Stat205B: Probability Theory (Spring 2003) Lecture: 2
Hitting Probabilities

Lecturer: James W. Pitman Scribe: Brian Milch

2.1 Hitting probabilities

Consider a Markov chain with a countable state space S and a transition matrix P. Suppose we
want to find P;(chain hits A before C) for some 7 € S and disjoint subsets A and C of S. We define
the boundary B := AUC. It is obvious that P;(chain hits A before C) for i € B¢ is determined by
the transition probabilities P(j, k) for j ¢ B,k € S. Since this probability does not involve P(b, j)
for b € B,j € S, there is no loss of generality in assuming, as we will from now on, that B is an
absorbing boundary, meaning that P(b,b) =1 for all b € B.

If we let 7 := inf{n : X,, € B}, where B is absorbing, then we can restate our problem as finding
the hitting probability P;(X, € A) for some A C B. Define:

ha(i) 2 Py(X, € A)
We can condition on X; and decompose to get:

Pi(X, € A) = ZIP’i(Xl =4, X, €A)
ha(i) = ZpijhA(j) (%)

To see that we’re handling the boundary cases correctly, note that if ¢ € B, then P;; = 0 for j # i.
And the values of h4 on the boundary are:

L [1 ifjeA
hA(J)—{o itjeB\ A

The assumption that B is absorbing makes the equations (x) hold for all ¢ € S, which simplifies the
discussion.

Another way to write (x) is: ha = Pha. Thus h4 is a harmonic function, as defined in the previous
lecture. Also, h, satisfies the boundary condition: h = 14 on B, meaning ha(i) = 14(¢) for
i € B. Thus the function h = h 4 solves the boundary value problem

h = Ph

h=140n B (BVP)
One of the homework problems (an easy application of martingale theory) is to show that if
P;(hit B eventually) = 1, then h = hy is the unique solution of this BVP. This can also be de-
duced from the more general characterization of h 4 given in the following theorem, by consideration
of both hy and hp_4.
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What if P;(hit B eventually) < 17 Then consider the escape probability:
ep(i) = P;(never hit B)
=P;(X, ¢ B, ¥n > 0)

For example, consider a biased random walk with P(¢,i41) = p and P(i,i— 1) = ¢. Suppose p > g,
and let B = {0}. Then eg(1) > 0.

By conditioning on X7, we can show eg = Pep: that is, escape probabilities are also harmonic
functions. Clearly, eg = 0 on B. Now, note that the set of solutions of h = Ph is a vector space: if
we add harmonic functions or take scalar multiples, we still get harmonic functions. We have seen
that:

e h=hy solvesh=Phand h=14 on B

e h=ep solvesh=Phand h=0o0on B
Therefore for any constant ¢, h = ha4 + cep solves h = Ph and h = 14 on B. So when ep is not

identically zero, h4 is not the unique h such that h = Ph and h = 14 on B. The problem now is
how to characterize the hitting probability vector h4 among all solutions of the BVP.

Theorem 2.1 h = hy is the minimal non-negative solution of (BVP). That is, if h solves (BVP)
and h(i) > 0 for alli in S, then h(i) > ha(i) for alli e S.

Proof: First note that

ha(i) = P;(X,, € A for some n) by absorbing boundary assumption
= lim P;(X, € A) because X,, € A implies X,,;1 € 4

= lim (PnlA)i

Suppose h > 0 and h satisfies (BVP). Then:

h>14
P"h > P"14 Vn because P;; >0

But P™h = h because h is harmonic. So for all i € S, we have:

h(i) > (P"14); Vn
h(l) > nh—{go(PnlA)i = hA(Z)

2.1.1 Example: Simple random walk on {0, 1,2,...} with 0 absorbing

Let P(0,0) =1, and for ¢ > 1, let P(i,4+ 1) = p and P(i,4 — 1) = q. Let ho(i) = P;(ever hit 0).
Then h = hg solves:

h(i) = qh(i — 1) + ph(i + 1)
h(0) =1
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Rather than solving these equations directly, we can use a shortcut based on the observation that
IP; (ever hit 0) = P;(ever hit 4 — 1) for all 4 > 1. So by the strong Markov property:

h(2) = h(1)?
h(i) = (h(1))’

So we just have to compute h(1).

h(l) =g x1+4px h(1)?
x:q—I—pr

where = h(1). The roots of this equation are x € {1,¢/p}. So we have two non-negative harmonic
functions that solve (BVP):

h(i)=1

o=(3)

By the theorem proved above, hq is the smaller one. That is:
a\\’ 1 ifp<gq
h ) = 1 ]_7 — = 7 .
(9 (mm< p)) (,%) ifp>gq

2.1.2 Example: Extinction probabilities for branching process

Suppose we are given an offspring distribution pg, p1,pa,... with > - p; =1, p1 < 1, and p; > 0. A
branching process models a population where each individual has a number of offspring with this
distribution (that is, the probability of an individual having 1 offspring is pi, etc.). The chain is:

X = initial number of individuals

X, = number of individuals in generation n

Clearly the 0 state is absorbing. So ho(7) = P;(population dies out) = IP;(X,, = 0 eventually).

Note that if there are 4 individuals in a generation, then their descendants form ¢ independent trees.
These ¢ trees must all die out in order for the entire population to die out. So hg(i) = ho(1)*. Now,
by summing over X7, we find that:

ho(1) = pj(ho(1))?
j=0
We now introduce a probability generating function:
e .
G(2) &) pj = E (%)
§=0

where Pr(X = j) = p;. Note that z = ho(1) solves z = G(z): in fact, ho(1) is the minimal solution
in [0,1] of z = G(2).
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Figure 2.1: Plots of the curve G(z) (solid) and the 45-degree line (dashed) for branching processes
with various values of pu.

Thus we can find ho(1) by plotting G(z) versus z over the interval [0, 1], and observing where the
plot intersects the 45-degree line G(z) = z. Note that G(0) = po > 0, and G(1) = > p; = 1. Also,
z — G(z) is convex. As illustrated in Figure 2.1, the number of roots depends on the quantity:

= ijj =G'(1)
=0

In the subcritical case where 1 < 1, the only root is at z = 1, so ho(1) = 1. In the critical case
where p = 1, the G(z) curve is tangent to the line z = G(z) at z = 1. Again, z = 1 is the only
root, so ho(1) = 1. But in the supercritical case where p > 1, there are two roots, and ho(1) is
the smaller one.

The conclusion is that for 4 < 1, the branching process dies out almost surely. For p > 1, the
branching process dies out with probability (hg(1))?, where hg(1) is the smaller of the two solutions
of z = G(z).

The case p; = 1 is special: then p = 1, but G(z) = z for all z € [0,1], so ho(1) = 0 (the smallest
root).

2.2 Strong Markov property

Section 5.2 of Durrett deals with the strong Markov property. Suppose we have a chain Xy, Xy, ...
with sequence space €. Recall that a random time 7 : Q — {0,1,2,...,00} is a stopping time if
{r=n}€o(X1,Xs,...,X,). For example, 7 = inf{n : X,, € A} is a stopping time.

Theorem 2.2 (Strong Markov property) For any Markov chain X,, with transition matriz P,
and any stopping time T:
o (Xo,X1,...,X;) and (X;,Xr41,...) are conditionally independent given X, on {1 < co};

o given (Xo,...,X;) with X, = j, the process (X;,X;+1,...) is a Markov chain with transition
matriz P started in state j.

Sketch of proof: We first show that the theorem holds when 7 is a fixed (not random) time.
Then we show that it is true in general by conditioning on the value of 7, and summing over all
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possible 7 values. See the textbook for details.
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