Stat205B: Probability Theory (Spring 2003) Lecture: 19

Brownian Martingales

Lecturer: James W. Pitman Scribe: Bo Li boli@stat.berkeley.edu

Reference: Section 7.5 of Durrett.

Martingales in continuous time

A process M is a martingale adapted to (F) if

1. Mt € ft
2. E(M,|F,) = M, for all 0 < s < t.

There is a theorem which tells us, if (F;) is right continuous, i.e. F;" = F; up to null sets, then
every martingale has a ”version” which has right continuous paths (even with left limits). See more
advanced texts, e.g. [3].

Fact: If (F%) is generated by a Brownian Motion B, then every (F;)-Brownian Motion has a version
with continuous paths. (Once the path is right continuous, it cannot have jumps). Of course, there
are continuous time martingales with jumps, e.g., a compensated Poisson process (N; — t,t > 0),
where (IV;) has stationary independent increments and N; is Poisson with mean ¢.

We will be concerned with some particular martingales defined by formulae in terms of a Brownian
Motion B. They will be martingales relative to the filtration (F;) generated by B, that is F; :=
o(Bs,0 < s <t), and they will obviously have continuous paths.

Examples:
1. M; = B;.
Because B has mean 0 Gaussian distribution.

2. My =B} —t
There is a hierarchy of polynomial martingales like this, which come from taking successive
derivatives at @ = 0 of the the following family of martingales:

3. Mt(e) = exp(0B; — 0%t/2) for each 6 real or complex.
See text for details.

Theorem 1.1 (Optional Stopping Theorem) If (M;) is a right continuous path martingale relative
to a right contnuous filtration (Fy, and T is a stopping time for (Fi) which is bounded, i.e., T <
C < oo for some constant C, then

EMp = EM,.
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Proof Sketch: Use discrete approximation, and assume T' < C' — 1. Let T,, = ([2"T] + 1)/2", then
T, | T and by discrete time martingale theory

My, = E(Mc|Fr,)

Letting n — oo
My = E(Mc|Fr)

by reversed martingale convergence. |

Variation or corollaries with same setup:
If T is a stopping time (no bound now), then

E(MT/\t‘]:s) - MT/\s

so (Mra¢,t > 0) is an (F;)-martingale.

To justify EMp = EM; for unbounded T' < oo a.s., we need justify the switch of limit and integral:
E(My) = E an Mm} =7 lim B(Mrn) = E(M)

Extra conditions justifying use of DCT or Ul or LP bounded for p > 1 are all that is needed.
Following is a nice example:

Theorem 1.2 If T is a stopping time of Brownian Motion B with ET < oo, then

E(Br) =0 and E(B%) = ET.

Proof: Note that both (Bra,,n = 1,2,...) and (Bran,n = 1,2,...2 — (T An)) are discrete time
martingales. Hence
E(Brpn) =0 and E(B2,,) = E(T An)

Let n — oo, we see E(B2.,,) 1 ET < c0. So (Bray) is a discrete time L? bounded martingale which
converges almost surely and in L? to a limit in L?. But the almost sure limit is By. Therefore

EBp = limp—ooE(B Tran) = limy—s60 = 0

EBZ =lim, oo E(B 1%,,) = ET

Embedding random variables in Brownian Motion

Theorem 1.3 Let X be a r.v. with EX =0 and EX? < co. Then there exists a stopping time T
of Brownian Motion such that ET < oo and Br =4 X. Hence (by previous theorem) EBr =0 and
EB% =ET = EX?

Several different constructions of T' are possible. Durett uses Skorokhod’s constructions with extra
randomization. The following construction due to Lester Dubins uses no extra randomization. First
a little work with no Brownian Motion in view. We make a nice discrete approximations of any r.v.

X on (2, F,P) with EX =0 and EX? < co.
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First, let Xy = 0.
Next let
g1 = O'(X > Xo),i.e.,gl = {@, (X > )(0)7 (X < Xo),Q}

and
X1 =E(X|G1)

Then X; has two values E(X|X > 0) and F(X|X < 0) and can be rewritten as
X1 = B(X|X > 0)1(X > 0) + B(X|X < 0)1(X <0)
Further let
Go=0(G1,X > X1)
Xy = E(X|G)

So G has 4 atoms (X >0, X > X7),(X >0, X < X;7),(X <0,X > X;) and (X <0,X < X;) and
thus X5 typically has four possible values.
Inductively

gnJrl - U(gan > Xn)

Xn+1 = E(X|gn+1)
Then G, is generated by a partition of the probability space into at most 2" sets.

Claim 1.4 X,, — X both almost surely and in L? as n — oo.

Proof: Using X,, = E(X]|G,,) and Jensens inequality for conditional expectation, we obtain
E(X}) = E(E(X|Gn))?) < E(E(X?|G,)) = B(X?)

Hence
sup, BE(X?) < 00

So as for the martingale (X,,,G,), by L? convergence theorem, we know
X, — X
both almost surely and in L? for some square-integrable limit X..,. But X,, = E(X|G,,) implies that
X, 3 E(X|Gs)

where G, is the o-field generated by U,,G,,. Thus X = E(X |G ) and our goal is to prove Xo, = X
a.s.

One proof is given by Billingsley [1]. A nicer argument is suggested by J. Neveu [2, p. 34, Exercise
I1-7].

Notice the following facts

(X > Xoo) CUpNpsn(X > X)) € (X > Xoo)

and

Then if let
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Well have
E((X = Xoo)L(X > X)) = BE((X — Xoo)1g) = (B(X — Xoo)L(X > Xo0))
But the fact that X, = E(X|Go.) makes
E(X1g) = E(Xxlc)

since G € Go,. Hence
E(X —Xoo)l(X > X)) =0

Same argument on (X < X,) leads to
E(X - X0)1(X < X)) =0

The last two observations imply
EX-X,|=0

We immediately obtain the desired result
X = X

The proof of the claim is complete. [ |
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