
Technical Vignette 6: Solving systems of equations,
generating multivariate normal draws, and inverting

matrices efficiently in R

Christopher Paciorek, Department of Statistics, University of California, Berkeley, and
Department of Biostatistics, Harvard School of Public Health

Version 1.0: January 2012

Computing solutions to systems of linear equations is a common component of many statistical
calculations. Often, one has a positive definite matrix, Q, and needs to calculate Q−1b. The best
way to do this to make use of the Cholesky decomposition: Q = LL> = U>U , where U is upper
triangular. Note that what follows is just as relevant for matrix b as for vector b.

The approach involves several tricks for reducing computation. First, working with the Cholesky
is more efficient than using the LU decomposition, which is what is used by R’s solve() func-
tion. Second, we do the Cholesky once, saving it if multiple solutions that use the same Q matrix
are needed. Finally, we try to do as few backsolves and forwardsolves as possible.

Backsolve and forwardsolve

A quick note on backsolves and forwardsolves. If you have a lower-triangular L, a forwardsolve is
the calculation L−1b. A backsolve is the calculation U−1b for upper-triangular U .

In R, we can do either type of solve with either L or U without an explicit transpose:
U−1b: backsolve(U, b)
L−1b = U>−1b: backsolve(U, transpose = TRUE)
L−1b: forwardsolve(L, b)
U−1b = L>−1b: forwardsolve(L, b, transpose = TRUE)

Working with dense Q

First, find the Cholesky decomposition of the dense positive definite Q:
> U = chol(Q)

• To calculate Q−1b do
> backsolve(U, backsolve(U, b, transpose = TRUE)

• To calculate the quadratic form, b>Q−1b, do
> vec = backsolve(U, b, transpose = TRUE)
> sum(vec^2)

1



• To calculate y = Lb = U>b (which gives Cov(y) = Q), do
> crossprod(U, b)

• To calculate y = L>−1b = U−1b (which gives Cov(y) = Q−1), do
> backsolve(U, b)

Working with sparse Q

Here I recommend Reinhard Furrer’s spam package. First, find the Cholesky decomposition of the
dense positive definite Q:

> library(spam)
> Q = as.spam(Q)
> U = chol.spam(Q)
Note that this produces a Cholesky of a reordered Q (see notes below for some consequences

of this). Also note that if you’ve previously calculated the Cholesky of a matrix with the same
sparsity pattern as Q (i.e., the same pattern of where the zeros are), a faster way to do the Cholesky
is:

> U = update.spam.chol.NgPeyton(R, Q) # R should be the (spam type)
Cholesky of the matrix with the same sparsity pattern as Q; if Q and
U are just being updated, then you would use U in place of R

• To calculate Q−1b do
> backsolve(U, forwardsolve(U, b))

• To calculate the quadratic form, b>Q−1b, do
> vec = forwardsolve(U, b)
> sum(vec^2)

• To calculate y = Lb = U>b (which gives Cov(y) = Q), do
> iord = ordering(U, inv = TRUE)
> (t(U) %*% b)[iord]
CAUTION: the sparse Cholesky involves a permutation to improve efficiency, so the result
is not the same in any realization as what you get using the approach for the dense matrix
above, but the result is the same in distribution.

• To calculate y = L>−1 = U−1b (which gives Cov(y) = Q−1), do
> backsolve(U, b)
CAUTION: the sparse Cholesky involves a permutation to improve efficiency, so the result
is not the same in any realization as what you get using the approach for the dense matrix
above, but the result is the same in distribution.

NOTE: In R, take P=I[ord,] where ord=ordering(U, inverse = FALSE) and I is
the identity (see help(ordering)). U is actually the Cholesky of PQP>. backsolve(U, b) ac-
tually computes P>(P>U)−1b and forwardsolve(U, b) actually computes P>(P>UT )−1b.
Matrix manipulations show that the calculations above are legitimate and give the desired result.

2



Generating a multivariate random normal draw using the precision matrix

Suppose you want to generate y ∼ N (Q−1a, Q−1), as arises in working with Markov random
fields, where you are given the precision matrix, Q. Here’s an efficient approach if Q is dense.

> U=chol(Q)
> b = rnorm(nrow(Q))
> backsolve(U, backsolve(U, a, transpose = TRUE) + b)
Here’s how if you have sparse Q:
> U = chol.spam(Q) # assuming Q is already a spam object
> b = rnorm(nrow(Q))
> backsolve(U, forwardsolve(U, a) + b)

3


