
Stat205B: Probability Theory (Spring 2003) Lecture: 24

Quadratic Variation, Continued

Lecturer: Matthieu Cornec Scribe: Brian Milch milch@cs.berkeley.edu

Recall that in the last lecture we introduced the covariation process [M,N ] for local martingales M
and N . We postponed the proof that this process exists. However, before we do that proof, lets
prove one other proposition:

Proposition 24.1 For any continuous local martingales M and N ,

[M −M0, N −N0] = [M,N ] a.s.

Proof: By the definition of [M,N ], Z = MN − [M,N ] is a local martingale. And by the definition
of [M −M0, N −N0], W = (M −M0)(N −N0)− [M −M0, N −N0] is a local martingale. Therefore:

Z −W = M0N0 + M0(N −N0) + N0(M −M0)− [M,N ] + [M −M0, N −N0]

is also a local martingale. We can reduce to the case where M0 = N0 = 0, so Z −W = −[M,N ] +
[M −M0, N −N0]. Covariation processes are continuous, have finite variation, and start at 0, so by
Prop. 23.1, Z −W = 0 a.s. Therefore [M −M0, N −N0] = [M,N ] a.s.

For convenience, here is Theorem 23.5 from last lecture. We will now do the existence portion of
the proof.

Theorem 24.2 For any continuous local martingales M and N , there exists an a.s. unique con-
tinuous process [M,N ], called the covariation process of M and N , such that [M,N ] has locally
finite variation, [M,N ]0 = 0, and MN − [M,N ] is a local martingale.

Proof: First, recall the basic equality:

uv =
1
4

(
(u + v)2 − (u− v)2

)
So if the quadratic variations [M +N ] and [M −N ] exist, then we can define the covariation [M,N ]
to be 1

4 ([M + N ]− [M −N ]). This trick, called polarization, is generally useful for reducing a claim
about products to a claim about squares.

So we just need to show [M ] exists with the desired properties. First, suppose M is a bounded,
continuous martingale with M0 = 0 a.s. For a fixed n, define a sequence (τn

k ) of stopping times such
that Mt changes by exactly 2−n between τn

k−1 and τn
k . That is:

τn
0 = 0

τn
k = inf{t > τn

k−1 : |Mt −Mτn
k−1
| = 2−n}

Also define:

V n
t =

∑
k

Mτn
k
1(τn

k ,τn
k+1]

(t)

Qn
t =

∑
k

(
Mτn

k+1∧t −Mτn
k ∧t

)2
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Note that (V n
t )t≥0 is a predictable step process (Def. 23.4). Also:

M2
t = Qn

t + 2(V n ·M)t

where (V n ·M) is a stochastic integral of a step process, as defined in the last lecture.

We claim that as n → ∞, (V n ·M) converges in M2 to an L2-bounded continuous martingale N .
We will show this by showing that (V n ·M) is a Cauchy sequence in M2. First, note that V n can be
viewed as an approximation to M , where V n takes the value Mτn

k
over the whole interval (τn

k , τn
k+1].

Since M only changes by 2−n over this interval, |V n −M | ≤ 2−n.

To show that (V n ·M) is Cauchy, we must show that ‖V n ·M − V m ·M‖ is small for large n, m.
Integrating with respect to M is a linear operation, so:

‖V n ·M − V m ·M‖ = ‖(V n − V m) ·M‖

But:

|V n − V m| ≤ |V n −M |+ |V m −M | by the triangle inequality
≤ 2−n + 2−m

≤ 2−m+1 if m < n

So ‖V n ·M − V m ·M‖ ≤ 2−m+1‖M‖, and the sequence is clearly Cauchy.

Having shown (V n ·M) → N as n →∞, we can define the quadratic variation as:

[M ] = M2 −N

Then M2 − [M ] = N , which is a martingale, as required by the theorem. We can view [M ] as the
limit (as n → ∞) of the Qn

t . So intuitively, [M ]t is the sum of the squared increments of M over
infinitesimal sub-intervals covering the interval [0, t].

For the case where M is not bounded, we use a standard localization argument. Define τn to be
the first t such that |Mt| > n. Then Mτn is a bounded, continuous local martingale. So by the
argument above, we can construct [Mτn ] such that (Mτn)2 − [Mτn ] is a local martingale. Now let
τn ↑ ∞. We can show that the [Mτn ] are consistent on ts where they overlap, and thus define [M ]
to equal Mτn for t ≤ τn (this fully defines [M ] since τn ↑ ∞). Finally, we can show that M2 − [M ]
is a local martingale.

We will now prove a proposition that relates [M ] to the maximum value of M , which is M∗ =
supt |Mt|.

Proposition 24.3 For any sequence of continuous local martingales Mn starting at 0,

M∗
n

P−→ 0 ⇔ [Mn]∞
P−→ 0

Proof: First suppose M∗
n

P−→ 0. For any fixed ε > 0, let τn = inf{t : |Mn(t)| ≥ ε}. Let
Nn = M2

n − [Mn]. Since Nn is a local martingale, Nτn
n is a true martingale; it also starts at 0. In

particular, E((Nτn
n )τn) = 0, so:

E([Mn]τn
) = E((Mn)2τn

) ≤ ε2

Now by Chebyshevs inequality:

P ([Mn]∞ > ε) ≤ ε−1E([Mn]∞)
= ε−1E ([Mn]τn

1τn=∞ + [Mn]∞1τn<∞)
≤ ε−1E ([Mn]τn

) + ε−1E ([Mn]∞1τn<∞)
≤ ε + ε−1E ([Mn]∞1τn<∞) since E([Mn]τn

) ≤ ε2
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There is some way to show that ε−1E ([Mn]∞1τn<∞) ≤ P (τn < ∞); Kallenberg does not provide
this detail. But given that step,

P ([Mn]∞ > ε) ≤ ε + P (τn < ∞)
= ε + P (M∗

n > ε)

→ 2ε as n →∞, since M∗
n

P−→ 0
→ 0 as ε → 0

So we have [Mn]∞
P−→ 0. See the proof of Proposition 17.6 in Kallenberg for some hints on proving

the converse.


