
Stat205B: Probability Theory (Spring 2003) Lecture: 11

Range of Random Walks

Lecturer: James W. Pitman Scribe: Donghui Yan dhyan@stat.berkeley.edu

Two topics will be covered in this lecture:

• Application of the Ergodic Theorem to range of random walks (Kesten-Spitzer-Whitman Theorem, see
Durett section 6.3).

• A variation of the proof of the Ergodic Theorem without using the maximal inequality E(X ·1(Mn>0)) ≥
0.

The range of a random walk Consider a random walk on Z
d for some d ≥ 1 or more generally on a

discrete group with operation ’+’). Let Sn := X1 + X2 + ... + Xn where the Xi are i.i.d. taking values in
the group. (Or see text for a formulation with the Xi just assumed stationary). The range of the walk up
to time n is the number of distinct states visited by time n, that is

Rn :=| {0, S1, S2, ..., Sn} | .

How does Rn behave as n → ∞?

Theorem 11.1. (Kesten-Spitzer-Whitman)

Rn

n
→ P (S1 6= 0, S2 6= 0, ...) a.s.

Remark: According to Markov chain theory the above limit is 0 or > 0 according to whether the walk is
recurrent or transient.

Proof. We will use method of indicators. Let

Rn = 1 + 1(S1 6=0) + 1(S2 6=0, S2 6=S1) + ... + 1(Sn 6=0, Sn 6=S1, Sn 6=S2,..., Sn 6=Sn−1)

= 1 + 1(X1 6=0) + 1(X1+X2 6=0, X2 6=0) + ... + 1(X1+...+Xn 6=0,X2+...+Xn 6=0,...,Xn 6=0)

≤ 1 + 1(X1 6=0) + 1(X2 6=0) + ... + 1(Xn 6=0)

This implies that

Rn

n
≤

1

n
+ (

n∑

i=1

1(Xi 6=0))/n

By strong law of large numbers for I.I.D. case or ergodic theorem for stationary ergodic case, we have

(

n∑

i=1

1(Xi 6=0))/n → P (X1 6= 0) a.s.
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2 Range of Random Walks

Therefore we can conclude that

lim sup
n→∞

Rn

n
≤ P (X1 6= 0) = P (S1 6= 0) a.s.

Similarly we can get

Rn

n
≤

2

n
+

1

n
{1(X1+X2 6=0, X2 6=0) + 1(X2+X3 6=0, X3 6=0) + ... + 1(Xn−1+Xn 6=0, Xn 6=0)}

In the R.H.S. of above inequality, if we let

A1 = 1(X1+X2 6=0, X2 6=0)

A2 = 1(X2+X3 6=0, X3 6=0)

..
An−1 = 1(Xn−1+Xn 6=0, Xn 6=0)

then we can see sequence (A1, A2, A3, ...) has the form of Ai = ϕ(Xi, Xi+1, Xi+2). Observe that the
shift (X1, X2, X3, ...) → (X2, X3, X4, ...) is by assumption measure-preserving and ergodic, hence Ergodic
Theorem applies, i.e.

lim sup
n→∞

Rn/n ≤ P (X1 + X2 6= 0, X2 6= 0) a.s. (1)

Lemma. If X1, X2, ... is a stationary ergodic sequence and ϕ is a product-measurable function, and let
Yn = ϕ(Xn, Xn+1, Xn+2, ...), then (Y1, Y2, Y3, ...) is stationary and ergodic.

Now observe that
P (X1 + X2 6= 0, X2 6= 0) = P (X1 6= 0, X1 + X2 6= 0)

because (X1, X2) =d (X2, X1) in I.I.D. case. Continuing like this, we get

lim sup
n→∞

Rn

n
≤ P (X1 + ... + Xk 6= 0, X2 + ... + Xk 6= 0, ..., Xk−1 + Xk 6= 0, Xk 6= 0)

Staying with the case Xi’s are I.I.D., i.e., (Xn, Xn−1, ... X1) =d (X1, X2, ..., Xn), we can see that the R.H.S.
of above inequality is equivalent to P (S1 6= 0, S2 6= 0, ..., Sk 6= 0). Now let k → ∞, we get

lim sup
n→∞

Rn

n
≤ P (S1 6= 0, S2 6= 0, S3 6= 0, ...) a.s.

Look at the lower bound and compare first and last term, we have

Rn = 1(Sn−1 6=Sn) + 1(Sn−2 6=Sn−1, Sn−2 6=Sn) + ... + 1(06=S1, 06=S2,..., 06=Sn)

This implies the following:

Rn

n
≥ (1/n)

∑n

k=0 1(Sk 6=Sk+1, Sk 6=Sk+2,..., Sk 6=Sn+k)

= (1/n)
∑n

k=0 1(Xk+1 6=0, Xk+1+Xk+2 6=0,...)

→ P (X1 6= 0, X1 + X2 6= 0, ...) a.s.

by Ergodic Theorem.
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Hence we have

lim inf
n→∞

Rn

n
= P (X1 6= 0, X1 + X2 6= 0, ...)

Combining this with (1) yields:

limn→∞
Rn

n
= P (X1 6= 0, X1 + X2 6= 0, ...)
= P (S1 6= 0, S2 6= 0, S3 6= 0, ...)

Therefore we have proved the K-S-W Theorem.

Alternate approach to prove Ergodic Theorem

Given (Ω, F , P, T ) with T preserving P , assume E|X| < ∞. The proof of the ergodic theorem used the
following key inequality: for a ≥ 0

E(X · 1(lim sup
n→∞

Sn/n ≥ a)) ≥ aP ( lim
n→∞

sup
Sn

n
≥ a)

which obviously implies the following:

If P (lim sup
n→∞

Sn/n ≥ a) = 1 then EX ≥ a (2)

Notice that (2) also implies the key inequality. Let

C := (lim sup
n→∞

Sn/n ≥ a)

The only interesting case is when P (C) > 0. But then we can condition on C to make a new setup
(ΩC , FC , PC , TC) with:

ΩC := C ∈ F
FC := {A ⊂ C : A ∈ F}

PC(·) := P (·|C) := P (. ∩ C)/P (C)
TC(ω) := T (ω) for ω ∈ C.

We can easily check that this transformation T C preserves P C . The key inequality is recovered by applying
(2) to (ΩC ,FC , PC , TC , XC) with XC = X restricted to C.

Alternative proof for the key inequality due to Paul Shields [1].

Proof. We break the proof into two steps.
Step 1: Fix a ≥ 0. Let 0 � N . Looking along an orbit of Sn(ω)/n :

We put a mark, i.e., “x”, if T n(ω) ∈ BL, where BL = {Sn/n ≤ a : 1 ≤ n ≤ L}.

Loops in the figure are defined to be successive intervals of length at most L over which the average of Xi’s
is greater than a. For insance, in the figure, X10+X11+X12

3 (ω) > a.

Thus
X0+X1+...+XN−1

N
≥ a

N
( Length of stretches where average > a)

+ 1
N

( sum of the Xi over the rest of the orbit )

≥ a
N

(N −
∑N−1

n=0 1(T n∈BL) − L)

+ 1
N

∑N−L−2
n=0 Xn · 1(T n∈BL) −

1
N

∑N−1
n=N−L−1 |Xn|
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Figure 1: Orbit of Sn/n.

Because T is a measure-preserving transformation, we obtain the following from the inequality above by
taking expected value at both sides:

EX ≥ a − aP (BL) −
aL

N
+

N − L − 1

N
E(X · 1BL

) −
L

N
E|X|

Since this is true for all N , we can let N → ∞ to deduce

EX ≥ a − P (BL)a + E(X · 1BL
).

But if P (lim supn→∞ Sn/n > a) = 1, then BL ↓ ∅ a.s., and it follows by dominated convergence that
EX ≥ a, that is (2).
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