Stat205B: Probability Theory (Spring 2003)

The Strong Markov Property

Lecturer: James W. Pitman

Scribe: Donghui Yan dhyan@stat.berkeley.edu

Idea: (Itô-Mckean) The Brownian traveller starts afresh at stopping times.

Definition. A *Filtration* is an increasing family of σ -fields $(\mathcal{F}_t, t \in \mathcal{I})$ where $\mathcal{I} \subseteq \Re$ is some index set. We are familiar with the case when $\mathcal{I} = \{0, 1, 2, ...\}$, now we extend it to $\mathcal{I} = [0, \infty)$.

We say $T : \Omega \to \mathcal{I} \cup \{\infty\}$ is a stopping time if $(T \leq t) \in \mathcal{F}_t$ for all $t \in \mathcal{I}$. Intuitively, we can think of \mathcal{F}_t as the information available up to time t.

Remark. Comparing to Durrett (Section 7.3, pp 387-389), we use $(T \le t)$ instead of (T < t). The reasons are the following:

- This is consistent with the definition of stopping time in discrete time.
- We replace (\mathcal{F}_t) by (\mathcal{F}_t^+) in continuous time $[0,\infty)$ with $\mathcal{F}_t^+ := \bigcap_{\epsilon>0} \mathcal{F}_{t+\epsilon}$, therefore (\mathcal{F}_t^+) is a new filtration and T satisfies:

 $(T < t) \in \mathcal{F}_t$ for all $t \iff (T \le t) \in \mathcal{F}_t^+$ for all t

If T is a stopping time relative to \mathcal{F}_t , then

$$(T=t) \in \mathcal{F}_t$$
 for all t

In discrete time, this is equivalent to T being a stopping time, but not continuous time since

$$(T \le t) = \bigcup_{(0 \le s \le t)} (T = s)$$

is an uncountable union.

Example. Suppose we start with a filtration (\mathcal{F}_t) and complete it with $(\mathcal{F}_t) = \sigma(\mathcal{F}_t, \mathcal{N})$ where \mathcal{N} is the collection of events of probability 0. Let T be any random variable with a continuous distribution, then

$$P(T=t) = 0$$
 for all t , $(T=t) \in \mathcal{N}$ and $(T=t) \subseteq \mathcal{F}_t$

so T is an (\mathcal{F}_t) -stopping time if we use this definition.

Definition. If T is an (\mathcal{F}_t) -stopping time, then \mathcal{F}_T , the σ -field of events determined by time T, is defined as:

$$\mathcal{F}_T := \{ A \in F : A \cap (T \le t) \in \mathcal{F}_t \}$$

Easily we can check the following:

• \mathcal{F}_T is a σ -field.

Lecture: 16

• If $\mathcal{F}_t = \sigma(X_s, 0 \le s \le t)$ for some process X with continuous path, then things like T, $X_T, X_{T \land t}$ which can be considered as being constructed from $(X_s, 0 \le s \le T)$ are all \mathcal{F}_T -measurable.

Roughly, $\mathcal{F}_T = \sigma(X_s, 0 \leq s \leq t)$, and following are sensible facts about \mathcal{F}_T :

- If $S \leq T$ are two stopping times, then $\mathcal{F}_S \subseteq \mathcal{F}_T$.
- If $T_n \downarrow T$ and T_n s are (\mathcal{F}_t^+) -stopping times, then T is an (\mathcal{F}_t^+) -stopping time and $\mathcal{F}_T^+ = \bigcap_n \mathcal{F}_{T_n}^+$.

Note that for (\mathcal{F}_t) generated by Brownian motion the difference between (\mathcal{F}_t) and (\mathcal{F}_t^+) is unimportant: it turns out that $\mathcal{F}_t = \mathcal{F}_t^+$ a.s., meaning that if for all $A \in \mathcal{F}_t^+$, there exists $B \in \mathcal{F}_t$ such that $1_A = 1_B$ a.s.. The case t = 0 of this assertion is Blumenthal's zero-one law, stated below.

Example. Let $\mathcal{F}_t = \sigma(X_s, 0 \le s \le t)$ for X with continuous paths, $T = \inf\{t : X_t = 1\}$. This is an (\mathcal{F}_t) -stopping time. This can be checked as follows. Start from

$$(T \leq t) = (X_s = 1: \text{ for some } 0 \leq s \leq t).$$

Let D be a countable dense subset of $[0, \infty)$. By considering X_s for $s \in D$,

$$(T \le t) = \bigcap_{n=1}^{\infty} \bigcup_{(s \in D, 0 \le s \le t)} \{ |X_s - 1| \le \frac{1}{n} \}$$

However, if we let

$$T = \inf\{t : X_t > 1\}$$

then T is not an (\mathcal{F}_t) -stopping time but an (\mathcal{F}_t^+) -stopping time since

$$(T \le t) = \bigcap_{\epsilon > 0} \{X_s > 1 \text{ for some } 0 \le s \le t + \epsilon\} \in \mathcal{F}_t^+$$

Theorem 16.1. (Strong Markov property of Brownian Motion) If B is an (\mathcal{F}_t) -Brownian Motion and T is an (\mathcal{F}_t^+) -stopping time, then given $(T < \infty)$, $(B_{T+S} - B_T, S \ge 0)$ is a Brownian Motion which is independent of (\mathcal{F}_T^+) .

Remark. We say B is an (\mathcal{F}_t) -Brownian Motion means $B_t \in \mathcal{F}_t$, $B_0 = 0$, B has continuous paths and for every s and t, $B_{t+s} - B_t \sim N(0, s)$, and $B_{t+s} - B_t$ is independent of \mathcal{F}_t . If B is a Brownian Motion in previous sense then it is an (\mathcal{F}_t) -Brownian Motion for (\mathcal{F}_t) the filtration generated by B.

Proof. We break the proof into three steps.

Step 1: Take T be a fixed (non-random) time. We know from previous lecture (from Gaussian FDDs) that the statement is true with independence of \mathcal{F}_T instead of \mathcal{F}_{T+} .

Step 2: Take T to be an (\mathcal{F}_t) -stopping time with discrete distribution

$$T = \sum_{n=1}^{\infty} t_n \cdot 1_{(T=t_n)}$$
 for some $0 < t_1 < t_2 < \dots$

We can get conclusion with independence of \mathcal{F}_T by conditioning on $T = t_n$, then use result for fixed time t_n and sum over n.

Step 3: Take T to be a general (\mathcal{F}_t^+) -stopping time. Let

$$T_k$$
 = the least multiple of 2^{-k} that is > T.

Note that $\mathcal{F}_T^+ \subseteq \mathcal{F}_{T_k}$.

By Step 2, we know given $(T < \infty)$, $(B_{T_k+s} - B_{T_k}, s \ge 0)$ is Brownian Motion independent of \mathcal{F}_{T_k} and hence independent of \mathcal{F}_T^+ . Letting $k \to \infty$, $T_k \downarrow T$ on $(T < \infty)$, we want to conclude the following:

 $(B_{T+s} - B_T, s \ge 0)$ is Brownian Motion independent of \mathcal{F}_T .

Brownian Motion requires appropriate FDDs and path continunity (which can be easily verified). Therefore we just need to check FDDs. We shall do this just in the one-dimensional case, i.e. for each fixed s > 0

$$B_{T+s} - B_T \sim N(0, s)$$
 and is independent of \mathcal{F}_T

We know $(B_{T_k+S} - B_{T_k}, S \ge 0) \sim N(0, s)$ and are independent of F_T and $T_k \downarrow T$, hence

$$B_{T_k+S} \to B_{T+S}$$
 and $B_{T_k} \to B_T$ as $k \to \infty$

With a little measure theory, we reduce to showing for all bounded and continuous functions f and all $A \in \mathcal{F}_T^+$,

$$E[f(B_{T+s} - B_T) \cdot 1_A] = E[f(B_s)] \cdot P(A) \tag{1}$$

(This reduction uses the fact that the distribution a random variable X is determined by Ef(X) for f bounded and continuous). We know (1) is true if we replace T with T_k in (1) with f bounded and continuous. Therefore by BCT, (1) holds for all f bounded and continuous by passage to limit in (1) with $T_k \to T$. So the result follows.

As a corollary of the above, we have the following.

Theorem 16.2. (Blumenthal 0-1 Law) Take T = 0 in above, and let $\mathcal{F}_t = \sigma(B_s, 0 \le s \le t)$, then $(B_s, s \ge 0)$ is a BM independent of \mathcal{F}_0^+ . However, since $\mathcal{F}_0^+ \subseteq \sigma(B_s, s \ge 0)$, therefore \mathcal{F}_0^+ is independent of itself, consequently P(A) = 0 or 1 for all $A \in \mathcal{F}_0^+$.