Lastname, Firstname and SID#: _

- 1. Suppose a Markov chain $(X_n, n = 0, 1, ...)$ has transition matrix P. Let i, j, k be states of the chain, and N a positive integer. Derive expressions involving summations and powers of P for the following quantities:
 - a) Given $X_0 = i$, the expected number of times n with $1 \le n \le N$ and $X_n = j$.
 - b) Given $X_0 = i$, the expected number of times n with $1 \le n \le N$ and $X_n = j$ and $X_{n+1} = k$.
 - c) Given $X_0 = i$, the probability that $T_i > 2$, where T_i is the least $n \ge 1$ such that $X_n = i$, and $T_i = \infty$ if there is no such n.
- 2. Suppose that $(X_1(t), t \ge 0)$ and $(X_2(t), t \ge 0)$ are two independent Markov chains with continuous time parameter, each with state space $\{0, 1\}$, with transition rates λ from 0 to 1 and μ from 1 to 0, for i = 1, 2. Let $S_2(t) := X_1(t) + X_2(t)$.
 - a) Explain why $(S_2(t), t \ge 0)$ is a Markov chain, and describe its transition rate matrix.
 - b) What is the limit distribution of $S_2(t)$ as $t \to \infty$?
 - c) Generalize part b) to $S_n(t) := \sum_{i=1}^n X_i(t)$ for *n* independent chains X_i with the same transition rates as before.
- 3. In a branching process started with one individual, each individual has a number of offspring with uniform distribution on $\{0, 1, \ldots, N\}$ for some fixed $N \ge 1$. Let p_N denote the probability of extinction starting with one individual.
 - a) Write down and explain (but do not attempt to solve) an equation solved by p_N .
 - b) For each N, indicate how many solutions this equation has in the interval [0, 1]. If there is more than one solution, indicate which is p_N .
 - c) Find a formula involving p_N for the extinction probability if the branching process starts with a Poisson(λ) number of initial individuals. (Any summation should be simplified.)
- 4. Cars arrive at a toll booth according to a Poisson process at a long-run rate of 3 cars per minute.
 - a) What is the probability that the fourth car arrives within 5 minutes of the second car?
 - b) Of the cars arriving at the booth, it has been observed over the long run that 40% carry one person, 25% carry two people, and the rest carry at least three people. What is the probability that in a given 10 minute period exactly 30 cars arrive, with 11 carrying one person, 12 carrying two people, and the other 7 carrying at least three people? State clearly the assumptions you make for this calculation.

- 5. A Markov chain X with finite state space S and continuous time parameter has the following characteristics. For each state i, the expected holding time in state i before jumping to another state is h_i , and when the jump occurs it is to state $j \neq i$ with probability $p_{i,j}$.
 - a) Describe in terms of these parameters h_i and $p_{i,j}$ the matrix A such that the i, j entry of the matrix e^{At} is $P(X_t = j | X_0 = i)$.
 - b) Assuming that the chain is recurrent, and started with $X_0 = i$, let H_{ij} denote the total amount of time spent in state *i* up until the first time the chain makes a jump from *i* to *j*. Find the distribution of H_{ij} .
- 6. For a standard Brownian motion B, and 0 < s < t < u describe
 - a) the conditional distribution of B_t given B_s
 - b) the conditional distribution of B_s given B_t and B_u
 - c) the conditional distribution of B_t given B_s and B_u
- 7. For a Poisson process N with rate λ and 0 < s < t < u describe
 - a) the conditional distribution of N_t given N_s
 - b) the conditional distribution of N_s given N_t and N_u
 - c) the conditional distribution of N_t given N_s and N_u
- 8. Find the expected number of Bernoulli(p) trials required to produce the pattern 00110011. Explain your answer in terms of a fair gambling game.
- 9. Consider a discrete time Markov chain X_n , n = 0, 1, ... with state space $\{0, 1, 2, ...\}$ and transition matrix P with P(0, 1) = 1 and

$$P(i, i+1) = p,$$
 $P(i, i-1) = q \text{ for } i \ge 1$

for some $0 . Let <math>T_0$ be the least $n \ge 0$ such that $X_n = 0$. Find

- a) $E(T_0 | X_0)$
- b) $E(T_0)$ assuming that the chain is stationary.
- 10. The transition rates of a continuous time Markov chain on 4 states a, b, c and d are defined as follows by positive parameters α, β, γ and δ .

From a, the transition rates to b and c both equal α ;

From d, the transition rates to b and c both equal δ ;

From b, the transition rates to a and d both equal β ;

From c, the transition rates to a and d both equal γ ;

All other transition rates between different states are zero.

a) Display the transition rates in a suitable diagram.

- b) Describe the equilibrium distribution of the chain.
- c) Starting in state c, let T_c be the first time that the chain returns to state c after having visited some other state. Find $E(T_c)$.