
Stat205B: Probability Theory (Spring 2003) Lecture: 2

Hitting Probabilities

Lecturer: James W. Pitman Scribe: Brian Milch

2.1 Hitting probabilities

Consider a Markov chain with a countable state space S and a transition matrix P . Suppose we
want to find Pi(chain hits A before C) for some i ∈ S and disjoint subsets A and C of S. We define
the boundary B := A∪C. It is obvious that Pi(chain hits A before C) for i ∈ Bc is determined by
the transition probabilities P (j, k) for j /∈ B, k ∈ S. Since this probability does not involve P (b, j)
for b ∈ B, j ∈ S, there is no loss of generality in assuming, as we will from now on, that B is an
absorbing boundary, meaning that P (b, b) = 1 for all b ∈ B.

If we let τ := inf{n : Xn ∈ B}, where B is absorbing, then we can restate our problem as finding
the hitting probability Pi(Xτ ∈ A) for some A ⊆ B. Define:

hA(i) , Pi(Xτ ∈ A)

We can condition on X1 and decompose to get:

Pi(Xτ ∈ A) =
∑

j

Pi(X1 = j, Xτ ∈ A)

hA(i) =
∑

j

PijhA(j) (∗)

To see that we’re handling the boundary cases correctly, note that if i ∈ B, then Pij = 0 for j 6= i.
And the values of hA on the boundary are:

hA(j) =

{

1 if j ∈ A
0 if j ∈ B \ A

The assumption that B is absorbing makes the equations (∗) hold for all i ∈ S, which simplifies the
discussion.

Another way to write (∗) is: hA = PhA. Thus hA is a harmonic function, as defined in the previous
lecture. Also, hA satisfies the boundary condition: h = 1A on B, meaning hA(i) = 1A(i) for
i ∈ B. Thus the function h = hA solves the boundary value problem

h = Ph
h = 1A on B

(BVP)

One of the homework problems (an easy application of martingale theory) is to show that if
Pi(hit B eventually) = 1, then h = hA is the unique solution of this BVP. This can also be de-
duced from the more general characterization of hA given in the following theorem, by consideration
of both hA and hB−A.
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What if Pi(hit B eventually) < 1? Then consider the escape probability:

eB(i) , Pi(never hit B)

= Pi(Xn /∈ B, ∀n ≥ 0)

For example, consider a biased random walk with P (i, i+1) = p and P (i, i− 1) = q. Suppose p > q,
and let B = {0}. Then eB(1) > 0.

By conditioning on X1, we can show eB = PeB : that is, escape probabilities are also harmonic
functions. Clearly, eB = 0 on B. Now, note that the set of solutions of h = Ph is a vector space: if
we add harmonic functions or take scalar multiples, we still get harmonic functions. We have seen
that:

• h = hA solves h = Ph and h = 1A on B

• h = eB solves h = Ph and h = 0 on B

Therefore for any constant c, h = hA + ceB solves h = Ph and h = 1A on B. So when eB is not
identically zero, hA is not the unique h such that h = Ph and h = 1A on B. The problem now is
how to characterize the hitting probability vector hA among all solutions of the BVP.

Theorem 2.1 h = hA is the minimal non-negative solution of (BVP). That is, if h solves (BVP)
and h(i) ≥ 0 for all i in S, then h(i) ≥ hA(i) for all i ∈ S.

Proof: First note that

hA(i) = Pi(Xn ∈ A for some n) by absorbing boundary assumption

= lim
n→∞

Pi(Xn ∈ A) because Xn ∈ A implies Xn+1 ∈ A

= lim
n→∞

(Pn1A)i

Suppose h ≥ 0 and h satisfies (BVP). Then:

h ≥ 1A

Pnh ≥ Pn1A ∀n because Pij ≥ 0

But Pnh = h because h is harmonic. So for all i ∈ S, we have:

h(i) ≥ (P n1A)i ∀n

h(i) ≥ lim
n→∞

(Pn1A)i = hA(i).

2.1.1 Example: Simple random walk on {0, 1, 2, . . .} with 0 absorbing

Let P (0, 0) = 1, and for i ≥ 1, let P (i, i + 1) = p and P (i, i − 1) = q. Let h0(i) = Pi(ever hit 0).
Then h = h0 solves:

h(i) = qh(i − 1) + ph(i + 1)

h(0) = 1
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Rather than solving these equations directly, we can use a shortcut based on the observation that
P1(ever hit 0) = Pi(ever hit i − 1) for all i ≥ 1. So by the strong Markov property:

h(2) = h(1)2

h(i) = (h(1))i

So we just have to compute h(1).

h(1) = q × 1 + p × h(1)2

x = q + px2

where x = h(1). The roots of this equation are x ∈ {1, q/p}. So we have two non-negative harmonic
functions that solve (BVP):

h(i) ≡ 1

h(i) =

(

q

p

)i

By the theorem proved above, h0 is the smaller one. That is:

h0(i) =

(

min

(

1,
q

p

))i

=

{

1 if p ≤ q
(

q
p

)i

if p > q

2.1.2 Example: Extinction probabilities for branching process

Suppose we are given an offspring distribution p0, p1, p2, . . . with
∑

pi = 1, p1 < 1, and pi ≥ 0. A
branching process models a population where each individual has a number of offspring with this
distribution (that is, the probability of an individual having 1 offspring is p1, etc.). The chain is:

X0 = initial number of individuals

Xn = number of individuals in generation n

Clearly the 0 state is absorbing. So h0(i) = Pi(population dies out) = Pi(Xn = 0 eventually).

Note that if there are i individuals in a generation, then their descendants form i independent trees.
These i trees must all die out in order for the entire population to die out. So h0(i) = h0(1)

i. Now,
by summing over X1, we find that:

h0(1) =

∞
∑

j=0

pj(h0(1))
j

We now introduce a probability generating function:

G(z) ,

∞
∑

j=0

pjz
j = E

(

zX
)

where Pr(X = j) = pj . Note that z = h0(1) solves z = G(z): in fact, h0(1) is the minimal solution
in [0, 1] of z = G(z).
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Figure 2.1: Plots of the curve G(z) (solid) and the 45-degree line (dashed) for branching processes
with various values of µ.

Thus we can find h0(1) by plotting G(z) versus z over the interval [0, 1], and observing where the
plot intersects the 45-degree line G(z) = z. Note that G(0) = p0 > 0, and G(1) =

∑

pj = 1. Also,
z 7→ G(z) is convex. As illustrated in Figure 2.1, the number of roots depends on the quantity:

µ ,

∞
∑

j=0

jpj = G′(1)

In the subcritical case where µ < 1, the only root is at z = 1, so h0(1) = 1. In the critical case
where µ = 1, the G(z) curve is tangent to the line z = G(z) at z = 1. Again, z = 1 is the only
root, so h0(1) = 1. But in the supercritical case where µ > 1, there are two roots, and h0(1) is
the smaller one.

The conclusion is that for µ ≤ 1, the branching process dies out almost surely. For µ > 1, the
branching process dies out with probability (h0(1))

i, where h0(1) is the smaller of the two solutions
of z = G(z).

The case p1 = 1 is special: then µ = 1, but G(z) = z for all z ∈ [0, 1], so h0(1) = 0 (the smallest
root).

2.2 Strong Markov property

Section 5.2 of Durrett deals with the strong Markov property. Suppose we have a chain X0, X1, . . .
with sequence space Ω. Recall that a random time τ : Ω → {0, 1, 2, . . . ,∞} is a stopping time if
{τ = n} ∈ σ(X1, X2, . . . , Xn). For example, τ = inf{n : Xn ∈ A} is a stopping time.

Theorem 2.2 (Strong Markov property) For any Markov chain Xn with transition matrix P ,
and any stopping time τ :

• (X0, X1, . . . , Xτ ) and (Xτ , Xτ+1, . . .) are conditionally independent given Xτ on {τ < ∞};

• given (X0, . . . , Xτ ) with Xτ = j, the process (Xτ , Xτ+1, . . .) is a Markov chain with transition
matrix P started in state j.

Sketch of proof: We first show that the theorem holds when τ is a fixed (not random) time.
Then we show that it is true in general by conditioning on the value of τ , and summing over all
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possible τ values. See the textbook for details.


