Stat205B: Probability Theory (Spring 2003) Lecture: 24

Quadratic Variation, Continued

Lecturer: Matthieuw Cornec Scribe: Brian Milch milch@cs.berkeley.edu

Recall that in the last lecture we introduced the covariation process [M, N] for local martingales M
and N. We postponed the proof that this process exists. However, before we do that proof, lets
prove one other proposition:

Proposition 24.1 For any continuous local martingales M and N,

[M — Mo, N — No] = [M, N] a.s.

Proof: By the definition of [M, N], Z = MN — [M, N] is a local martingale. And by the definition
of [M — My, N — Ng|, W = (M — My)(N — Ny) — [M — My, N — Ny| is a local martingale. Therefore:

Z — W = MyNy + Mo(N — No) + No(M — M) — [M, N] + [M — My, N — No]

is also a local martingale. We can reduce to the case where My = Ny = 0,80 Z — W = —[M,N| +
[M — My, N — Ny|. Covariation processes are continuous, have finite variation, and start at 0, so by
Prop. 23.1, Z — W = 0 a.s. Therefore [M — My, N — No] = [M, N] a.s. [

For convenience, here is Theorem 23.5 from last lecture. We will now do the existence portion of
the proof.

Theorem 24.2 For any continuous local martingales M and N, there exists an a.s. unique con-
tinuous process [M, N], called the covariation process of M and N, such that [M, N] has locally
finite variation, [M,Nl]o =0, and MN — [M, N] is a local martingale.

Proof: First, recall the basic equality:
1
w =7 (u+v)* = (u—10)?)

So if the quadratic variations [M + N] and [M — N] exist, then we can define the covariation [M, N]
to be 2([M 4+ N] —[M — N]). This trick, called polarization, is generally useful for reducing a claim
about products to a claim about squares.

So we just need to show [M] exists with the desired properties. First, suppose M is a bounded,
continuous martingale with My = 0 a.s. For a fixed n, define a sequence (7") of stopping times such
that M, changes by exactly 27" between 7;'_; and 7. That is:

T = 0
e = inf{t>7l 0 [My— M | =277}
Also define:

van = Z MT:]'(TI?*TI?-H] (t)
k

2
QF = Z (Mr,yﬂ/\t - Mr,g/\t)

k
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Note that (V*);>¢ is a predictable step process (Def. 23.4). Also:
M} =Qp +2(V"- M),
where (V™ - M) is a stochastic integral of a step process, as defined in the last lecture.
We claim that as n — oo, (V™ - M) converges in M? to an L2-bounded continuous martingale N.
We will show this by showing that (V™ M) is a Cauchy sequence in M?2. First, note that V™ can be

viewed as an approximation to M, where V" takes the value M;» over the whole interval (8, i)
Since M only changes by 27" over this interval, |[V™ — M| < 27",

To show that (V™ - M) is Cauchy, we must show that |[V" - M — V™ . M|| is small for large n,m.
Integrating with respect to M is a linear operation, so:
[ve-M—-v™.- M| =|[(V"-Vv™). M|
But:
[V =V |[V* — M|+ |V™ — M| by the triangle inequality
9~ 4 9=m
2—m+1

IAN A IA

ifm<n

So |[V™-M — V™. M| <2-™*H||M]|, and the sequence is clearly Cauchy.
Having shown (V- M) — N as n — oo, we can define the quadratic variation as:
[M]=M?—-N

Then M? — [M] = N, which is a martingale, as required by the theorem. We can view [M] as the
limit (as m — oo) of the QF. So intuitively, [M]; is the sum of the squared increments of M over
infinitesimal sub-intervals covering the interval [0, ¢].

For the case where M is not bounded, we use a standard localization argument. Define 7,, to be
the first ¢ such that |M;| > n. Then M™ is a bounded, continuous local martingale. So by the
argument above, we can construct [M™] such that (M™)? — [M™] is a local martingale. Now let
Tn T 00. We can show that the [M™] are consistent on ¢s where they overlap, and thus define [M]
to equal M™ for t < 7, (this fully defines [M] since 7,, T 0o). Finally, we can show that M? — [M]
is a local martingale. ]

We will now prove a proposition that relates [M] to the maximum value of M, which is M* =
sup, | M.

Proposition 24.3 For any sequence of continuous local martingales M,, starting at 0,

M; 220 & My =0

Proof: First suppose M —— 0. For any fixed ¢ > 0, let 7, = inf{t : |M,(t)] > €}. Let
N, = M2 — [M,]. Since N, is a local martingale, N/* is a true martingale; it also starts at 0. In
particular, E((N;"),. ) =0, so:

BE([My]r,) = B(M)?,) < €

Now by Chebyshevs inequality:
P([Mploo > €) < € 'E([My]o0)
= ¢ 'E ([Mp]r, 17, =00 + [Mp]ools, <oo)
< €'E ([Mp]-,) + e 'E ([Mn]oolr, <o0)
< e+ e 'E([My]ools, <oo) since E([M,],,) < €2
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There is some way to show that e 1 E ([M,]oo1s, <00) < P(7, < o0); Kallenberg does not provide
this detail. But given that step,

P([Mp)eo >€) < e+ P(r, <o)
= e+ P(M; >¢)
— 2 asn — oo, since M — 0

— 0 ase—0

So we have [M,]oc — 0. See the proof of Proposition 17.6 in Kallenberg for some hints on proving
the converse. m



