
Stat205B: Probability Theory (Spring 2003) Lecture: 16

The Strong Markov Property

Lecturer: James W. Pitman Scribe: Donghui Yan dhyan@stat.berkeley.edu

Idea: (Itô-Mckean) The Brownian traveller starts afresh at stopping times.

Definition. A Filtration is an increasing family of σ-fields (Ft, t ∈ I) where I ⊆ < is some index set. We
are familiar with the case when I = {0, 1, 2, ...}, now we extend it to I = [0,∞).

We say T : Ω → I ∪ {∞} is a stopping time if (T ≤ t) ∈ Ft for all t ∈ I. Intuitively, we can think
of Ft as the information available up to time t.

Remark. Comparing to Durrett (Section 7.3, pp 387-389), we use (T ≤ t) instead of (T < t). The
reasons are the following:

• This is consistent with the definition of stopping time in discrete time.

• We replace (Ft) by (F+
t ) in continuous time [0,∞) with F+

t := ∩ε>0Ft+ε, therefore (F+
t ) is a new

filtration and T satisfies:

(T < t) ∈ Ft for all t ⇐⇒ (T ≤ t) ∈ F+
t for all t

If T is a stopping time relative to Ft, then

(T = t) ∈ Ft for all t

In discrete time, this is equivalent to T being a stopping time, but not continuous time since

(T ≤ t) = ∪(0≤s≤t)(T = s)

is an uncountable union.

Example. Suppose we start with a filtration (Ft) and complete it with (Ft ) = σ(Ft,N ) where N is
the collection of events of probability 0. Let T be any random variable with a continuous distribution, then

P (T = t) = 0 for all t , (T = t) ∈ N and (T = t) ⊆ Ft

so T is an (Ft )-stopping time if we use this definition.

Definition. If T is an (Ft)-stopping time, then FT , the σ-field of events determined by time T , is
defined as:

FT := {A ∈ F : A ∩ (T ≤ t) ∈ Ft}

Easily we can check the following:

• FT is a σ-field.
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2 The Strong Markov Property

• If Ft = σ(Xs, 0 ≤ s ≤ t) for some process X with continuous path, then things like T , XT , XT∧t which
can be considered as being constructed from (Xs, 0 ≤ s ≤ T ) are all FT -measurable.

Roughly, FT = σ(Xs, 0 ≤ s ≤ t), and following are sensible facts about FT :

• If S ≤ T are two stopping times, then FS ⊆ FT .

• If Tn ↓ T and Tns are (F+
t )-stopping times, then T is an (F+

t )-stopping time and F+
T = ∩nF+

Tn
.

Note that for (Ft) generated by Brownian motion the difference between (Ft) and (F+
t ) is unimportant: it

turns out that Ft = F+
t a.s., meaning that if for all A ∈ F+

t , there exists B ∈ Ft such that 1A = 1B a.s..
The case t = 0 of this assertion is Blumenthal’s zero-one law, stated below.

Example. Let Ft = σ(Xs, 0 ≤ s ≤ t) for X with continuous paths, T = inf{t : Xt = 1}. This is an
(Ft)-stopping time. This can ve checked as follows. Start from

(T ≤ t) = (Xs = 1 : for some 0 ≤ s ≤ t).

Let D be a countable dense subset of [0,∞). By considering Xs for s ∈ D,

(T ≤ t) = ∩∞n=1 ∪(s∈D,0≤s≤t) {|Xs − 1| ≤ 1
n
}

However, if we let
T = inf{t : Xt > 1}

then T is not an (Ft)-stopping time but an (F+
t )-stopping time since

(T ≤ t) = ∩ε>0{Xs > 1 for some 0 ≤ s ≤ t + ε} ∈ F+
t

Theorem 16.1. (Strong Markov property of Brownian Motion) If B is an (Ft)-Brownian Motion
and T is an (F+

t )-stopping time, then given (T < ∞), (BT+S − BT , S ≥ 0) is a Brownian Motion which is
independent of (F+

T ).

Remark. We say B is an (Ft)-Brownian Motion means Bt ∈ Ft, B0 = 0, B has continuous paths and
for every s and t, Bt+s − Bt ∼ N(0, s), and Bt+s − Bt is independent of Ft. If B is a Brownian Motion in
previous sense then it is an (Ft)-Brownian Motion for (Ft) the filtration generated by B.

Proof. We break the proof into three steps.

Step 1: Take T be a fixed (non-random) time. We know from previous lecture (from Gaussian FDDs)
that the statement is true with independence of FT instead of FT+.

Step 2: Take T to be an (Ft)-stopping time with discrete distribution

T = Σ∞n=1tn · 1(T=tn) for some 0 < t1 < t2 < ...

We can get conclusion with independence of FT by conditioning on T = tn, then use result for fixed time tn
and sum over n.

Step 3: Take T to be a general (F+
t )-stopping time. Let

Tk = the least multiple of 2−k that is > T.
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Note that F+
T ⊆ FTk

.

By Step 2, we know given (T < ∞), (BTk+s−BTk
, s ≥ 0) is Brownian Motion independent of FTk

and hence
independent of F+

T . Letting k →∞, Tk ↓ T on (T < ∞), we want to conclude the following:

(BT+s −BT , s ≥ 0) is Brownian Motion independent of FT .

Brownian Motion requires appropriate FDDs and path continunity (which can be easily verified). Therefore
we just need to check FDDs. We shall do this just in the one-dimensional case, i.e. for each fixed s > 0

BT+s −BT ∼ N(0, s) and is independent of FT

We know (BTk+S −BTk
, S ≥ 0) ∼ N(0, s) and are independent of FT and Tk ↓ T , hence

BTk+S → BT+S and BTk
→ BT as k →∞

With a little measure theory, we reduce to showing for all bounded and continuous functions f and all
A ∈ F+

T ,

E[f(BT+s −BT ) · 1A] = E[f(Bs)] · P (A) (1)

(This reduction uses the fact that the distribution a random variable X is determined by Ef(X) for f
bounded and continuous). We know (1) is true if we replace T with Tk in (1) with f bounded and continuous.
Therefore by BCT, (1) holds for all f bounded and continuous by passage to limit in (1) with Tk → T . So
the result follows.

As a corollary of the above, we have the following.

Theorem 16.2. (Blumenthal 0-1 Law) Take T = 0 in above, and let Ft = σ(Bs, 0 ≤ s ≤ t), then
(Bs, s ≥ 0) is a BM independent of F+

0 . However, since F+
0 ⊆ σ(Bs, s ≥ 0), therefore F+

0 is independent of
itself, consequently P (A) = 0 or 1 for all A ∈ F+

0 .


