω) ≡ 0 for those ω the right limit
doesn’t exist.

I claim that ∀ t, X̃t = Xt a.s. To prove this, take any bounded g, h ∈ Ĉ,

Eπ(g(Xt)h(X̃t)) = lim
s↓t,s∈Q

Eπ(g(Xt)h(Xs))

= lim
s↓t,s∈Q

Eπ(g(Xt)Ts−th(Xt)) (condition on Ft)

= Epi(g(Xt)h(Xt)).

So, for any positive Borel function f(x, y) on Ŝ × Ŝ, we have Eπf(Xt, X̃t) = Eπf(Xt, Xt). By the property
of Ŝ, 1x6=y is such a function, so X̃t = Xt a.s. for any t.

Now, ∀ h ∈ H, use the lemma again, we have for a.e. ω, h(X̃t) is right continuous and has left limits along
Q for every h ∈ H because e−λtRλf(X̃t) is again right continuous supermartingale. This implies for a.e. ω,
the X̃t(ω) is right continuous and has the left limit along Q. By some soft calculus arguments, X̃t(ω) must
be cadlag for a.e. ω.

To see those two remainders, notice when Xt or Xt− = ∆, those supermartingales must be 0 after then,
which means Xt has to be ∆ after then, so is X̃t. If Tt, t ≥ 0 are all conservative, π(S) = 1, then Xt ∈ S for
any t, so is X̃t, and all the regularity doesn’t change.

Now, we can take Ω to be space of all Ŝ valued cadlag function s.t. ∆ is absorbing. Under any Pπ, (X)t is
a Markov process with initial π, transition kernels µt, and has cadlag path. Particularly, X ≡ ∆ on [ζ,∞],
where

ζ := inf{t ≥ 0 : Xt = ∆orXt− = ∆}

Take (Ft) to be right continuous filtration induced by (Xt), shift operators θt.

Definition 27.12 (canonical Feller process). Process (Xt, t ≥ 0) with distribution Pπ, filtration (Ft),
shift operators θt, and cadlag path is called the canonical Feller process with semigroup (Tt, t ≥ 0).

To show the strong Markov property, we use the similar arguments as for Brownian motion.

Theorem 27.13 (strong Markov property). For any canonical Feller process (Xt, t ≥ 0) with initial π,
stopping time τ , and r.v. Y ,

Eπ(Y ◦ θτ |Fτ ) = EXτ
Y a.s.-Pπ on {τ <∞}

Proof. Let (Gt) be the filtration induced by (Xt). Let

τn :=
[2nτ ] + 1

2n

then, all τn are G-stopping time and Fτ ⊂ Gτn
for any n. Notice τn only takes countably many value, so we

have strong Markov property for each τn, i.e.

Eπ(Y ◦ θτn ;A) = Eπ(EXτn
;A) ∀ A ∈ Fτ , n ∈ N
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To extend the property to τ , it’s enough to see Y = f1(Xt1)f2(Xt2) · · · fm(Xtm), where f1, f2, . . . , fm ∈ C0,
t1 < t2 < · · · < tm. Then when n→∞, by the right continuity, the left hand side

Y ◦ θτn
→ Y ◦ θτ

To see the right hand side, let hk = tk − tk−1, t0 = 0, then

EXτn
Y = Th1(f1Th2(· · · (fm−1Thmfm) · · · ))(Xτn)

= Th1(f1Th2(· · · (fm−1Thmfm) · · · ))(Xτ )
= EXτY

Then use DCT in both sides, DONE.

Similarly, we have

Theorem 27.14 (Blumental 0-1 law). For any canonical Feller process, we have

PxA = 0 or 1 ∀ x ∈ S,A ∈ F0

Proof. Let τ = 0 in the last theorem, we get immediately

1A = Px(A|F0) = PX0A = PxA a.s.-Px.

Remark. Notice by the definition, F0 := G0+, so for any F stopping time τ ,

Px(τ = 0) = 0 or 1.

Now, let’s have a look at Lévy processes. We’ll see, Lévy process in fact is the Feller process generated by
the convolution semigroup.

A convolution semigroup is a family of probability measures on Rd s.t.

(i) πt ∗ πs = πs+t, ∀ s, t ≥ 0;

(ii) π0 = δ0 and limt↓0 = δ0 in vague topology, i.e. πtf → f(0), ∀ continuous f with compact support.

Then the transition kernels and operators are:

µt(x,A) =
∫

Rd

1A(x+ y)πt(dy)

Ttf(x) =
∫

Rd

f(x+ y)πt(dy).

It’s easy to check (Tt) is a Feller semigroup.

Theorem 27.15. If transition kernels of (Xt) is given by a convolution semigroup, then (Xt) has stationary
independent increments. The law of Xt −Xs is πt−s.

Proof. If starts at x,

Exf(Xt −X0) = Exf(Xt − x) = πtf independent with x

Eπ(f(Xt −Xs)|Fs) = EXs
f(Xt−s −X0) = πt−sf Pπ-a.s.
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It’s also clear that if a Feller process has stationary independent increments, then its transition kernels are
given by a convolution semigroup, because

µt+s(A) = P (Xt+s ∈ A) = P (Xt+s −Xt +Xt ∈ A) = µs ∗ µt(A)

and
Ttf(x) =

∫
Rd

f(x+ y)µt(dy)

πt → δ0 ⇐⇒ Ttf(x)→ f(x), t ↓ 0.

Definition 27.16 (Lévy process). Lévy process is Feller process with stationary independent increments.

The general relations are:

{Markov processes} = {strong Markov processes} ∪ {cadlag Markov processes} ∪ {other Markov processes}

{Feller processes} ⊂ {strong Markov processes} ∩ {cadlag Markov processes}
{diffusion} = {strong Markov processes} ∩ {continuous Markov processes}
{Feller diffusion} = {Feller processes} ∩ {continuous Markov processes}

{Lévy processes} ⊂ {Feller processes}
{Brownian motion} ⊂ {Lévy processes}∩{continuous Markov processes} ⊂ {Feller diffusion} ⊂ {diffusion}.

We’ve seen how to construct a Markov process based on transition operators, but the problem is there aren’t
many transition operators which are explicitly known; moreover, what’s known in most cases is the way in
which the process moves from point to point. So we define

Definition 27.17 (generator). (Xt) is a Feller process, a function f in C0 is said to belong to the domain
DA of the infinitesimal generator of Xt if the limit

Af := lim
t↓0

Ttf − f
t

exists in C0. The operator A : DA → C0 thus defined is called the infinitesimal generator of the process
(Xt) or of the semigroup (Tt).

Remark. To see the meaning of A, let f bounded and f ∈ DA,

E(f(Xt+h)− f(Xt)|Ft) = Th(Xt)− f(Xt) = hAf(Xt) + o(h)

Thus A appears as describing how the process moves from point to point in an infinitesimal small time
interval.

The first thing we should mind is the existence. Let’s first see the motivation of proving the existence:

Motivation: If pt = eta, in order to get the value of a, there’re two methods, by either differentiation:

pt − 1
t
→ a, t ↓ 0

or integration ∫ ∞

0

e−λtdt =
1

λ− a
, λ > 0.

Motivated by the later formula, introduce resolvent Rλ, ∀ λ > 0,

Rλf(x) :=
∫ ∞

0

e−λtTtf(x)dt, f ∈ C0

this definition makes sense since ∀ x, Ttf(x) is bounded and right continuous on [0,∞).
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Theorem 27.18 (resolvent and generator). (Tt) is a Feller semigroup on C0 with resolvent Rλ, λ > 0.
Then λRλ are injective contractions on C0, ||λRλf − f || → 0, λ→∞.

The range DA := RλC0 is independent of λ and dense in C0. There exists and operator A on C0 with domain
DA s.t. R−1

λ = λ−A on DA, ∀ λ > 0.

On DA, ATt = TtA, ∀ t ≥ 0.

Proof. See [1] theorem 19.4.

Proposition 27.19 (generator). There’re following properties about the generator;

(i) DA is dense in C0, A is a closed operator;

(ii) TtDA ⊂ DA, ∀ t ≥ 0;

(iii) ∀ f ∈ DA, Ttf is differentiable
d

dt
Ttf = ATtf = TtAf

Ttf − f =
∫ t

0

TsAfds =
∫ t

0

ATsfds

(iv) (positive maximum principle) If f ∈ DA, and if sup{f(x) : x ∈ S} = f(x0) ≥ 0, then Af(x0) ≤ 0.

Proof. (iv):

Af(x0) = lim
t↓0

Ttf(x0)− f(x0)
t

Ttf(x0)− f(x0) ≤ f(x0)(µt(x0, S)− 1) ≤ 0.

Remark. Take an example, for Brownian motion, Af = 1
2f

′′, DA = C2
0 , then if f(x0) is maximal, we have

Af(x0) = 1
2f

′′(x0) ≤ 0.

Now focus on the probabilistic significance of A:

Theorem 27.20 (Dynkin’s formula). (Xt) is a Feller process. If f ∈ DA, define

Mf
t := f(Xt)− f(X0)−

∫ t

0

Af(Xs)ds

then (Mf
t , t ≥ 0) is a (Ft, Pπ) martingale for any π.

Remark. Again take Brownian motion for example, in this case, Af = 1
2f

′′, for f ∈ C2
0 , B0 = 0,(notice the

following things only make sense locally, because we require f(x)→ 0 when x→∞)

f(x) = x, Mf
t = Bt;

f(x) = x2, Mf
t = B2

t − t;
f(x) = x3, Mf

t = B3
t − 3

∫ t
0
Bsds;

...

Also, Itô’s formula says, ∀ f ∈ C2,

f(Bt) = f(B0) + f ′(B) ·B +
1
2
f ′′(B) · [B]
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while for Brownian motion, [B]t = t, i.e. ( 1
2f

′′(B) · [B])t =
∫ t
0
Af(Bs)ds, so in fact, for Brownian motion,

Mf
t = (f ′(B) ·B)t

which is a stochastic integration, and is surely again a martingale.

Proof. First, Mf
t is integrable. For any t, h ≥ 0,

Mf
t+h −M

f
t = f(Xt+h)− f(Xt)−

∫ t+h

t

Af(Xs)ds

E(Mf
t+h −M

f
t |Ft) = E(f(Xt+h)− f(Xt)−

∫ t+h

t

Af(Xs)ds|Ft)

= EXt
(f(Xh)− f(X0)−

∫ h

0

Af(Xs)ds)

= Thf(Xt)− f(Xt)−
∫ h

0

TsAf(Xt)ds

= 0

by proposition 27.19 (iii).

Proposition 27.21 (reverse of Dynkin’s). If f ∈ C0, and there exists a function g ∈ C0, s.t.

f(Xt)− f(X0)−
∫ t

0

g(Xs)ds

is a (Ft, Px) martingale for any x ∈ S, then f ∈ DA and Af = g.

Proof. ∀ x ∈ S,

Ttf(x)− f(x)−
∫ t

0

Tsg(x)ds = 0

hence,

||1
t
(Ttf − f)− g|| = ||1

t

∫ t

0

(Tsg − g)ds|| ≤
1
t

∫ t

0

||Tsg − g||ds→ 0, t ↓ 0.

Motivated by the last two results, there’s a heuristic extension of the theory, we won’t go further here. That
is, we use the martingales in Dynkin’s formula to define the extended generator for general Markov processes.

Definition 27.22 (general generator). (Xt) is a Markov process, a Borel function f is said to belong
domain DA of the extended infinitesimal generator if there exists a Borel function g s.t. a.s.

∫ t
0
|g(Xs)|ds <∞

for each t, and

f(Xt)− f(X0)−
∫ t

o

g(Xs)ds

is a (Ft, Px) right continuous martingale for every x.
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Of course this definition is consistent with that for Feller processes. If we define Af := g in this case, A is
called extended infinitesimal generator. This definition also makes perfect sense for Markov processes
which are not Feller processes. Most of the results here can be extended to the more general case keeping
the same probability significance.

Well, after the general theory, now we come to see some fundamental examples:

There’re few cases where DA and A are completely known, generally the subspace of DA is satisfactory.
Below we start with real valued Lévy processes. Let A be the space of infinitely differentiable functions on
the real line s.t. lim|x|→∞ fk(x)P (x) = 0 for any polynomial P (x), ∀ k ∈ Z+. Fourier transform is one-to-one
on A to itself. ∀ f, g ∈ A, define the inner product < f, g >:=

∫
f(x)g(x)dx.

Theorem 27.23 (generator of Lévy process). Let (Xt) be real valued Lévy process, then A ⊂ DA, and
∀ f ∈ A,

Af(x) = βf ′(x) +
σ2

2
f ′′(x) +

∫
(f(x+ y)− f(x)− y

1 + y2
f ′(x))ν(dy).

Proof. Recall Lévy-Kintchin formula, use µ̂t denote the Fourier transform for Xt, then

µ̂t(µ) = etψ(µ)

ψ(µ) = iβµ− σ2µ2

2
+

∫
(eiµy − 1− iµy

1 + y2
)ν(dy)

where β ∈ R, σ ≥ 0, ν is a Radon measure on R\{0}, s.t.
∫

x2

1+x2 ν(dx) <∞.

I claim, |ψ| increases at most like |µ|2 at infinite. To see this, notice

|
∫

[−1,1]c
(eiµx − 1− iµx

1 + x2
)ν(dx)| ≤ 2ν[−1, 1]c + |µ|

∫
[−1,1]c

|x|
1 + x2

ν(dx)

|
∫ 1

−1

(eiµx − 1− iµx

1 + x2
)ν(dx)| ≤ |µ|

∫ 1

−1

| x

1 + x2
− x|ν(dx) +

∫ 1

−1

|eiµx − 1− iµx|ν(dx)

while |eiµx − 1− iµx| is majored by c|x|2|µ|2 for a constant c.

For any f ∈ A, there exists unique g ∈ A, s.t. f(x) =
∫
eivxg(v)dv :=

∫
gx(v)dv =< 1, gx >, and then

< µ̂t, gx > =
∫

(eixvg(v))(
∫
eiyvµt(dy))dv

=
∫
µt(dy)

∫
ei(x+y)vg(v)dv

=
∫
f(x+ y)µt(dy)

= Ttf(x).

So, use Taylor expansion,

Ttf(x) =< µ̂t, gx > =
∫
etψ(v)gx(v)dv

=< 1, gx > +t < ψ, gx > +
t2

2
H(t, x)

where |H(x, t)| ≤ sup0≤s≤t | < ψ2esψ, gx > | ≤ < |ψ|2, |gx| >.
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We know < |ψ|, |gx| > and < |ψ|2, |gx| > are finite, the bounds are independent with x, hence when t ↓ 0,

1
t
(Ttf(x)− f(x))→ < ψ, gx > uniformly on x

So

Af(x) = < ψ, gx > = < iβµ− σ2µ2

2
+

∫
(eiµy − 1− iµy

1 + y2
)ν(dy), gx(µ) >

and observe
f ′(x) = i

∫
µgx(µ)dµ = < iµ, gx(µ) >;

f ′′(x) = i2
∫
µ2gx(µ)dµ = < −µ2, gx(µ) >;

<

∫
(eiµy − 1− iµy

1 + y2
)ν(dy), gx(µ) > =

∫
ν(dy)(

∫
(eiµy − 1− iµy

1 + y2
)gx(µ)dµ)

=
∫

(f(x+ y)− f(x)− y

1 + y2
f ′(x))ν(dy).

There are three fundamental cases, here we focus on dimension d = 1:

Proposition 27.24. (I) Xt = σBt, (Bt) is Brownian motion, then DA = C2
0 , Af = σ2

2 f
′′;

(II) Translation at speed β, DA = absolutely continuous function in C1
0 , Af = βf ′(x);

(III) Poisson processes with rate λ, DA = C0, Af = λ(f(x+ 1)− f(x)).

Proof. (I) see STAT205B lecture notes 18;

(II) Ttf(x) = Exf(Xt) = f(x+ βt), for any f ∈ C1
0 , absolutely continuous,

Af(x) = lim
t↓0

f(x+ βt)− f(x)
t

= βf ′(x);

(III) Ttf(x) = e−λtf(x) +
∑∞
i=1

(λt)i

i! e−λtf(x+ i), for any f ∈ C0,

d

dt
Ttf(x)|t=0 = λ(f(x+ 1)− f(x)).

In all these cases, we can describe the whole DA, but this is rather unusual, and usually one can only describe
the subspace of DA.

Heuristically speaking, from the last two results, a Lévy process is a mixture of a translation term, a diffusion
term corresponding to σ2

2 f
′′ and a jump term, the jumps being described by the Lévy measure ν.

For general Feller processes in Rd, we have the similar description as long as DA ⊃ C2
k(compact support),

but because these processes are no longer translation invariant as in stationary independent increments case,
the translation, diffusion and jump terms will change with the position of the process.
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Theorem 27.25 (generator for Feller processes). If (Tt) is a Feller semigroup on Rd, C∞k ⊂ DA, then

(i) C2
k ⊂ DA;

(ii) ∀ relatively compact open set U , there exists functions aij , bi, c on U and a kernel N , s.t. ∀ f ∈ C2
k ,

x ∈ U ,

Af(x) = c(x)f(x) +
∑
i

bi(x)
∂f

∂xi
(x) +

∑
i,j

aij(x)
∂2f

∂xi∂xj
(x)

+
∫

Rd\{x}
(f(y)− f(x)− 1U (x)

∑
i

(yi − xi)
∂f

∂xi
(x))N(x, dy)

where N(x, ·) is a Radon measure on Rd\{x}, the matrix a(x) := (aij(x)) is symmetric and nonnegative,
c ≤ 0 and a, c don’t depend on U .

If (Xt) has continuous path, then

Af(x) = c(x)f(x) +
∑
i

bi(x)
∂f

∂xi
(x) +

∑
i,j

aij(x)
∂2f

∂xi∂xj
(x). (∗∗)

Remark. Intuitively, a process with above infinitesimal generator will move infinitesimally from a position
x by adding a translation of vector b(x), a Gaussian process with covariance a(x) and jumps given by N(x, ·);
the term c(x)f(x) corresponds to the possibility of being killed.

Also see [1] page 384, with some conditions, Feller process (xt) has continuous path iff (∗∗) is satisfied. The
resulting Markov process is called canonical Feller diffusion.

Here only one small application is shown:

Example 27.26 (Heat equation). ∀ f ∈ C2
0 , we have for Brownian motion in Rd,

d

dt
Ttf =

1
2
∆Ttf

In fact, this is true for any bounded Borel function f and t > 0.

In the language of PDE, Ttf are fundamental solutions of the heat equation:{
∂
∂tµ(t, x) + 1

2∆µ(t, x) = 0
µ(0, x) = f(x).
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