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Introduction to Markov Chains

Lecturer: James W. Pitman Scribe: Jonathan Weare weare@math.berkeley.edu

We begin this course with the theory of Markov chains. Let (S,S), be any measurable space. Usually
S is a finite set, a countable set, or R

n. For the most part we will confine our attention to discrete
time processes. In the continuous time, continuous state space setting, Markov chains are known as
Markov Processes.

1.1 Markov Property and Existence

Definition 1.1 A sequence of random variables (Xn) is called a Markov chain if the past and
future of the process are conditionally independent given the present.

Example 1.1 A random walk is an example of a Markov chain.

Definition 1.2 A function p : S × S → R is called a Markov kernel if

1) For each x ∈ S, the mapping A → p(x, A) is a probability distribution on (S,S).

2) For each A ∈ S, the mapping x → p(x, A) is an S-measurable function.

Definition 1.3 The Markov kernel pn is called a transition probability function, or t.p.f, for
(Xn) if

P (Xn+1 ∈ B|Fn) = pn(Xn, B)

for each B ∈ S.

In other words, pn(x, B) is the probability that the next step in the chain lies in B given that the
current state is x. In the absence of the subscript n we call p a homogeneous transition probability
function. Henceforth, in these notes we assume that (Xn) has the homogeneous t.p.f. p.

Theorem 1.1 (Ionescu-Tulcea) Given a measuable space (S,S) with distribution µ, and a transition
probability function p, there exists a Markov chain on the space and its distribution, Pµ, is unique
on (S × S × . . . ,S∞). Here S∞ is the product σ-field.

It often convenient to suppose that (Xn) is a coordinate process. That is, for w ∈ Ω = {(w0, w1, . . . ) :
wi ∈ S} we set

Xn(w) = wn

Proof Sketch: Under regularity assumptions on S this is a consequence of Kolmogorov’s Extension
Theorem.
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Notice that if we define,

Pµ(X0 ∈ A0) = µ(A0)

Pµ(X0 ∈ A0, X1 ∈ A1) =

∫
A0

µ(dx0)p(x0, A1)

Pµ(X0 ∈ A0, X1 ∈ A1, X2 ∈ A2) =

∫
A0

µ(dx0)

∫
A1

p(x0, dx1)p(x1, A2)

and so on, then we have a sequence of distributions on S, S × S, . . . that is consistent in the sense
of Kolmogorov’s Extension Theorem. Measure theory then tells us that there exists a distribution
on S × S × . . . such that the first n coordinates are distributed as above on Sn.

1.2 Some General Facts

To find the distribution of Xn we first regard the Markov kernel, p(·, ·) as an operator on measures,

µp(B) :=

∫
µ(dx)p(x, B)

Thus µp is a new probability distribution. It is the distribution of X1 for a Markov chain, (X0, X1, . . . ),
with X0 ∼ µ and t.p.f, p. Similarly,

µpn(B) =

∫
µ(dx)pn(x, B) = distribution of Xn

where pn(x, B) = Pµ(Xn ∈ B|X0 = x).

When S is countable we typically denote the elements of S by i, j, k, etc. In this case we define the
transition matrix, P , by

Pij = p(i, {j})

the probability of transitioning from state i to state j given that the current position is i. We can
also identify the initial distribution, µ with a row vector,

µi = µ({i})

Clearly the matrix P must satisfy,
∑

j Pij = 1, for each i ∈ S.

Applying this notation to the discussion at the begining of the section we conclude that if (Xn) is
a Markov chain with countable state space transition matrix P then

Pµ(Xn = j|X0 = i) = Pn
ij

and if X0 ∼ µ, and Pn denotes the nth matrix power of P , then

µPn = distribution of Xn.

On a general state space (S,S) and for a suitable f : S → R, say bounded measurable or non-negative
measurable, define

pf(x) :=

∫
S

f(y)p(x, dy)
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Claim 1.2

pf(xn) = Eµ[f(Xn+1)|Xn = xn]

= Eµ[f(Xn+1)|Xn = xn, Xn−1 = xn−1, . . . , X0 = x0]

Proof: See Durrett, section 5.1.

Similarly we have that
pmf(xn) = Eµ[f(Xn+m)|Xn = xn]

In the case that S is countable the action of p on f can again be interpreted as a matrix vector
operation, Pf .

Now consider those functions h such that ph = h. These functions are called harmonic functions
because of a close relationship with the harmonic functions of Analysis. Appling the result of the
claim, if h is harmonic then

Eµ[h(Xn+1)|Xn = xn] = ph(xn) = h(xn)

Thus for any intial distribution µ, (h(Xn)) is an Fn-martingale.

Example 1.2 Let B be the set of all absorbing states, meaning that p(b, b) = 1 for all b ∈ B. Call
B the boundary of the state space S. Let A be some subset of B and define

hA(x) = Pµ(Xn ∈ A eventually).

Then (see Durrett, Section 5.2, Exercise 2.6)

1) hA is a p-harmonic function.

2) if Px(Xn ∈ B eventually) = 1 then hA is the unique p-harmonic function whose boundary
values are given by 1A, the indicator function of A.


