Stat205B: Probability Theory (Spring 2003) Lecture: 10	
The Ergodic Theorem	
Lecturer: James W. Pitman Scrib	e: Sivakumar Rathinam siva@path.berkeley.edu

11 Preliminaries and notations

The Ergodic theorem presented here is due to Birkoff (1931). The proof was simplified by various people, including Garcia (1965).

 $T:\Omega \to \Omega$ is a measure preserving transformation on (Ω, \mathcal{F}, P) . Also $P(w:T(w) \in B) \forall B \in \mathcal{F}$. Also let $X \in L^1$.

12 Ergodic theorem

$$\frac{1}{n}\sum_{k=0}^{n-1} X \circ T^k \longrightarrow E(X/\mathcal{I}) \quad a.s \quad in \ L^1$$
(1)

where \mathcal{I} is the invariant σ - field. i.e, $\mathcal{I} = \{B \in \mathcal{F} : B = T^{-1}(B)\}$

13 Proof

First check that a random variable Y is \mathcal{I} - measurable iff Y is \mathcal{F} measurable and Y \circ T = Y. Let $S_n = \sum_{k=0}^{n-1} X \circ T^k$ and $S_0 = 0$. Also let $M_n = \max \{0, S_1, S_2, S_3, ..., S_n\}$. Note that $M_n \ge 0$ The major steps in the proof are outlined in the following steps:

- Step 1: Prove $E(X \ 1(M_n \ge 0)) \ge 0$
- Step 2: Prove For a>0, E(X 1($\overline{\lim} \frac{S_n}{n} > a$)) $\ge aP(\overline{\lim} \frac{S_n}{n} > a)$
- Step 3: Reduction of the general problem to a case where $E(X/\mathcal{I}) = 0$
- Step 4: If $E(X/\mathcal{I}) = 0$, then $\frac{S_n}{n} \to 0$ a.s

Step 1: Prove $E(X \ 1(M_n \ge 0)) \ge 0$

Proof:

If $M_n > 0$, then $M_n = X + M_{n-1} \circ T$ If $M_n = 0$, then obviously $M_{n-1}(T) \ge 0$ and $M_n \le M_{n-1} \circ T$ From the above two statements, for all ω , the following is true:

$$M_n \le X \mathbb{1}(M_n > 0) + M_{n-1} \circ T \tag{2}$$

It is quite obvious that $M_{n-1} \leq M_n$, therefore the above equation leads to the following one:

$$M_n \le X1(M_n > 0) + M_n \circ T \tag{3}$$

hence,

$$E(M_n) \le E(X1(M_n > 0)) + E(M_n \circ T) \tag{4}$$

but $E(M_n \circ T) = E(M_n)$ because T preserves P. This leads to the result of this step, that is

$$E(X1(M_n \ge 0)) \ge 0 \tag{5}$$

Step 2: Prove For a>0, $E(X \ 1(\overline{\lim} \ \frac{S_n}{n} > a)) \ge aP(\overline{\lim} \ \frac{S_n}{n} > a)$

Proving the result in step 2 is the same as proving the following result:

For a>0, E((X-a) $1(\overline{\lim} \frac{S_n}{n} > a)) \ge 0)$

Let $X^* = X$ -a; then $S_n^* = \sum_{k=0}^{n-1} X^* \circ T^k = S_n$ - na.

Hence it suffices to prove the following result for this step:

For
$$a > 0$$
, $E(X^* \ 1(\overline{\lim} \ \frac{S_n^*}{n} > 0)) \ge 0)$ (6)

Let n tend to ∞ in the result of step 1, then we get,

$$E(X \ 1(S_n > 0 \ for \ some \ n)) \ge 0 \tag{7}$$

Now the idea to complete the proof of step 2 is to replace X in the above equation by $\mathbf{X} = X \ 1(\overline{\lim} \ \frac{S_n}{n} > 0)$. Also check that $\overline{\lim} \ \frac{S_n}{n}$ is a invariant random variable. So, after substituting we have

$$E(\mathbf{X} \ 1(\mathbf{S}_n > 0 \ for \ some \ n)) \ge 0 \tag{8}$$

Substituting for \mathbf{X} , we have

$$E(X \ 1(\overline{\lim} \ \frac{S_n}{n} > 0) \ 1(S_n > 0 \ for \ some \ n) \ 1(\overline{\lim} \ \frac{S_n}{n} > 0)) \ \ge \ 0.$$
(9)

This gives what we wanted to prove in equation 6 as the above equation results in the following one:

$$E(X \ 1(\overline{\lim} \ \frac{S_n}{n} > 0)) \ge 0) \tag{10}$$

Step 3: Reduction of the general problem to case where $E(X/\mathcal{I}) = 0$

This is done by replacing X by $\hat{X} := X - E(X/\mathcal{I})$ in the ergodic theorem. Then $\hat{S}_n = S_n - nE(X/\mathcal{I})$. So $\frac{\hat{S}_n}{n} \to 0$ a.s iff $\frac{S_n}{n} \to E(X/\mathcal{I})$ a.s. Hence it is enough to treat the case when $E(X/\mathcal{I}) = 0$.

Step 4: Final nail in the coffin: If $E(X/\mathcal{I}) = 0$, then $\frac{S_n}{n} \to 0$ a.s

Consider the left hand side of the result from step 2. Now $E(X \ 1(\overline{\lim} \ \frac{S_n}{n} > a)) = E[E(X \ 1(\overline{\lim} \ \frac{S_n}{n} > a))/\mathcal{I}] = E[E(X/\mathcal{I}) \ 1(\overline{\lim} \frac{S_n}{n} > a))] = 0$ because $E(X/\mathcal{I}) = 0$.

So, if $E(X/\mathcal{I}) = 0$, then for all a > 0 we have the following result:

$$0 \ge aP(\overline{\lim} \ \frac{S_n}{n} > a) \tag{11}$$

or

$$aP(\overline{\lim} \ \frac{S_n}{n} > a) = 0 \tag{12}$$

Therefore, $\overline{\lim} \frac{S_n}{n} \leq 0$ a.s. Also replacing X by -X, and by the same line of reasoning we have, $\underline{\lim} \frac{S_n}{n} \geq 0$ a.s. Hence,

$$\frac{S_n}{n} \to 0 \ as \ n \to \infty \ a.s \tag{13}$$