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Spatial models for areal data, such as disease mapping based on aggregated disease counts in
administrative districts, commonly employ Markov random field (MRF) models, in particular the
conditional specification of a Markov random field known as the conditional autoregressive (CAR)
model. While CAR and MRF refer to the same model structure, one often thinks of CAR models in
terms of the conditional distributions for each of the random variables given the random variables
in neighboring areas. A comprehensive reference for Gaussian MRFs (GMRFs) is Rue and Held
(2005). The text below also draws from Banerjee, Carlin, and Gelfand (2004, Sections 3.2, 3.3,
5.4). One of the major appeals of the MRF specification is that the precision matrix for the random
field is very sparse, which enables efficient computation through well-developed sparse matrix
routines, such as in the spam package in R.

Here I highlight some of the features of GMRFs in spatial modeling, in particular technical
aspects related to specification of intrinsic GMRFs, which are improper models. I’ve found that
impropriety in the intrinsic GMRF can be hard to grasp and I hope to lay it out clearly and relatively
briefly here in one place.

Basic spatial model structure (standard CAR model)

A basic GMRF model for a spatial collection of random variables used to model areal data,
with each random variable representing one of n spatial areas that partition a given domain,
θ = {θ(s1), . . . , θ(sn)}, can be specified in terms of the (scaled) precision, Q, θ ∼ Nn(0, τ 2Q−1) .
Here I use the inverse ofQ conceptually because in most casesQ is of less than full rank, discussed
below. Non-zero mean, including the effect of covariates can be specified separately as part of the
larger model as needed. A standard form for a MRF model for areal data is to specify that any pair
of elements of θ, say θi and θj , be independent given the remaining elements, if the areas repre-
sented by the elements do not share a spatial border. This conditional independence corresponds
to the ijth element of Q being zero. Then one usually takes a weight of one for each pair that
share a common border. The resulting Q has Qij = −1 for areas that share a common border (or
are considered neighbors under some other criterion) and Qii equal to the number of neighbors for
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area i, mi. The resulting full conditionals specify the standard CAR model:

θi|θ−i ∼ N (
∑

j∈N(i)

θj/mi, τ
2/mi)

where N(i) is the set of neighbors of area i. Note that Q can be expressed as Q = D−1(I −B) =
D−1 −W where D is a diagonal matrix with elements 1/mi and B is related to the proximity (or
adjacency) matrix, W , by Bij = Wij/Wi+where Wi+ is the row sum for the ith row. W is simply
a matrix of all zeroes, except ones for Wij where areas i and j share a border, so Wi+ = mi. The
diagonal of W is all zeroes. More generally, whether two areas are ’neighbors’ can be determined
by another rule, such as based on distance and the weights in W do not have to be ones; these are
subjective user choices.

MRF approximation to a thin plate spline

Rue and Held (2005) and Yue and Speckman (2008) describe a more flexible MRF model that
approximate a thin plate spline, specified on a regular grid. Rather than using a proximity matrix
with ones only for nearest, cardinal neighbors, the proximity matrix, W , has the value 8 for pairs
that are nearest (first order) neighbors in the cardinal directions, the value -2 for pairs that are
nearest neighbors on the diagonal and the value -1 for pairs that are second order neighbors in
the cardinal directions. For this model the generalization of the number of neighbors is Wi+ =
D−1
ii = Qii = 20. Boundary corrections are needed for grid cells on the boundary or one cell

away from the boundary. For such interior cells the model’s full conditionals are such that the
conditional mean of θi given the neighbors above is 8/20 times the nearest cardinal neighbors,
minus 2/20 times the nearest diagonal neighbors, minus 1/20 times the second nearest cardinal
neighbors, with conditional variance τ 2/20. Rue and Held (2005, p. 114) describe the derivation
of this model based on the forward difference analogue of penalizing the derivatives of a surface
to derive the thin plate spline.

Note that this approach generalizes a second order random walk model in one dimension. In
one dimension, this gives us a model specified in time order as θt|θpast ∼ N (2θt−1 − θt−2, τ

2) or
based on the full conditionals as θt|θ−t ∼ N (4

6
(θt+1 + θt−1) − 1

6
(θt+2 + θt−2), τ

2/6) for times at
least two away from the first or last time and necessary boundary corrections otherwise (see Rue
and Held (2005, p. 110)). The elements of the tth row of Q (for t > 1 and t < n − 1) are zeroes
except Qt,t−2 = Qt,t+2 = 1, Qt,t−1 = Qt,t+1 = −4, and Qtt = 6. This model is also given in the
Ice example in the BUGS manual.

Impropriety

The matrix Q is of less than full rank. For the simple CAR model one eigenvalue of the precision
matrix is zero, corresponding to the linear combination,

∑
θi. For the simple CAR model, the

model can be seen as a joint distribution, P (θ) ∝ exp(− 1
2τ2

∑
i 6=j wij(θi− θj)2), which is invariant

to the addition of a constant to all the θs (Q1 = 0), and therefore improper, not giving a finite
variance for the linear combination,

∑
θi. For the thin plate spline MRF, there are three zero

eigenvalues, corresponding to the sum and to linear terms in the cardinal directions, with the prior
being invariant to addition of a plane to the θs. This means that the prior does not constrain these
linear combinations of the θs, with infinite variance for these linear combinations. The solution
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to this issue is to use the pseudoinverse when one needs to compute solutions to linear systems
of the form, Q−1x. In this setting, the following generalized inverse satisfies the Moore-Penrose
conditions and is the unique pseudoinverse. First, compute the eigendecomposition, Q = ΓΛΓT .
Then the pseudoinverse is ”Q−1” = Q+ = ΓΛ+ΓT where Λ+ is a diagonal matrix with λ+

i = 1/λi
for λi 6= 0 and λ+

i = 0 when λi = 0. Numerically, one takes the diagonal element to be zero
whenever λi is within some tolerance of zero. What are we doing statistically? We are forcing
the appropriate linear combinations to have zero variance, thereby giving us a proper distribution
on the reduced dimension subspace. To allow flexibility in modeling, we need only add additional
parameters to the mean model for θ to take the place of the omitted linear combinations. This
gives us a proper prior without sacrificing flexibility. The implicit model using the pseudoinverse
is θ ∼ Nn−c(0, τ 2Q+), where c is the number of constraints (the number of zero eigenvalues of
Q).

What about the normalizing constant in this context? When we enforce the constraint(s), we
make use of Λ+, so |Q+| = |ΓΛ+Γ| ≡ ∏n−c

i=1 λ
+
i , which makes sense because we are working

in a reduced dimension subspace and ignore the eigenvalues corresponding to the constrained
portion of the space. Accordingly, the appropriate normalizing constant for these specifications
involves (τ 2)−(n−c)/2 rather than (τ 2)n/2, since the prior is proper in the subspace. Of course,
since Q contains no parameters, we need not compute |Q+|, but only make use of (τ 2)

n−c
2 , but this

reasoning justifies setting |Q+|/|Q+| = 1 in MCMC acceptance ratio calculations.
I’ll say a few more words on singular precision and covariance matrices. With a singular

precision matrix, there is at least one linear combination, ΓTnθ, where Γn is the last eigenvector, that
has zero contribution to the prior density, because λn = 0. The linear combination(s) is ignored.
Thus we have a density function but it cannot be integrated because the normalizing constant
is infinity, and the prior has nothing to say about the probability density of at least one linear
combination. In contrast, with a singular covariance matrix, there is at least one linear combination
that has zero variance, thereby imposing a constraint on at least one linear combination of any
realization, ΓTnθ ≡ 0. The constraint on the linear combination must be satisfied, and any θ that
does not satisfy this constraint has zero density.

This impropriety carries over into the marginalized model for data. For example, suppose we
have Y ∼ N (Xβ+θ, VY ), with an MRF prior for θ, θ ∼ N (0, τ 2Q−1), again using Q−1 only con-
ceptually, and where Xβ contains terms that take the place of the constrained linear combinations.
Marginalizing over θ, we have an improper prior predictive distribution for Y , Y ∼ N (Xβ,Σ)
where Σ = VY + τ 2Q−1, but Σ does not exist because the inverse of Q does not exist, with c
linear combinations having infinite variance. This improper prior predictive distribution makes
sense: we cannot generate from the prior on θ, so we cannot generate from the predictive distri-
bution for the data. However, the posterior for θ will be proper for n > c, as will the posterior
predictive distribution. Note that in the constrained space, the prior for Y is proper, so we can
generate Y with constraints on the appropriate linear combinations by generating realizations of
θ with the constraints. This involves using the pseudoinverse to get the predictive distribution,
Y ∼ Nn(Xβ, VY + τ 2Q+), which is the prior predictive when the linear constraints on θ are
imposed in its prior through the pseudoinverse.

3



Two solutions to identifiability

Solution 1 In most cases we are not concerned with generating from the prior predictive and at-
tention is focused on the posterior for θ and the other parameters. Here it is simplest to work on the
precision scale, with zero prior precision (infinite prior variance) on the c linear combinations, and
with the linear combinations not included in Xβ, including these linear combinations implicitly as
part of θ. The conditional posterior for θ has variance Vφ|Y = (V −1

Y + τ−2Q)−1, which is full rank,
with the prior contributing no information about the c linear combinations. This is equivalent to
putting flat, improper priors on those linear combinations. One can sample from the conditional
for θ and the c linear combinations will be unconstrained by the prior, but informed by the data.

In many cases we would integrate over θ. We can express the marginal precision for Y based on
completing the square as Σ−1 = V −1

Y −V −1
Y (V −1

Y +τ−2Q)−1V −1
Y . This precision matrix has c zero

eigenvalues, inherited from the improper prior for θ. The normalizing constant for the marginal
density of Y can be expressed in terms of |Σ|1/2 = |VY |1/2|V −1

φ|Y |1/2(τ 2)(n−c)/2/|Q|1/2 where |Q|
is a constant and need not be computed. Thus the marginalized likelihood can be computed even
though the distribution for Y is improper (but proper in a reduced dimension subspace), since we
do not need to compute Σ. Note that the marginal likelihood ignores c linear combinations of Y
because their precisions are zero, thereby taking these combinations to have no information about
the remaining parameters after marginalization.

Solution 2 In some cases, one may wish to enforce the constraint(s) in the prior and then include
the constrained linear combinations as parameters in Xβ, which is an alternative that also gives
identifiability. When sampling θ in an MCMC (potentially off-line if it has been integrated out),
one can use one of two approaches to sample θ such that the constraints are obeyed. One solution
is to set the last c eigenvalues of Vφ|Y to be zero, while a potentially more efficient approach that
allows one to use sparse matrix routines and avoid the eigendecomposition is to use conditioning
by kriging as described in Rue and Held (2005, p. 37). A common ad hoc approach is to instead
sample θ without constraint and then impose the constraint empirically, for example, setting θnew ≡
θ − θ̄1, for the constraint on the mean. Unfortunately, this is not the same as sampling under the
constraint (see Rue and Held (2005, p. 36)), so it does not preserve the posterior as the stationary
distribution of the MCMC, although in practice the departure may be minimal.

Enforcing full propriety via an autoregressive parameter

As discussed in Banerjee et al. (2004), one can instead enforce propriety by takingQ = D−1−ρW
with constraints on ρ (the inverses of the largest and smallest eigenvalues of D1/2WD1/2). ρ is
analogous to the AR(1) autocorrelation parameter, and its presence allows us to generate from the
MRF distribution with nonzero θ̄ in the simple CAR setting. However, the interpretation of this
model structure is troublesome as the resulting full conditional mean relates to ρ times the average
of the neighbors in the simple CAR setting, ρ

∑
j∈N(i) θj/mi, causing shrinkage toward the overall

mean (zero in my simplified setting here). In a spatial setting, this is generally unappealing, in
contrast to the time series context. Also, in many empirical examples the estimate of ρ ends
up being nearly one. Hence to my mind, the intrinsic model is more appealing and has a clean
interpretation as a proper prior in a subspace, either with enforced constraints or taking an improper
prior on the unconstrained linear combinations.
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