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Hitting Times and the Reflection Principle
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For x ∈ R, let Tx := inf{t : t ≥ 0, Bt = x}. For a, b > 0, we wish to find P0(Tb < T−a) and
P0(Tb ≤ t).

We will solve the first problem by embedding a random walk in our Brownian Motion. The second
problem will be solved by a technique called the reflection principle.

Claim 17.1 P0(Tx < ∞) = 1 for all x ∈ R.

Proof: This argument uses the recurrence of random walks in one dimension. Consider B1, B2, B3, . . . .
This is a random walk with mean 0 and Gaussian increments. Thus by the Chung-Fuchs theorem
it is recurrent and P0(Bn > x i.o.) = 1. However, Bt is continuous so there are almost surely times
t at which Bt = 1.

Another way to see this is by embedding of a simple symmetric random walk in Brownian motion.
Let T± = Tx ∧ T−x. Then, appealing again to path continuity,

P0(T± ≤ t) ≥ P0(|Bt| > x)

= P0(|B1| >
x√
t
) −→ 1 as t −→∞

In fact we can get P0(T± > t) ≤ Ce−θt for some C > 0 and θ > 0. Finally,

P0(T± = Tx) = P (B(T±) = x) = P (B(T±) = −x) =
1
2

by symmetry.

Now fix δ > 0 and consider the succesive times when Bt hits the lattice δZ. Let S0 = 0 and

Sn+1 = Sn + T±δ(B(n)),

where
B(n)(t) = B(Sn + t)−B(Sn).

Each Sn is a stopping time of Bt and each B
(n)
t is a Brownian Motion independent of (Bt, 0 ≤ t ≤ Sn).

By repeated application of the Strong Markov Property to justify the independce and symmetry to
get p = q = 1

2 we have that (B(Sn)
δ , n = 1, 2, . . . ) is a simple symmetric random walk. (We can also

embed many other walks and processes such as martingales in a Brownian Motion.)

Now observe that by the solution of the gambler’s ruin problem for simple symmetric random walk,

P0(T2δ < T−δ) = P0(
B(Sn)

δ
hits 2 before − 1) =

1
3

P0(Tkδ < T−mδ) =
mδ

kδ + mδ

P0(Ta < T−b) =
b

a + b
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if a = kδ, b = mδ for some δ > 0 (ie. if a
b is rational). For fixed b, P0(Ta < T−b) decreases as

a increases. Thus by the continuity of the right hand side of the equation we conclude that the
formula holds for all positive real a and b.

As a check, the fact that P0(Tx < ∞) = 1 for all x ∈ R follows easily from the formula P0(Ta <
T−b) = b/(a + b). Now we wish to find the distribution of Tx for x > 0. Let

Mt := max
0≤s≤t

Bs

and notice that (Tx, x ≥ 0) is the left continuous inverse for (Mt, t ≥ 0). Let

T+ := inf{t : Bt > 0}, T− := inf{t : Bt < 0}

Claim 17.2 T+ = T− = 0 a.s.

Proof: P (∀ε > 0 Bt > 0 for some t ≤ ε) > 1
2 and {∀ε > 0 Bt > 0 for some t ≤ ε} ∈ F+

0 Thus by
Bluementhals 0/1 Law, P (T+ = 0) = 1.

Claim 17.3 With probability one, Bt cannot reach and not exceed the same value more than twice.

Proof: For each fixed a > 0, consider the first hit of a local max after staying below the max for
at least time a. This is a stopping time, so by the Strong Markov Property and the previous result,
the process exceeds the value immediately after hitting it for the second time. This argument can
be repeated to consider the nth time a local max is hit after staying below the max for at least time
a. Finally, let a ↓ 0 to finish the argument.

The Reflection Principle (Mt ≥ x) = (Tx ≤ t) so if we know the distribution of Mt for all t > 0
then we know the distribution of Tx for all x > 0. Define the reflected path,

B̂(t) =
{

B(t) if t ≤ Tx

x− (B(t)− x) if t > Tx

By an application of the Strong Markov Property and because B and −B are equal in distribution
we can deduce that B̂ and B are equal in distribution. (Rigorous proof of this involves some mea-
surability issues which are not entirely trivial: see e.g. Freedman’s Brownian Motion and Diffusion
or Durrett’s text for details)

Observe that for x, y > 0,
(Mt ≥ x,Bt ≤ x− y) = (B̂t ≥ x + y)

so
P0(Mt ≥ x,Bt ≤ x− y) = P0(Bt ≥ x + y)

Taking y = 0 in the previous expression we have

P0(Mt ≥ x, Bt ≤ x) = P0(Bt ≥ x)

(Bt > x) ⊂ (Mt ≥ x), so

P0(Mt ≥ x,Bt > x) = P0(Bt > x) = P0(Bt ≥ x)

by continuity of the distribution. Adding these two results we find that

P0(Mt ≥ x) = 2P0(Bt ≥ x)
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In words, the distributions of Mt and |Bt| are the same.

Now recall that P0(Mt ≥ x) = P0(Tx ≤ t) so

P0(Tx ≤ t) = P0(|Bt| ≥ x) = P0(
√

t|B1| ≥ x)

= P0(B2
1 ≥

x2

t
) = P0(

x2

B2
1

≤ t)

So Tx is equal in distribution to x2

B2
1
. As a check, Tx has the same distribution as x2T1, which is

explained by Brownian scaling.


