
Lecture 10 : Conditional Expectation

STAT205 Lecturer: Jim Pitman Scribe: Charless C. Fowlkes <fowlkes@cs.berkeley.edu>

10.1 Definition of Conditional Expectation

Recall the “undergraduate” definition of conditional probability associated with Bayes’ Rule

P(A|B) ≡
P(A, B)

P(B)

For a discrete random variable X we have

P(A) =
∑

x

P(A, X = x) =
∑

x

P(A|X = x)P(X = x)

and the resulting formula for conditional expectation

E(Y |X = x) =

∫
Ω

Y (ω)P(dw|X = x)

=

∫
X=x

Y (ω)P(dw)

P(X = x)

=
E(Y 1(X=x))

P(X = x)

We would like to extend this to handle more general situations where densities don’t exist or we
want to condition on very “complicated” sets.

Definition 10.1 Given a random variable Y with E|Y | < ∞ on the space (Ω,F , P) and some sub-
σ-field G ⊂ F we will define the conditional expectation as the almost surely unique random
variable E(Y |G) which satisfies the following two conditions

1. E(Y |G) is G-measurable

2. E(Y Z) = E(E(Y |G)Z) for all Z which are bounded and G-measurable

For G = σ(X) when X is a discrete variable, the space Ω is simply partitioned into disjoint sets
Ω = tGn. Our definition for the discrete case gives

E(Y |σ(X)) = E(Y |X)

=
∑

n

E(Y 1X=xn
)

P(X = xn)
1X=xn

=
∑

n

E(Y 1Gn
)

P(Gn)
1Gn

which is clearly G-measurable.
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Exercise 10.2 Show that the discrete formula satisfies condition 2 of Definition 10.1. (Hint: show
that the condition is satisfied for random variables of the form Z = 1G where G ∈ C is a collection
closed under intersection and G = σ(C) then invoke Dynkin’s π − λ)

10.2 Conditional Expectation is Well Defined

Proposition 10.3 E(X|G) is unique up to almost sure equivalence.

Proof Sketch: Suppose that both random variables Ŷ and
ˆ̂
Y satisfy our conditions for being the

conditional expectation E(Y |X). Let W = Ŷ −
ˆ̂
Y . Then W is G-measurable and E(WZ) = 0 for all

Z which are G-measurable and bounded. If we let Z = 1W>ε (which is bounded and measurable)
then

εP (W > ε) ≤ E(W1W>ε) = 0

for all ε > 0. A similar argument applied to P (W < −ε) allows us to conclude that P (|W | > ε) = 0
holds for all ε and hence W = 0 almost surely making E(Y |X) almost surely unique.

Proposition 10.4 E(X|G) exists

We’ve shown that E(Y |G) exists in the discrete case by writing out an explicit formula so that
“E(Y |X) to integrates like Y over G-measurable sets.” We give three different approaches for
attacking the general case.

10.2.1 “Hands On” Proof

The first is a hands on approach by extending the discrete case via limits. We will make use of

Lemma 10.5 William’s Tower Property Suppose G ⊂ H ⊂ F are nested σ-fields and E(·|G)
and E(·|H) are both well defined then E(E(Y |H)|G) = E(Y |G) = E(E(Y |G)|H)

A special case is when G = {∅, Ω} then E(Y |G) = EY is a constant so it’s easy to see E(E(Y |H)|G) =
E(E(Y )|H) = E(Y ) and E(E(Y |G)|H) = E(E(Y )|H) = E(Y )

Proof Sketch: Existence via Limits For a disjoint partition tGi = Ω and G ∈ G = σ({Gi})
define

E(Y |G) =
∑

i

E(Y 1Gi
)

P (Gi)
1Gi

where we deal appropriately with the niggling possibility of P(Gi) = 0 by either throwing out the
offending sets or defining 0

0 = 0.

We now consider an arbitrary but countably generated σ-field G. This situation is not too restrictive,
for example the σ-field associated with an R-valued random variable X is generated by the countable
collection {Bi = (X ≤ ri) : r ∈ Q}. If we set Gn = σ(B1, B2, . . . , Bn) then Gn is increasing to the
limit G1 ⊂ G2 ⊂ . . . ⊂ G = σ(∪Gn). For a given n the random variable Yn = E(Y |Gn) exists by our
explicit definition above since we can decompose the generating set into a disjoint partition of the
space.
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Now we show that Yn converges in some appropriate manner to a Y∞ which will then function as a
version of E(Y |G). We will assume that E|Y |2 < ∞

Write Yn = E(Y |Gn) = Y1 +(Y2 −Y1)+ (Y3 −Y2)+ . . .+(Yn −Yn−1). The terms in this summation
are orthogonal in L2 so we can compute the variance as

s2
n = E(Y 2

n ) = E(Y 2
1 ) + E((Y2 − Y1)

2) . . . + E((Yn − Yn−1)
2)

where the cross terms are zero. Let s2 = E(Y 2) = E(Yn +(Y −Yn)) < ∞. Then s2
n ↑ s2

∞ ≤ s2 < ∞.
For n > m we know again by orthogonality that E((Yn − Ym)2) = s2

n − s2
m → 0 as m → ∞ since s2

n

is just a bounded real sequence. This means that the sequence Yn is Cauchy in L2 and invoking the
completeness of L2 we conclude that Yn → Y∞.

All that remains is to check that Y∞ is a conditional expectation. It satisfies requirement (1)
since as a limit of G-measurable variables it is G-measurable. To check (2) we need to show that
E(Y G) = E(Y∞G) for all G which are bounded and G-measurable. As usual, it suffices to check for
a much smaller set {1Ai

: Ai ∈ A} where A is an intersection closed collection and σ(A) = G. Take
this collection to be A = ∪mGm.

E(Y Gm) = E(YmGm) = E(YnGm)

holds by the tower property for any n > m. Noting that E(YnZ) → E(Y∞Z) is true for all Z ∈ L2

by the continuity of inner product this sequence must go to the desired limit which gives E(Y Gm) =
E(Y∞Gm)

Exercise 10.6 Remove the countably generated constraint on G. (Hint: Be a bit more clever . . .

for Y ∈ L2 look at E(Y |G) for G ⊂ F with G finite. Then as above supG E(E(Y |G)2) ≤ EY 2 so we
can choose Gn with E(E(Y |Gn)2) increasing to this supremum. The Gn may not be nested but argue
that Cn = σ(G1 ∪ G2 ∪ . . . ∪ Gn) are and let Ŷ = limn E(Y |Cn))).

Exercise 10.7 Remove the L2 constraint on Y . (Hint: Consider Y ≥ 0 and show convergence of
E(Y ∧ n | G) then turn crank on the standard machinery)

10.2.2 Measure Theory Proof

Here we pull out some power tools from measure theory.

Theorem 10.8 Lebesgue-Radon-Nikodym [2](p.121) If µ and λ are non-negative σ-finite mea-
sures on a collection G and µ(G) = 0 =⇒ λ(G) = 0 (written λ << µ, pronounced ”λ is absolutely
continuous with respect to µ”) for all G ∈ G then there exists a non-negative G measurable function
Ŷ such that

λ(G) =

∫
G

Ŷ dµ

for all G ∈ G.

Proof Sketch: Existence via Lebesgue-Radon-Nikodym Assume Y ≥ 0 and define the prob-
ability measure

Q(C) =

∫
C

Y dP = EY 1C

which is non-negative and finite because E|Y | < ∞ and Q is absolutely continuous with respect to
P . LRN implies the existence of Ŷ which satisfies our requirements to be a version of the conditional
expectation Ŷ = E(Y |G). For general Y we can employ E(Y +|G) − E(Y −|G).
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10.2.3 Functional Analysis Proof

This gives a nice geometric picture for the case when Y ∈ L2

Lemma 10.9 Every nonempty, closed, convex set E in a Hilbert space H contains a unique element
of smallest norm

Lemma 10.10 Existence of Projections in Hilbert Space Given a closed subspace K of a
Hilbert space H and element x ∈ H, there exists a decomposition x = y + z where y ∈ K and
z ∈ K⊥ (the orthogonal complement).

The idea for the existence of projections is to let y be the element of smallest norm in x + K and
z = x − y. See [2](p.79) for a full discussion of Lemma 10.9.

Proof Sketch: Existence via Hilbert Space Projection Suppose Y ∈ L2(F) and X ∈ L2(G).
Requirement (2) demands that for all X

E((Y − E(Y |G))X) = 0

which has the geometric interpretation of requiring Y − E(Y |G) to be orthogonal to the subspace
L2(G). Requirement (1) says that E(Y |G) ∈ L2(G) so E(Y |G) is just the orthogonal projection of Y

onto the closed subspace L2(G). The lemma above shows that such a projection is well defined.

10.3 Properties of Conditional Expectation

It’s helpful to think of E(·|G) as an operator on random variables that transforms F-measurable
variables into G-measurable ones.

We isolate some useful properties of conditional expectation which the reader will no doubt want to
prove before believing

• E(·|G) is positive:
Y ≥ 0 → E(Y |G) ≥ 0)

• E(·|G) is linear:
E(aX + bY |G) = aE(X|G) + bE(Y |G)

• E(·|G) is a projection:
E(E(X|G)|G) = E(X|G)

• More generally, the “tower property”. If H ⊂ G then

E(E(X|G)|H) = E(E(X|H)G) = E(X|H)
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• E(·|G) commutes with multiplication by G-measurable variables:

E(XY |G) = E(X|G)Y for E|XY | < ∞ and Y ∈ G

• E(·|G) respects monotone convergence:

0 ≤ Xn ↑ X =⇒ E(Xn|G) ↑ E(X|G)

• If φ is convex and E|φ(X)| < ∞ then a conditional form of Jensen’s inequality holds:

φ(E(X|G) ≤ E(φ(X)|G)

• E(·|G) is a continuous contraction of Lp for p ≥ 1:

‖E(X|G)‖p ≤ ‖X‖p

and
Xn

L
2

−→ X implies E(Xn|G)
L
2

−→ E(X|G)

• Repeated Conditioning. For G0 ⊂ G1 ⊂ . . ., G∞ = σ(∪Gi), and X ∈ Lp with p ≥ 1 then

E(X|Gn)
a.s.

−→ E(X|G∞)

E(X|Gn)
L

p

−→ E(X|G∞)

10.4 Regular Conditional Distributions

Definition 10.11 Given random variable X : (Ω,F) → (S,S) and sub-σ-field G ⊂ F we define
the Markov kernel Q(ω, A) : Ω × S → [0, 1] as a (carefully chosen) version of the conditional
probability P(X ∈ A|G) which has the properties

1. ω 7→ Q(ω, A) is a (G-measurable) version of P(X ∈ A|G) for fixed choice of A

2. A 7→ Q(ω, A) is a probability measure on (S,S)

When S = Ω and X is the identity map we call Q a regular conditional probability

For G ∈ G we have that

P(X ∈ A, G) = E(P(X ∈ A|G)1G) =

∫
G

Q(ω, A)P (dω)

and in the case when G = σ(Y ) the kernel takes the form

Q(ω, A) = Q̂(Y (ω), A)
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for some Q̂ : R × B(R) → R which we write as P (X ∈ A|Y = y) and gives the slick formula

P(X ∈ A, Y ∈ B) =

∫
B

P (X ∈ A|Y = y)P (Y ∈ dy)

reminiscent of Bayes’ rule for discrete variables.

Regular conditional probabilities do not always exist. However, if we are dealing with a random
variable whose range is a “nice” space (one for which there exists a measurable 1-1 map to R whose
inverse is also measurable) the following sketch shows we are ok. ([1](p.230) gives full details)

Proof Sketch: Existence of “Regular” Conditional Probabilities First construct P(X ∈ A|G)
for Borel sets so that it behaves as a probability with respect to A almost surely. Use intervals
{(−∞, q) : q ∈ Q}. We can then choose P (X ≤ q|G) for q ∈ Q to be increasing and take on values
of 0 and 1 at −∞ and ∞ respectively. Uniquely extend this increasing function defined on Q to all
of R in a right continuous manner by setting

P (X ≤ r|G) = lim
q↓r

P(x ≤ q|G)

for any almost every ω.

Corollary 10.12 For every joint distribution (X, Y ) where Y ’s range is a nice space, say (X, Y ) ∈
R2 then

P (X ∈ dx, Y ∈ dy) = Q(x, dy)P (X ∈ dx)

for some Markov kernel Q.

It is important to note that while even when both QY and QX exist so that

P (X ∈ dx, Y ∈ dy) = QX(y, dx)P (Y ∈ dy) = QY (x, dy)P (X ∈ dx)

there is no general way to go from QX and P (Y ∈ dy) to QY unless we restrict ourselves to the case
where X and Y have well defined densities.

10.5 A Word About E(Y |X = x)

Suppose that P(X ∈ [a, b]) > 0 then using the naive definition of conditional expectations we have

E(Y |X ∈ [a, b]) =
E(Y 1(X∈[a,b]))

P(X ∈ [a, b])

and we hope that this will give meaning to E(Y |X = x) in the context

E(Y |X ∈ [a, b]) =

∫ b

a

E(Y |X = x)

P(X ∈ [a, b])
dP (X ∈ dx)

Using our new definition of conditional expectation we have

E(E(X|Y )1(X∈[a,b])

P(X ∈ [a, b])
=

E(Y 1(X∈[a,b]))

P(X ∈ [a, b])

which gives us

E(Y 1(X∈[a,b])) =

∫ b

a

E(Y |X = x)P (X ∈ dx)



Lecture 10: Conditional Expectation 10-7

This is enough to define conditional expectations since the class of intervals [a, b] is rich enough to
extend the formula to each Borel set B so that

E(Y 1(X∈B)) =

∫
B

E(Y |X = x)P (X ∈ dx)

However, it is important not to attribute too much meaning to the notation E(A|X = x) since it is
usually the case that P(X = x) = 0 and so different versions of the conditional expectation may not
agree.

This is highlighted by the following simple version of Borel’s
paradox:

Let (X, Y ) be uniformly chosen on the half disc so that X =
R cos(Θ) and Y = R sin(Θ) with 0 < R ≤ 1 and Θ ∈ [0, π].
We should certainly believe the set equivalence

{X = 0} ⇐⇒ {Θ =
π

2
}

Now P (Y > 1
2 |X = 0) = 1

2 has real meaning as there is a
version of P(Y > 1

2 |X = x) which is continuous in X and it’s
value at 0 is 1

2 . On the other hand, there is a unique version
of P (Y > 1

2 |Θ = θ) whose value at θ = π
2 is 3

4 . Slicing
up a space in different ways can clearly give us surprisingly
incommensurate1 null sets!
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