Stat205B: Probability Theory (Spring 2003) Lecture: 16

The Strong Markov Property

Lecturer: James W. Pitman Scribe: Donghui Yan dhyan@stat.berkeley.edu

Idea: (Ito-Mckean) The Brownian traveller starts afresh at stopping times.

Definition. A Filtration is an increasing family of o-fields (F;,t € 7) where Z C % is some index set. We
are familiar with the case when 7 = {0,1,2, ...}, now we extend it to Z = [0, 00).

Wesay T : Q@ — Z U {co} is a stopping time if (T' < t) € F; for all t € Z. Intuitively, we can think
of F; as the information available up to time t.

Remark. Comparing to Durrett (Section 7.3, pp 387-389), we use (T < t) instead of (T < t). The
reasons are the following:

e This is consistent with the definition of stopping time in discrete time.

e We replace (F;) by (F;7) in continuous time [0,00) with F," := NcsoFire, therefore (F;7) is a new
filtration and 7" satisfies:

(T <t)e Fforallt < (T <t)eF forallt

If T is a stopping time relative to F3, then

(T'=1t) € F, for all t

In discrete time, this is equivalent to T" being a stopping time, but not continuous time since
(T'<t) =Up<s<ty(T = s5)
is an uncountable union.

Example. Suppose we start with a filtration (F;) and complete it with (F,) = o(F;, N) where N is
the collection of events of probability 0. Let T be any random variable with a continuous distribution, then

P(T=t)=0forallt,(T=t)e N and (T =t) CF;
so T is an (F, )-stopping time if we use this definition.
Definition. If T is an (F;)-stopping time, then Fr, the o-field of events determined by time T, is
defined as:
fT::{AEFZAﬂCTSt)E]:t}

Easily we can check the following:

o Fr is a o-field.



2 The Strong Markov Property

o If 7; = 0(X,,0 < s <t) for some process X with continuous path, then things like T', X1, X1 ; which
can be considered as being constructed from (X;,0 < s <T) are all Fp-measurable.

Roughly, Fr = 0(X5,0 < s <t), and following are sensible facts about Fr:

o If S < T are two stopping times, then Fg C Fr.
e If T}, | T and Ty,s are (F;")-stopping times, then T is an (F;")-stopping time and F; = ﬂnfifn.
Note that for (F;) generated by Brownian motion the difference between (F;) and (F,") is unimportant: it

turns out that F; = F, a.s., meaning that if for all A € F;', there exists B € J; such that 14 = 15 as..
The case t = 0 of this assertion is Blumenthal’s zero-one law, stated below.

Example. Let F; = 0(X,,0 < s < t) for X with continuous paths, T = inf{¢ : X, = 1}. This is an
(Fi)-stopping time. This can ve checked as follows. Start from

(T<t)=(Xs=1: for some 0 <s<t).

Let D be a countable dense subset of [0,00). By considering X for s € D,

oo 1
(T <t) = Nz Usep,o<s<t) 11X — 1] < ﬁ}

However, if we let
T =inf{t: X; > 1}

then T is not an (F;)-stopping time but an (F;")-stopping time since

(T <t)=Neso{Xs>1for some 0 < s <t+e}cF

Theorem 16.1. (Strong Markov property of Brownian Motion) If B is an (F;)-Brownian Motion
and T is an (F,")-stopping time, then given (T' < c0), (Brys — Br,S > 0) is a Brownian Motion which is
independent of (F;").

Remark. We say B is an (F;)-Brownian Motion means B; € F;, By = 0, B has continuous paths and
for every s and ¢, Byys — Bt ~ N(0,8), and Byys — By is independent of F;. If B is a Brownian Motion in
previous sense then it is an (F;)-Brownian Motion for (F;) the filtration generated by B.

Proof. We break the proof into three steps.

Step 1: Take T be a fixed (non-random) time. We know from previous lecture (from Gaussian FDDs)
that the statement is true with independence of Fr instead of Fr. .

Step 2: Take T to be an (F;)-stopping time with discrete distribution
T =¥ 1ty 11—y, for some 0 < t; <3 < ...

We can get conclusion with independence of Fr by conditioning on T' = t,,, then use result for fixed time ¢,
and sum over n.

Step 3: Take T to be a general (F,")-stopping time. Let

T}, = the least multiple of 27% that is > 7.
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Note that .7-';5 C Fr,.

By Step 2, we know given (T' < o0), (Bry,4+s — By, $ > 0) is Brownian Motion independent of Fr, and hence
independent of ]—"}' . Letting k — o0, T, | T on (T < o0), we want to conclude the following:

(Br+s — Br,s > 0) is Brownian Motion independent of Fr.

Brownian Motion requires appropriate FDDs and path continunity (which can be easily verified). Therefore
we just need to check FDDs. We shall do this just in the one-dimensional case, i.e. for each fixed s > 0

Brys— Br ~ N(0,s) and is independent of Frp
We know (Br,+s — Br,,S > 0) ~ N(0,s) and are independent of Fr and T}, | T, hence
BTkJrS — BT+S and BT,c — BT as k — oo

With a little measure theory, we reduce to showing for all bounded and continuous functions f and all
AeFf,

E[f(Br+s — Br) - 14] = E[f(B)] - P(A) (1)

(This reduction uses the fact that the distribution a random variable X is determined by Ef(X) for f
bounded and continuous). We know (1) is true if we replace T' with T}, in (1) with f bounded and continuous.
Therefore by BCT, (1) holds for all f bounded and continuous by passage to limit in (1) with T, — T. So
the result follows. O

As a corollary of the above, we have the following.

Theorem 16.2. (Blumenthal 0-1 Law) Take T" = 0 in above, and let F; = 0(B;,0 < s < t), then
(Bs,s > 0) is a BM independent of fgr. However, since .7-'; C 0(Bs, s > 0), therefore .7’-'0+ is independent of
itself, consequently P(A) =0 or 1 for all A € F .



