Stat205B: Probability Theory (Spring 2003) Lecture: 11

Range of Random Walks

Lecturer: James W. Pitman Scribe: Donghui Yan dhyan@stat.berkeley.edu

Two topics will be covered in this lecture:

e Application of the Ergodic Theorem to range of random walks (Kesten-Spitzer-Whitman Theorem, see
Durett section 6.3).

e A variation of the proof of the Ergodic Theorem without using the maximal inequality E(X -1 a7, >0)) >
0.

The range of a random walk Consider a random walk on Z? for some d > 1 or more generally on a
discrete group with operation '+’). Let S, := X; + X5 + ... + X,, where the X; are i.i.d. taking values in
the group. (Or see text for a formulation with the X; just assumed stationary). The range of the walk up
to time n is the number of distinct states visited by time n, that is

Rn Z:‘ {0,51752,...,Sn} | .
How does R,, behave as n — co?

Theorem 11.1. (Kesten-Spitzer-Whitman)

& — P(Sl 75 O, SQ 75 O, ) a.s.

n

Remark: According to Markov chain theory the above limit is 0 or > 0 according to whether the walk is
recurrent or transient.

Proof. We will use method of indicators. Let
Ry = 1T+ 1(s,20) + Liso20, 55£51) T+ 1(8,£0, 8, £51, S #2100 Sn#Sn—1)

= 1+ 1(X1¢0) + 1(X1+X2¢0,X27ﬁ0) +ot 1(X1+‘..+Xn7$0,X2+..‘+Xn7$0,‘..,Xn7£O)
< Tz + Lixaz0) T+ Lix,20)

This implies that
R, 1 -
— < = 1/x,
n —n +(; (X:#0)) /1

By strong law of large numbers for I.1.D. case or ergodic theorem for stationary ergodic case, we have

) 1(x,20)/n — P(X1 #0) a.s.
i=1
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Therefore we can conclude that

lim sup % < P(X1 #0) = P(S1#0)a.s.

n—oo
Similarly we can get
R, 2 1
T S a0, Xo20) T L+ Xe20, Xoz0) F o LK1+ X0, X0 220) )

In the R.H.S. of above inequality, if we let

A1 = L(X,4 X020, X2#£0)
Az = 1(X+ X570, X320)
An-1 = 1(X, 1+X,#0, X, 20)

then we can see sequence (A, Ay, As,...) has the form of 4; = ¢(X;, X;11, X;42). Observe that the
shift (X1, Xo, X3,...) = (X2, X3, X4, ...) is by assumption measure-preserving and ergodic, hence Ergodic
Theorem applies, i.e.

limsup R, /n < P(X1 + X2 #0, X2 #0) a.s. (1)

n—00

Lemma. If X, X5,... is a stationary ergodic sequence and ¢ is a product-measurable function, and let
Y. = o(Xn, Xnt1, Xnto,...), then (Y7, Ya, Y3, ...) is stationary and ergodic.

Now observe that
P(X14+ X2 #0, X5 £0)=P(X; #0, X1+ X5 #£0)

because (X1, X2) =4 (X2,X7) in I.1.D. case. Continuing like this, we get

. R,
hmsup7 < P(X1 + .+ X #0, Xo+ ...+ Xt #0, ..., X1+ Xk #0, Xi # 0)

n— oo

Staying with the case X;’sare I.I.D.,i.e., (X,, X5—1,... X1) =4 (X1, Xo, ..., X,,), we can see that the R.H.S.
of above inequality is equivalent to P(S7 # 0, Sz #0, ..., Sy # 0). Now let k — oo, we get

limsup& < P(S1#0,5,#0, S3#0,...)a.s.
n

n—0oo

Look at the lower bound and compare first and last term, we have

Ry =1(5,_1#5,) T 1(Sn_2#80_1, Sn_2#8) T -+ T L0£81,0£50...., 0£5,)

This implies the following:

(1/77‘) Z;:O 1(Sk?fsk+17 Sk#Skt250, SkFESntk)
(1/n) Zk:o 1(Xk+17é07 Xpt1+Xp42#0,...)
— P(Xl #O, X1—|—X2 750,) a.s.

|
v

by Ergodic Theorem.
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Hence we have R
liminf — = P(X; # 0, X; + X2 #0,...)

n—oo N

Combining this with (1) yields:

P(X, #£0, X; + X0 £0,...)
P(S1 #0, 8o £0, S5 £0,...)

. R .
limy, o 52

Therefore we have proved the K-S-W Theorem. O

Alternate approach to prove Ergodic Theorem
Given (2, F, P, T) with T preserving P, assume E|X| < co. The proof of the ergodic theorem used the
following key inequality: for a > 0

E(X -1(limsup S, /n > a)) > aP( lim supS— > a)

which obviously implies the following:

If P(limsup S,/n > a) =1 then EX >a (2)

n—oo

Notice that (2) also implies the key inequality. Let

C := (limsup S, /n > a)

n— oo

The only interesting case is when P(C) > 0. But then we can condition on C to make a new setup
(QC, F¢, PY TC) with:

Q¢ = CeF

F¢ = {ACC:AcF}
PC() = P(-|C) :=P(.NnC)/P(0)
TCw) := T(w)forweC.

We can easily check that this transformation T¢ preserves P¢. The key inequality is recovered by applying
(2) to (QY, FC, PC T, X°) with X¢ = X restricted to C.

Alternative proof for the key inequality due to Paul Shields [1].

Proof. We break the proof into two steps.
Step 1: Fix a > 0. Let 0 <« N. Looking along an orbit of S,,(w)/n :

We put a mark, i.e., “x”, if T"(w) € By, where By, ={S,/n<a:1<n<L}.

Loops in the figure are defined to be successive intervals of length at most L over which the average of X;’s
is greater than a. For insance, in the figure, X10tXutX12 () > ¢,
Thus

Xo+Xi+...+XN_1 >

& > ( Length of stretches where average > a)

( sum of the X; over the rest of the orbit )
Z,n 70 l(T”EBL) L)
Z X LrreB) — % Zn N—r—1|Xnl

>

(

4 2= 4=k
2| 22|~
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Figure 1: Orbit of S, /n.

Because T is a measure-preserving transformation, we obtain the following from the inequality above by
taking expected value at both sides:

L N-L-1 L
EX > a—aP(BL)—%+TE(X-1BL)—NE\X|

Since this is true for all N, we can let N — oo to deduce

EX > a—P(Bp)a+ E(X -1p,).

But if P(limsup,,_,., Sn/n > a) = 1, then By | 0 as., and it follows by dominated convergence that
EX > a, that is (2). O
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