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Connections to Partial Differential Equations

Lecturer: Jonathan Weareweare@math.berkeley.edu Scribe: Vinod Prabhakaran

Recall It̂o’s formula for f ∈ C2 andX a continuous semimartingale:

f (X) = F(X0) +
n∑

i=1

∫ t

0
fXi (X)dXi + 1/2

n∑
i, j=1

∫ t

0
fXi X j (X)d < Xi ,X j > a.s.

For X = B, Brownian motion, we have
< Bi , Bj >t= δi j t

So

f (B) = f (B0) +
n∑

i=1

∫ t

o
fXi (Bs)dBs + 1/2

n∑
i, j=1

∫ t

o
fXi ,X j (Bs)ds.

We begin by considering Laplace’s equation:
∆u = 0.

Note that∆uB
∑n

i=1 uXi,Xi . C2 functions with∆u = 0 are calledharmonic function.

Let B(x, r) B {y : |y− x| < r} and letD be an open subset ofRn. Let τD B inf {t : Bt ∈ Dc}. Since each component of
B is a.s. unbounded,P(τD < ∞) = 1 for any bounded domainD.

Theorem 25.1. If u is harmonic inD, then

u(x) =
?
∂B(x,r)

u(y)dS

for everyx ∈ D andr > 0 such thatB(x, r) ⊂ D.

Proof. By Itô,

u(Bt∧τB(x,r) ) = u(x) +
n∑

i=1

∫ t∧τB(x,r)

0
uXi (Bs)dBs + 1/2

∫ t∧τB(x,r)

0
∆u(Bs)ds

= u(x) +
n∑

i=1

∫ t∧τB(x,r)

0
uXi (Bs)dBs

Note that the second term in the last line is a local continuous martingale. But sinceu(Bt∧τB(x,r) ) − u(x) is uniformly
bounded, it is a true martingale with mean 0. Taking expectation and usingP(τB(x,r) < ∞) = 1,

Ex

(
u(BτB(x,r) )

)
= u(X).

By the symmetry of Brownian motion we have

Ex

(
u(BτB(x,r) )

)
=

?
∂B(x,r)

u(y)dS.

�
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Theorem 25.2. If u : D→ R has the mean value property, thenu is C∞ and harmonic.

Now consider the equation
∆u = 0, in D andu = f on∂D (1)

whereEx
(
| f (BτD )|

)
< ∞.

Claim. u(x) B Ex
(
f (BτD)

)
has∆u = 0 in D.

Proof.

u(x) = Ex f (BτD ) = Ex

(
Ex

(
f (BτD )|FτB(x,r)

))
= Exu(BτB(x,r) ) by strong Markov property

=

?
∂B(x,r)

u(y)dS

�

So in order to have a solution to the partial differential equation (1), we need:

lim
x→a
Ex

(
f (BτD )

)
= f (a), a ∈ ∂D.

This is true under a natural condition on the boundary. We want the boundary to beregular:

if σD = inf {t > 0 : Bt ∈ Dc}, thenPx(σD = 0) = 1, ∀x ∈ ∂D.

Stochastic Differential Equations

In order to consider more general PDEs, we need to introduce the notion of astochastic differential equations (SDEs).
We say that the semimartingaleX solves the SDE

dXt = σ(Xt)dBt + b(Xt)dt

if

Xt = X0 +

∫ t

o
σ(Xs)dBs +

∫ t

0
b(Xs)ds (2)

Solutions to three equations exist in particular whenσ andb are bounded and Lipschitz. The proof is based on Picard’s
iteration.

Claim. If Xt solves (2), then

M f
t = f (Xt) − f (X0) −

∫ t

0
A f(X)ds, t ≥ 0, f ∈ C2

where

A f(X) = 1/2
n∑

i, j=1

ai j (X) fXi X j (X) +
n∑

i=1

bi(X) fXi (X)

anda = σσT , is a martingale.
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Proof.

< Xi ,X j > =

n∑
k,l=1

< σik(X).Bk, σ jl (X).Bl >t

=

n∑
k,l=1

σikσ jl . < Bk, Bl >t

=

∫ t

0
ai j < Xs > ds.

So by It̂o’s formula,

f (Xt) = f (X0) +
n∑

i=1

∫ t

0
fXi (X)dXi + 1/2

n∑
i, j=1

∫ t

0
fXiX j(Xs)d < Xi ,X j >s

= f (X0) +
n∑

i, j=1

∫ t

0
σi j (Xs) fXi (Xs)dBj

s +

∫ t

0
A f(X)ds

Now assume thatu ∈ C2(D) ∩C(D) is a solution of

−Au(X) = f (X) in D, andu = 0 on∂D.

Thenu(x) = Ex

(∫ τD
0

f (Xs)ds
)
. By Itô,

u(Xt∧τD ) − u(x) = M f
t∧τD +

∫ t∧τD

0
Au(Xs)ds

= M f
t∧τD −

∫ t∧τD

0
f (Xs)ds

Now taking expectation and limit ast → ∞,

Exu(XτD) − u(x) = −Ex

∫ τD

0
f (Xs)ds

and so

u(x) = Ex

∫ τD

0
f (Xs)ds.

�

Dynamic Equations

We considerdynamic equationsof the form

ut = Au− cu in (0,∞) × Rn

u(0, x) = f (X)

We show that theC2 solutions of this equation are of the form

u(t, x) = Ex

(
f (Xt)exp

∫ t

0
c(Xs)ds

)
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The first step is to show thatu(t − s,Xs)exp
(
−

∫ t

0
c(Xs)ds

)
is a local martingale on [0, t).

If c,u is bounded, thenMs above is a bounded martingale. The martingale convergence theorem implies that ass↗ t,
Ms→ Mt. Sinceu is continuous andu(0, x) = f (x), we must have

lims↗tMs = f (Bt)exp

(
−

∫ t

0
c(Xs)ds

)
.

So we have

Ex f (Xt)exp

(
−

∫ t

0
c(Xs)ds

)
= u(t, x)

Applications:

We have seen that the solution to

−∆u = f in D

u = 0 on∂D

is

u(x) = Ex

∫ τD

0
f (Bs)ds.

So if f = 1, we haveEx(τD) is the solution of

−∆u = f in D

u = 0 on∂D

For example, ifD = B(0,1), then the solution is (1− |x|2)/n,⇒ Ex(τB(x,1)) = (1− |x|2)/n.
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