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Brownian Martingales
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Reference: Section 7.5 of Durrett.

Martingales in continuous time

A process M is a martingale adapted to (Ft) if

1. Mt ∈ Ft

2. E(Mt|Ft) = Ms for all 0 ≤ s ≤ t.

There is a theorem which tells us, if (Ft) is right continuous, i.e. F+
t = Ft up to null sets, then

every martingale has a ”version” which has right continuous paths (even with left limits). See more
advanced texts, e.g. [3].

Fact: If (Ft) is generated by a Brownian Motion B, then every (Ft)-Brownian Motion has a version
with continuous paths. (Once the path is right continuous, it cannot have jumps). Of course, there
are continuous time martingales with jumps, e.g., a compensated Poisson process (Nt − t, t ≥ 0),
where (Nt) has stationary independent increments and Nt is Poisson with mean t.

We will be concerned with some particular martingales defined by formulae in terms of a Brownian
Motion B. They will be martingales relative to the filtration (Ft) generated by B, that is Ft :=
σ(Bs, 0 ≤ s ≤ t), and they will obviously have continuous paths.

Examples:

1. Mt = Bt.
Because B has mean 0 Gaussian distribution.

2. Mt = B2
t − t

There is a hierarchy of polynomial martingales like this, which come from taking successive
derivatives at θ = 0 of the the following family of martingales:

3. M
(θ)
t = exp(θBt − θ2t/2) for each θ real or complex.

See text for details.

Theorem 1.1 (Optional Stopping Theorem) If (Mt) is a right continuous path martingale relative
to a right contnuous filtration (Ft, and T is a stopping time for (Ft) which is bounded, i.e., T ≤
C < ∞ for some constant C, then

EMT = EM0.
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Proof Sketch: Use discrete approximation, and assume T ≤ C − 1. Let Tn = ([2nT ] + 1)/2n, then
Tn ↓ T and by discrete time martingale theory

MTn = E(MC |FTn)

Letting n →∞
MT = E(MC |FT )

by reversed martingale convergence.

Variation or corollaries with same setup:
If T is a stopping time (no bound now), then

E(MT∧t|Fs) = MT∧s

so (MT∧t, t ≥ 0) is an (Ft)-martingale.

To justify EMT = EM0 for unbounded T < ∞ a.s., we need justify the switch of limit and integral:

E(MT ) = E
[

lim
t→∞

MT∧t

]
=? lim

t→∞
E(MT∧t) = E(M0)

Extra conditions justifying use of DCT or UI or Lp bounded for p > 1 are all that is needed.
Following is a nice example:

Theorem 1.2 If T is a stopping time of Brownian Motion B with ET < ∞, then

E(BT ) = 0 and E(B2
T ) = ET.

Proof: Note that both (BT∧n, n = 1, 2, . . .) and (BT∧n, n = 1, 2, . . .2 − (T ∧ n)) are discrete time
martingales. Hence

E(BT∧n) = 0 and E(B2
T∧n) = E(T ∧ n)

Let n →∞, we see E(B2
T∧n) ↑ ET < ∞. So (BT∧n) is a discrete time L2 bounded martingale which

converges almost surely and in L2 to a limit in L2. But the almost sure limit is BT . Therefore

EBT = limn→∞E(B ↑T∧n) = limn→∞0 = 0

EB2
T = limn→∞E(B ↑2T∧n) = ET

Embedding random variables in Brownian Motion

Theorem 1.3 Let X be a r.v. with EX = 0 and EX2 < ∞. Then there exists a stopping time T
of Brownian Motion such that ET < ∞ and BT =d X. Hence (by previous theorem) EBT = 0 and
EB2

T = ET = EX2

Several different constructions of T are possible. Durett uses Skorokhod’s constructions with extra
randomization. The following construction due to Lester Dubins uses no extra randomization. First
a little work with no Brownian Motion in view. We make a nice discrete approximations of any r.v.
X on (Ω,F ,P) with EX = 0 and EX2 < ∞.
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First, let X0 = 0.
Next let

G1 = σ(X > X0), i.e.,G1 = {∅, (X > X0), (X ≤ X0),Ω}

and
X1 = E(X|G1)

Then X1 has two values E(X|X > 0) and E(X|X ≤ 0) and can be rewritten as

X1 = E(X|X > 0)1(X > 0) + E(X|X ≤ 0)1(X ≤ 0)

Further let
G2 = σ(G1, X > X1)

X2 = E(X|G2)

So G2 has 4 atoms (X > 0, X > X1), (X > 0, X ≤ X1), (X ≤ 0, X > X1) and (X ≤ 0, X ≤ X1) and
thus X2 typically has four possible values.
Inductively

Gn+1 = σ(Gn, X > Xn)

Xn+1 = E(X|Gn+1)

Then Gn is generated by a partition of the probability space into at most 2n sets.

Claim 1.4 Xn → X both almost surely and in L2 as n →∞.

Proof: Using Xn = E(X|Gn) and Jensens inequality for conditional expectation, we obtain

E(X2
n) = E((E(X|Gn))2) ≤ E(E(X2|Gn)) = E(X2)

Hence
supnE(X2

n) < ∞

So as for the martingale (Xn,Gn), by L2 convergence theorem, we know

Xn → X∞

both almost surely and in L2 for some square-integrable limit X∞. But Xn = E(X|Gn) implies that

Xn
a.s.→ E(X|G∞)

where G∞ is the σ-field generated by ∪nGn. Thus X∞ = E(X|G∞) and our goal is to prove X∞ = X
a.s.
One proof is given by Billingsley [1]. A nicer argument is suggested by J. Neveu [2, p. 34, Exercise
II-7].
Notice the following facts

(X > X∞) ⊆ ∪n∩m≥n(X > Xn) ⊆ (X ≥ X∞)

and
E((X −X∞)1(X > X∞)) = E((X −X∞)1(X ≥ X∞))

Then if let
G = ∪n∩m≥n(X > Xn)
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Well have

E((X −X∞)1(X > X∞)) = E((X −X∞)1G) = (E((X −X∞)1(X ≥ X∞))

But the fact that X∞ = E(X|G∞) makes

E(X1G) = E(X∞1G)

since G ∈ G∞. Hence
E((X −X∞)1(X > X∞)) = 0

Same argument on (X < X∞) leads to

E((X −X∞)1(X < X∞)) = 0

The last two observations imply
E|X −X∞| = 0

We immediately obtain the desired result

X
a.s.= X∞

The proof of the claim is complete.
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