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There are two factors that determine the interpolation behavior of the kriging predictions in
terms of whether the predictions go through the observations.

First, if the nugget is zero, then the kriging predictions go exactly through the observations.
The kriging variance is zero at the observations, because with no residual, we know the value of
the spatial process exactly. We see an example of this in the Fig. 1 (top), which shows prediction
in one dimension.

Second, if the nugget is non-zero, whether kriging interpolates depends on whether the residual
variation is considered to be instrument (measurement) error, which one would want to smooth
over, or fine-scale (microscale) variability, in which case the prediction at an observation should
be the observation itself, since it is observed without error. In the microscale case, we assume that
slight changes in location result in residuals that are in practice independent spatially, because the
scale of variation is smaller than the distances between observations. For atmospheric phenomena,
measurement may be quite precise (pollution, temperature, etc.), but slight changes in location can
cause big changes in the outcome. For example, if one moves to a different side of a building or
from a ridge to a valley, pollution or temperature may change quickly and at a scale at which we
cannot predict because of sparse observations. See Cressie (1993, p. 59) for more discussion.

Fig. 1 (middle) shows predictions and variances under microscale variability, showing that if
one moves slightly away from the location of the observation, the prediction looks like a smoother
and the variance increases very quickly. This is because we assume there is a component of vari-
ance that comes into play as soon as we are not exactly at the location of the observation. Kriging
behaves very much like a smoother, except with jumps at the observations which produce plots
that show these ’holes’ at the observations. The predictions are discontinuous. Kriging ’honors the
data’ only in the limited sense of including a discontinuity at each observation.

In Fig. 1 (bottom), we see the predictions and variances under measurement error. Now the
residual is treated as error, and our prediction at the observation is not the observation itself, be-
cause the observation is contaminated with error. We borrow strength from other observations to
try to make a better prediction at any given observation, hoping to average over the error.

Note that in the latter two cases, if we seek to make predictions about the smooth latent process,
rather than the observation process, then the predictions will be the same, as the prediction under
microscale variation will predict the process without the fine-scale variation.

One way to think about the kriging model is to decompose the observations as Zi = µ(si) +
g(si) + w(si) + εi where µ(·) is large-scale trend, often taken to be a constant, g(·) is a smooth
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Figure 1. Kriging predictions under three scenarios. In each scenario, the black line is the true
underlying smooth process, generated from the sum of a very smooth process and a more local,
less smooth process, while the observations (the dots) also include a component of independent
errors. The solid colored lines are the kriging predictions and the dashed lines pointwise confi-
dence intervals. In (top), we assume a nugget of zero, which fits an interpolator. In (middle) we
assume the residual is microscale variation, which causes the predictions to have holes where the
predictor jumps from smoothing to the actual observation. In (bottom), the residual is assumed to
be instrument error, so kriging serves as a smoother.
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Table 1. Kriging predictions and variances under the three situations..
τ 2 = 0 Microscale variation Instrument error

E(Z2|Z1) µ1 + C21C
−1
11 (Z1 − µ1) µ1 + C21(C11 + τ2I)−1(Z1 − µ1) same as microscale

E(Z∗
1 |Z1) Z1 = µ1 + C11C

−1
11 (Z1 − µ1) Z1 = µ1 + (C11 + τ2I)·

(C11 + τ2I)−1(Z1 − µ1)
µ1 + C11(C11 + τ2I)−1(Z1 − µ1)

E(f2|Z1) µ1 + C21C
−1
11 (Z1 − µ1) µ1 + C21(C11 + τ2I)−1(Z1 − µ1) same as microscale

E(f1|Z1) Z1 = µ1 + C11C
−1
11 (Z1 − µ1) µ1 + C11(C11 + τ2I)−1(Z1 − µ1) same as microscale

Var(Z2|Z1) C22 − C21C
−1
11 C12 C22 + τ2I − C21(C11 + τ2I)−1C12 same as microscale

Var(Z∗
1 |Z1) 0 = C11 − C11C

−1
11 C11 0 = C11 + τ2I − (C11 + τ2I)·

(C11 + τ2I)−1(C11 + τ2I)
C11 + τ2I − C11(C11 + τ2I)−1C11

Var(f2|Z1) C22 − C21C
−1
11 C12 C22 − C21(C11 + τ2I)−1C12 same as microscale

Var(f1|Z1) 0 = C11 − C11C
−1
11 C11 C11 − C11(C11 + τ2I)−1C11 same as microscale

process that can be estimated from the data and has variance σ2, w(·) is the fine-scale process
with variance τ 2

MS, and εi is measurement error with variance τ 2
ME. In this model, the nugget is

τ 2 = τ 2
MS + τ 2

ME and cannot be decomposed without further information from replication or prior
belief. The decomposition of µ and g is not unique without replication, and all we are doing is
decomposing the variation at different scales. My personal belief is there is often no real need
to do anything with µ other than have it be a constant mean that is estimated from the data. By
definition from having w(·) be independent in space, we cannot predict w, except at the observed
locations without more dense data, just as the residuals, ε, are unknowable at new locations.

If we assume τ 2 = τ 2
MS then ideally we wish to predict µ + g + w, whereas if we assume τ 2

ME
then we are trying to predict µ + g. Of course even if we believe τ 2 = τ 2

MS we can always choose
to predict µ + g and acknowledge that we are just trying to predict the potentially predictable part
of the variation, ignoring w as being too fine-scale to resolve with the density of our data.

Note that for prediction uncertainty, whether we include τ 2 in the prediction variance depends
on whether we want uncertainty about a new observation, in which case it should always be in-
cluded, or prediction about the smooth process, in which case if we assume measurement error it
should not. If we assume microscale variation and want prediction about the full process then we
would include τ 2.

In the Table 1, I lay out the kriging predictions and variances under various scenarios. Define
Z1 as the observations, Z∗

1 as new observations at the same location, and Z2 as new observations
at new locations. f1 = µ1 + g1 are the smooth process values at the observed locations and
f2 = µ1 + g2 are the smooth process values at new locations. C11 is the covariance of g1 and
C22 the covariance of g2, while C12 = CT

21 is the covariance of g1 and g2. The kriging prediction
is always µ1 + Σ21Σ

−1
11 (Z1 − µ1) and kriging variance, Σ22 + Σ−1

21 Σ12. Our challenge here is to
determine in which cases τ 2I is added to C to calculate Σ for the various covariance matrices and
in which case Σ = C.

The only difference between assuming microscale variation and measurement error is that
for E(Z∗

1 |Z1) under measurement error, we have µ1 + C11(C11 + τ 2I)−1(Z1 − µ1) because
Σ21 = Cov(Z∗

1 , Z1) = C11, since new observations will not be the same as the old obser-
vations and will not share the τ 2 variance component. In contrast under microscale variation,
Σ21 = Cov(Z∗

1 , Z1) = C11 + τ 2I . Similarly for the prediction variance, under measurement error,
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we have C11 + τ 2I − C11(C11 + τ 2I)−1C11 because of the different construction of Σ21 = Σ11

under the two scenarios.
If τ 2 = 0 then we assume that there is no non-spatial variability in the process, so uncertainty

is by definition about the smooth process, which is known exactly at the observed locations.
In geoR, using krige.conv(), one can specify that you want to predict the smooth signal only

using the argument output=output.control(signal=TRUE). This will give prediction
variances without the component τ 2I , i.e., the last two rows of Table 1. I believe the default
in geoR is signal=FALSE, so the prediction variance includes τ 2. This is appropriate under
microscale variation if one wants the full process uncertainty, or under measurement error, if one
wants prediction variance for new observations. If one wants the smooth process uncertainty under
either assumption, choose signal=TRUE.

In ArcGIS, you can select error modeling in the variogram step and choose 100% measurement
error to get the measurement error scenario. However, I’m not sure if this results in the component
τ 2I being included in the variance. I believe choosing the default of 100% microscale includes τ 2I
in the variance, while 100% measurement error omits this component. If you’re using software
and don’t know what assumption it is making in doing the predictions and the variances, make a
prediction (and get the variance) at an observation and very close to it and find out if the prediction
at the observation is the observation itself and if the prediction close to the observation behaves
like a smoothed prediction. Is the variance zero at the observation?

If one gets prediction variances that do not include τ 2, which are just uncertainty about the
smooth process, one can always add τ 2 to the output from the software to get prediction variances.

So what should one do in practice? First, I would generally estimate a nugget. If estimated to
be zero, then one naturally gets an interpolator. If the nugget is estimated to be non-zero, one has a
choice to make. If one can get data to estimate what portion of the nugget is microscale and what
portion error, one could be sophisticated about it. Otherwise, since the results are very similar,
one might just assume error and take the smoothing approach. Then if one does want to make
predictions at the observations, one can just substitute the observations and take the variance to be
zero. However, one shouldn’t deceive oneself and think that by assuming microscale variation that
one is able to predict variation at fine scale. Our predictions at ANY other locations, regardless of
how close they are to an observation, are smoothed predictions because τ 2 does not contribute to
any covariance between the observation and other locations. This inability is indicated in Fig. 1
(middle). In applications I generally will report the smoothed predictions in all cases, even at the
observations. My reporting of uncertainty varies with the application and my assumptions about
measurement error or microscale variation.
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