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11 Preliminaries and notations

The Ergodic theorem presented here is due to Birkoff (1931). The proof was simplified by various people,
including Garcia (1965).

T:Ω → Ω is a measure preserving transformation on (Ω,F ,P). Also P(w:T(w) ∈ B) ∀ B ∈ F . Also let X
∈ L1.

12 Ergodic theorem

1
n

n−1∑
k=0

X ◦ T k −→ E(X/I) a.s in L1 (1)

where I is the invariant σ - field. i.e, I = {B ∈ F : B = T−1(B)}

13 Proof

First check that a random variable Y is I - measurable iff Y is F measurable and Y ◦ T = Y. Let Sn =∑n−1
k=0 X ◦ T k and S0 = 0. Also let Mn = max {0,S1,S2,S3,...,Sn}. Note that Mn ≥ 0 The major steps in the

proof are outlined in the following steps:

• Step 1 : Prove E(X 1(Mn ≥ 0)) ≥ 0

• Step 2 : Prove For a>0, E(X 1(lim Sn

n > a)) ≥ aP(lim Sn

n >a)

• Step 3 : Reduction of the general problem to a case where E(X/I) = 0

• Step 4 : If E(X/I) = 0, then Sn

n → 0 a.s

Step 1: Prove E(X 1(Mn ≥ 0)) ≥ 0

Proof:

If Mn > 0, then Mn = X + Mn−1◦ T

If Mn = 0, then obviously Mn−1(T) ≥ 0 and Mn ≤Mn−1◦ T
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From the above two statements, for all ω, the following is true:

Mn ≤ X1(Mn > 0) + Mn−1 ◦ T (2)

It is quite obvious that Mn−1 ≤ Mn, therefore the above equation leads to the following one:

Mn ≤ X1(Mn > 0) + Mn ◦ T (3)

hence,
E(Mn) ≤ E(X1(Mn > 0)) + E(Mn ◦ T ) (4)

but E(Mn◦ T) = E(Mn) because T preserves P. This leads to the result of this step, that is

E(X1(Mn ≥ 0)) ≥ 0 (5)

Step 2: Prove For a>0, E(X 1(lim Sn

n > a)) ≥ aP(lim Sn

n > a )

Proving the result in step 2 is the same as proving the following result:

For a>0, E((X-a) 1(limSn

n > a)) ≥ 0)

Let X∗ = X-a; then S∗n =
∑n−1

k=0 X∗ ◦ T k = Sn - na.

Hence it suffices to prove the following result for this step:

For a > 0, E(X∗ 1(lim
S∗n
n

> 0)) ≥ 0) (6)

Let n tend to ∞ in the result of step 1, then we get,

E(X 1(Sn > 0 for some n)) ≥ 0 (7)

Now the idea to complete the proof of step 2 is to replace X in the above equation by X = X 1( lim Sn

n >0).
Also check that lim Sn

n is a invariant random variable. So, after substituting we have

E(X 1(Sn > 0 for some n)) ≥ 0 (8)

Substituting for X, we have

E(X 1(lim
Sn

n
> 0) 1(Sn > 0 for some n) 1(lim

Sn

n
> 0)) ≥ 0. (9)

This gives what we wanted to prove in equation 6 as the above equation results in the following one:

E(X 1(lim
Sn

n
> 0)) ≥ 0) (10)
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Step 3: Reduction of the general problem to case where E(X/I) = 0

This is done by replacing X by X̂ := X − E(X/I) in the ergodic theorem. Then Ŝn = Sn − nE(X/I). So
Ŝn

n → 0 a.s iff Sn

n →E(X/I) a.s. Hence it is enough to treat the case when E(X/I) = 0..

Step 4: Final nail in the coffin: If E(X/I) = 0, then Sn

n → 0 a.s

Consider the left hand side of the result from step 2. Now E(X 1(lim Sn

n > a)) = E[E(X 1(lim Sn

n > a))/I]
= E[E(X/I) 1(limSn

n > a))] = 0 because E(X/I) = 0.

So, if E(X/I) = 0, then for all a > 0 we have the following result:

0 ≥ aP (lim
Sn

n
> a) (11)

or

aP (lim
Sn

n
> a) = 0 (12)

Therefore, lim Sn

n ≤ 0 a.s. Also replacing X by -X, and by the same line of reasoning we have, lim Sn

n ≥ 0 a.s.
Hence,

Sn

n
→ 0 as n →∞ a.s (13)


