Stat205B: Probability Theory (Spring 2003)

Lecture: 19

Brownian Martingales

Lecturer: James W. Pitman

Scribe: Bo Li boli@stat.berkeley.edu

Reference: Section 7.5 of Durrett.

Martingales in continuous time

A process M is a martingale adapted to (\mathcal{F}_t) if

- 1. $M_t \in \mathcal{F}_t$
- 2. $E(M_t | \mathcal{F}_t) = M_s$ for all $0 \le s \le t$.

There is a theorem which tells us, if (\mathcal{F}_t) is right continuous, i.e. $\mathcal{F}_t^+ = \mathcal{F}_t$ up to null sets, then every martingale has a "version" which has right continuous paths (even with left limits). See more advanced texts, e.g. [3].

Fact: If (\mathcal{F}_t) is generated by a Brownian Motion B, then every (\mathcal{F}_t) -Brownian Motion has a version with continuous paths. (Once the path is right continuous, it cannot have jumps). Of course, there are continuous time martingales with jumps, e.g., a compensated Poisson process $(N_t - t, t \ge 0)$, where (N_t) has stationary independent increments and N_t is Poisson with mean t.

We will be concerned with some particular martingales defined by formulae in terms of a Brownian Motion *B*. They will be martingales relative to the filtration (\mathcal{F}_t) generated by *B*, that is $\mathcal{F}_t := \sigma(B_s, 0 \le s \le t)$, and they will obviously have continuous paths.

Examples:

1. $M_t = B_t$.

Because B has mean 0 Gaussian distribution.

2. $M_t = B_t^2 - t$

There is a hierarchy of polynomial martingales like this, which come from taking successive derivatives at $\theta = 0$ of the the following family of martingales:

3. $M_t^{(\theta)} = \exp(\theta B_t - \theta^2 t/2)$ for each θ real or complex.

See text for details.

Theorem 1.1 (Optional Stopping Theorem) If (M_t) is a right continuous path martingale relative to a right continuous filtration (\mathcal{F}_t , and T is a stopping time for (\mathcal{F}_t) which is bounded, i.e., $T \leq C < \infty$ for some constant C, then

$$EM_T = EM_0.$$

Proof Sketch: Use discrete approximation, and assume $T \leq C - 1$. Let $T_n = ([2^nT] + 1)/2^n$, then $T_n \downarrow T$ and by discrete time martingale theory

$$M_{T_n} = E(M_C | \mathcal{F}_{T_n})$$

 $M_T = E(M_C | \mathcal{F}_T)$

Letting $n \to \infty$

by reversed martingale convergence.

Variation or corollaries with same setup: If T is a stopping time (no bound now), then

$$E(M_{T\wedge t}|\mathcal{F}_s) = M_{T\wedge s}$$

so $(M_{T \wedge t}, t \geq 0)$ is an (\mathcal{F}_t) -martingale.

To justify $EM_T = EM_0$ for unbounded $T < \infty$ a.s., we need justify the switch of limit and integral:

$$E(M_T) = E\left[\lim_{t \to \infty} M_{T \wedge t}\right] = \lim_{t \to \infty} E(M_{T \wedge t}) = E(M_0)$$

Extra conditions justifying use of DCT or UI or L^p bounded for p > 1 are all that is needed. Following is a nice example:

Theorem 1.2 If T is a stopping time of Brownian Motion B with $ET < \infty$, then

$$E(B_T) = 0$$
 and $E(B_T^2) = ET$.

Proof: Note that both $(B_{T \wedge n}, n = 1, 2, ...)$ and $(B_{T \wedge n}, n = 1, 2, ...^2 - (T \wedge n))$ are discrete time martingales. Hence

$$E(B_{T \wedge n}) = 0$$
 and $E(B_{T \wedge n}^2) = E(T \wedge n)$

Let $n \to \infty$, we see $E(B_{T \wedge n}^2) \uparrow ET < \infty$. So $(B_{T \wedge n})$ is a discrete time L^2 bounded martingale which converges almost surely and in L^2 to a limit in L^2 . But the almost sure limit is B_T . Therefore

$$EB_T = \lim_{n \to \infty} E(B \uparrow_{T \wedge n}) = \lim_{n \to \infty} 0 = 0$$
$$EB_T^2 = \lim_{n \to \infty} E(B \uparrow_{T \wedge n}^2) = ET$$

Embedding random variables in Brownian Motion

Theorem 1.3 Let X be a r.v. with EX = 0 and $EX^2 < \infty$. Then there exists a stopping time T of Brownian Motion such that $ET < \infty$ and $B_T =_d X$. Hence (by previous theorem) $EB_T = 0$ and $EB_T^2 = ET = EX^2$

Several different constructions of T are possible. Durett uses Skorokhod's constructions with extra randomization. The following construction due to Lester Dubins uses no extra randomization. First a little work with no Brownian Motion in view. We make a nice discrete approximations of any r.v. X on $(\Omega, \mathcal{F}, \mathcal{P})$ with EX = 0 and $EX^2 < \infty$.

First, let $X_0 = 0$. Next let

$$\mathcal{G}_{1} = \sigma(X > X_{0}), i.e., \mathcal{G}_{1} = \{\emptyset, (X > X_{0}), (X \le X_{0}), \Omega\}$$

and

$$X_1 = E(X|\mathcal{G}_1)$$

Then X_1 has two values E(X|X > 0) and $E(X|X \le 0)$ and can be rewritten as

$$X_1 = E(X|X > 0)1(X > 0) + E(X|X \le 0)1(X \le 0)$$

Further let

$$\mathcal{G}_2 = \sigma(\mathcal{G}_1, X > X_1)$$
$$X_2 = E(X|\mathcal{G}_2)$$

So \mathcal{G}_2 has 4 atoms $(X > 0, X > X_1), (X > 0, X \le X_1), (X \le 0, X > X_1)$ and $(X \le 0, X \le X_1)$ and thus X_2 typically has four possible values. Inductively

$$\mathcal{G}_{n+1} = \sigma(\mathcal{G}_n, X > X_n)$$
$$X_{n+1} = E(X|\mathcal{G}_{n+1})$$

Then \mathcal{G}_n is generated by a partition of the probability space into at most 2^n sets.

Claim 1.4 $X_n \to X$ both almost surely and in L^2 as $n \to \infty$.

Proof: Using $X_n = E(X|\mathcal{G}_n)$ and Jensens inequality for conditional expectation, we obtain

$$E(X_n^2) = E((E(X|\mathcal{G}_n))^2) \le E(E(X^2|\mathcal{G}_n)) = E(X^2)$$

Hence

$$sup_n E(X_n^2) < \infty$$

So as for the martingale (X_n, \mathcal{G}_n) , by L^2 convergence theorem, we know

$$X_n \to X_\infty$$

both almost surely and in L^2 for some square-integrable limit X_{∞} . But $X_n = E(X|\mathcal{G}_n)$ implies that

$$X_n \stackrel{a.s.}{\to} E(X|\mathcal{G}_{\infty})$$

where \mathcal{G}_{∞} is the σ -field generated by $\bigcup_n \mathcal{G}_n$. Thus $X_{\infty} = E(X|\mathcal{G}_{\infty})$ and our goal is to prove $X_{\infty} = X$ a.s.

One proof is given by Billingsley [1]. A nicer argument is suggested by J. Neveu [2, p. 34, Exercise II-7].

Notice the following facts

$$(X > X_{\infty}) \subseteq \bigcup_{n \in \mathbb{N}} (X > X_{n}) \subseteq (X \ge X_{\infty})$$

and

$$E((X - X_{\infty})1(X > X_{\infty})) = E((X - X_{\infty})1(X \ge X_{\infty}))$$

Then if let

$$G = \bigcup_n \cap_{m \ge n} (X > X_n)$$

Well have

$$E((X - X_{\infty})1(X > X_{\infty})) = E((X - X_{\infty})1_G) = (E((X - X_{\infty})1(X \ge X_{\infty})))$$

But the fact that $X_{\infty} = E(X|\mathcal{G}_{\infty})$ makes

 $E(X1_G) = E(X_\infty 1_G)$

since $G \in \mathcal{G}_{\infty}$. Hence

$$E((X - X_{\infty})1(X > X_{\infty})) = 0$$

Same argument on $(X < X_{\infty})$ leads to

$$E((X - X_{\infty})1(X < X_{\infty})) = 0$$

The last two observations imply

$$E|X - X_{\infty}| = 0$$

We immediately obtain the desired result

$$X \stackrel{a.s.}{=} X_{\infty}$$

The proof of the claim is complete.

References

- [1] P. Billingsley. Probability and Measure. Wiley, New York, 1995. 3rd ed.
- [2] J. Neveu. Discrete-parameter martingales. North-Holland Publishing Co., Amsterdam, revised edition, 1975. Translated from the French by T. P. Speed, North-Holland Mathematical Library, Vol. 10.
- [3] D. Revuz and M. Yor. *Continuous martingales and Brownian motion*. Springer, Berlin-Heidelberg, 1999. 3rd edition.