Spatio-temporal dependence: a blessing and a curse for computation and inference (illustrated by compositional data modeling) (and with an introduction to NIMBLE)

Christopher Paciorek UC Berkeley Statistics

Joint work with:
The PalEON project team (http://paleonproject.org)
The NIMBLE development team (http://r-nimble.org)

NSF-CBMS Workshop on Bayesian Spatial Statistics
August 2017

Funded by various NSF grants to the PalEON and NIMBLE projects
Goal: Improve the predictive capacity of terrestrial ecosystem models

“This large variation among carbon-cycle models ... has been called ‘uncertainty’. I prefer to call it ‘ignorance’.”
- Prentice (2013) Grantham Institute

Critical issue: model parameterization and representation of decadal- to centennial-scale processes are poorly constrained by data

Approach: use historical and fossil data to estimate past vegetation and climate and use this information for model initialization, assessment, and improvement
Spatio-temporal dependence: a blessing and a curse for computation and inference
Settlement-era Land Survey Data

Survey grid in Wisconsin

Surveyor notes

Raw oak tree proportions
(on a grid in the western portion and in irregular township areas in the eastern portion)

Spatio-temporal dependence: a blessing and a curse for computation and inference
Outline

• Application 1: Spatial smoothing of compositional data
 – Setting: Multivariate data, high-dimensional quantities, non-conjugate models
 – A hierarchical multinomial probit model with CAR spatial process
 – Data augmentation
 – How much smoothness (in space)?
 – Computational implications

• Computational tools
 – Overview of current software
 – Introduction to NIMBLE

• Application 2: Temporal prediction of biomass from compositional data
 – How much smoothness (in time)?
 – A hierarchical stick-breaking compositional model with Generalized Pareto nonstationary temporal smoothing
 – Default MCMC and computational challenges
 – Customized MCMC using NIMBLE

• Concluding thoughts

Spatio-temporal dependence: a blessing and a curse for computation and inference
Application 1: Spatial smoothing of compositional data

- Multivariate: ~20 taxa (species)
 - Sum-to-one constraint on proportions
- 8 km by 8 km grid:
 - ~10,000 grid points
- 1.3 million trees (> 20 cm diameter) in total
 - ~125 trees per grid cell
Application 1: Should we model spatial dependence?

• Yes:
 • We want to estimate composition at all locations.
 • We want to smooth over noise at observed locations.
 • We are interested in joint inference for multiple locations, so we need to account for posterior covariance.

• No:
 • We would need to model the spatial dependence, with the resulting computational implications.
Application 1: Should we model multivariate dependence?

• Yes:
 • Taxa do show correlated abundance (taxa have similarities in their ecological characteristics).
 • If joint inference on multiple tree species is desired, need multivariate correlation structure to properly characterize given our actual knowledge.

• No:
 • Dependence varies by location (nonstationarity)
 • E.g., hemlock/beech positively correlated in general, but beech not present in some locations where hemlock appears (different western range limits)
 • Would require more complex model
 • Locations with data have data for all taxa
 • Imputation is only spatial not multivariate
 • With no measurement error and separable covariance, kriging prediction for a taxon depends only on data from that taxon at other locations
 • Inference not focused on multi-taxon functionals
Application 1: Spatial smoothing of compositional data

- Multivariate: ~20 taxa (species)
 - Sum-to-one constraint on proportions
- 8 km by 8 km grid:
 - ~10,000 grid points
- 1.3 million trees (> 20 cm diameter) in total
 - ~125 trees per grid cell

Model overview:
- Multinomial likelihood (no over-dispersion)
- One spatial process per taxon
 - Sum-to-one constraint based on a multinomial probit specification
 - Otherwise, no multivariate structure
- Spatial process hyperparameters
Application 1: Standard Spatial Multinomial Logit Model

A spatial multinomial logit model:

\[y_i \sim \text{Multi}(n_i, \theta(s_i)) \]
\[\theta_p(s_i) = \frac{\exp(g_p(s_i))}{\sum_k \exp(g_k(s_i))} \]
\[g_p(\cdot) \sim \text{GP}(\phi_p) \]

for location i and taxon p.

Computational implications:
- No conjugacy!
- Can’t integrate analytically over the latent processes
- How propose good values of each \(g \) process?

Application 1: Spatial Multinomial Probit Model with Data Augmentation

A spatial multinomial probit model:

\[y_{ij} = p \iff w_{ijp} = \max_k w_{ijk} \]
\[w_{ijp} \sim \mathcal{N}(g_p(s_i), 1) \]
\[g_p(\cdot) \sim \text{GP}(\phi_p) \]

for location i, tree j, and taxon p.

Computational implications:

- Data augmentation version allows conjugate updates of each \(g \) process
- **But!** Introduce new level in model – higher dimensional and with potential for cross-level dependence to impede MCMC performance
Application 1: How much smoothness?

Application is based on 8 km grid, so CAR style (i.e., Markov random field) models a natural choice.

How smooth spatially?

- First order (simple neighborhood) CAR models: not smooth spatially.

\[y_{ij} = p \text{ iff } w_{ijp} = \max_k w_{ijk} \]

\[w_{ijp} \sim \mathcal{N}(g_p(s_i), 1) \]

\[g_p \sim \mathcal{N}(0, \sigma_p^2 Q^-) \text{ (ICAR)} \]

- Second order (thin-plate spline) CAR models: very smooth spatially.
Application 1: Smoothness and computation

- Sparse precision matrices
 - Very computationally efficient for conjugate updates
 - Without conjugacy not clear how to generate good proposals for entire spatial field for a taxon, so computational efficiency of limited relevance
 - Location-specific updates would mix poorly when there is strong spatial dependence
 - Simple CAR models may show reasonable mixing for spatial process values with fixed hyperparameters because of lesser spatial smoothness
- Cross-level dependence from separate updates of latent data values, spatial process values, spatial hyperparameters
 - Updates of spatial process and hyperparameters not directly informed by data
Application 1: MCMC design

\[y_{ij} = p \text{ iff } w_{ijp} = \max_k w_{ijk} \]

\[w_{ijp} \sim \mathcal{N}(g_p(s_i), 1) \]

\[g_p \sim \mathcal{N}(0, \sigma_p^2 Q^-) \text{ (ICAR)} \]

- Cross-level dependence from separate updates of latent data values, spatial process values, spatial hyperparameters
- Adequate performance required joint (cross-level) updates of \(\{g_p, \sigma_p\} \):
 - Metropolis proposal for \(\sigma_p \) with conjugate proposal for \(g_p \)
 - Equivalent to marginalizing over \(g_p \) but avoids correlated truncated normal density for \(w \)
Application 1: MCMC implementation

\[y_{ij} = p \text{ iff } w_{ijp} = \max_k w_{ijk} \]

\[w_{ijp} \sim \mathcal{N}(g_p(s_i), 1) \]

\[g_p \sim \mathcal{N}(0, \sigma^2_p Q^{-}) \text{ (ICAR)} \]

- Overall MCMC written in R
- Truncated normal computations done in C++ via Rcpp (can also use openMP for parallelization)
- Joint \(\{g_p, \sigma_p\} \) samples done in R using sparse matrix computations with spam package (which uses Fortran)
- Even with customization, MCMC takes order of two weeks
- Computation pre-dates NIMBLE but NIMBLE designed to allow users to set up customized MCMC sampling for components of models
 - E.g., the joint \(\{g_p, \sigma_p\} \) sampling could be coded as a user-defined sampler in NIMBLE (and NIMBLE provides such a sampler for some such situations)
Application 1: MCMC performance

Trace plots for taxon-specific hyperparameters

Spatio-temporal dependence: a blessing and a curse for computation and inference
Application 1: Results

Model selection:
• First order CAR and Lindgren GP approximation have similar performance but GP approximation has anomalies at the spatial boundaries.
• Second order (thin plate spline) CAR too smooth.

Prediction:

http://gandalf.berkeley.edu:3838/paciorek/setVegComp
Bayesian software landscape

Hand-coded algorithms:
- R, Python: fast to develop and easy to share, but slow computation
- C++, Rcpp: slower to develop and harder to share, but fast computation
- Julia: fast to develop and fast computationally but less widely used

Black-box MCMC engines:
- JAGS: single variable samplers with a focus on conjugate samplers
- Stan: Hamiltonian MC, variational Bayes
- PyMCMC3: flexible sampler choice, Hamiltonian MC, variational Bayes

NIMBLE:
- Customizable MCMC and other algorithms plus a system for programming algorithms for hierarchical models in R
Application 1: Software needs

- Exploit sparsity
- Flexibility in choosing samplers for parts of the model
- Joint sampling of spatially-dependent process values
- Customize joint sampling of hyperparameters and spatial process to improve mixing
- Use compiled code for computational bottlenecks

Notes:
- NIMBLE can’t do all of this yet (no sparse matrices right now), but designed for such flexibility
- Would be interesting to compare performance of my customized sampling to Stan’s HMC
Existing software

e.g., BUGS (WinBUGS, OpenBUGS, JAGS), INLA, Stan, various R packages
NIMBLE: The Goal

Model

\[Y(1) \rightarrow X(1) \rightarrow X(2) \rightarrow X(3) \]

Algorithm language

\[Y(1) \rightarrow Y(2) \rightarrow Y(3) \]

\[\text{Toolbox} + \text{Wrenches} = \text{NIMBLE} \]
Divorcing Model Specification from Algorithm

- Your new method
- Data cloning
- MCEM
- Quadrature
- Maximum likelihood
- Importance Sampler
- Particle Filter
- MCMC Flavor 1
- MCMC Flavor 2

Spatio-temporal dependence: a blessing and a curse for computation and inference
NIMBLE’s goals

– Retaining BUGS compatibility
– Providing a variety of standard algorithms
– **Allowing developers to add new algorithms** (including modular combination of algorithms)
– Allowing users to operate within R
– Providing speed via compilation to C++, with R wrappers

Spatio-temporal dependence: a blessing and a curse for computation and inference
NIMBLE System Summary

statistical model (BUGS code) + algorithm (nimbleFunction)

R objects + R under the hood

R objects + C++ under the hood

✧ We generate C++ code,
✧ compile and load it,
✧ provide interface object.

Spatio-temporal dependence: a blessing and a curse for computation and inference
NIMBLE

1. Model specification

BUGS language \rightarrow R/C++ model object

2. Algorithm library

MCMC, Particle Filter/Sequential MC, etc.

3. Programming algorithms

NIMBLE programming language within R \rightarrow R/C++ algorithm object
The Success of R

Spatio-temporal dependence: a blessing and a curse for computation and inference
NIMBLE: Programming with Models

You give NIMBLE:

```r
littersCode <- nimbleCode(
  {  
    for(j in 1:G) {  
      for(l in 1:N) {  
        r[i, j] ~ dbin(p[i, j], n[i, j]);  
        p[i, j] ~ dbeta(a[j], b[j]);  
      }  
      mu[j] <- a[j]/(a[j] + b[j]);  
      theta[j] <- 1.0/(a[j] + b[j]);  
      a[j] ~ dgamma(1, 0.001);  
      b[j] ~ dgamma(1, 0.001);  
    }  
  }  
)
```

You get this:

```r
> littersModel$a[1] <- 5  # set values in model
> simulate(littersModel, 'p')  # simulate from prior
> p_deps <- littersModel$getDependencies('p')  # model structure
> calculate(littersModel, p_deps)  # calculate probability density
> getLogProb(pumpModel, 'r')
```

NIMBLE also extends BUGS: multiple parameterizations, named parameters, and user-defined distributions and functions.
User Experience: Specializing an Algorithm to a Model

```r
littersModelCode <- modelCode({
  for(j in 1:G) {
    for(l in 1:N) {
      r[i, j] ~ dbin(p[i, j], n[i, j]);
      p[i, j] ~ dbeta(a[j], b[j]);
    }
    mu[j] <- a[j]/(a[j] + b[j]);
    theta[j] <- 1.0/(a[j] + b[j]);
    a[j] ~ dgamma(1, 0.001);
    b[j] ~ dgamma(1, 0.001);
  }
})

sampler_slice <- nimbleFunction(
  setup = function((model, mvSaved, control) {
    calcNodes <- model$getDependencies(control$targetNode)
    discrete <- model$getNodeInfo()[[control$targetNode]]$isDiscrete()
  }[
  run = function() {
    u <- getLogProb(model, calcNodes) - rexp(1, 1)
    x0 <- model[[targetNode]]
    L <- x0 - runif(1, 0, 1) * width
  }[
}[

> littersMCMCconf <- configureMCMC(littersModel)
> littersMCMCconf$printSamplers()
[...snip...]
[3] RW sampler; targetNode: b[1], adaptive: TRUE, adaptInterval: 200, scale: 1
[5] conjugate_beta sampler; targetNode: p[1, 1], dependents_dbin: r[1, 1]
[6] conjugate_beta sampler; targetNode: p[1, 2], dependents_dbin: r[1, 2]
[...snip...]
> littersMCMCconf$addSampler(‘a[1]’, ‘slice’, list(adaptInterval = 100))
> littersMCMCconf$addSampler(‘a[2]’, ‘slice’, list(adaptInterval = 100))
> littersMCMCconf$addMonitors(‘theta’)
> littersMCMC <- buildMCMC(littersMCMCspec)
> littersMCMC_Cpp <- compileNimble(littersMCMC, project = littersModel)
> littersMCMC_Cpp$run(20000)
```

Spatio-temporal dependence: a blessing and a curse for computation and inference
NIMBLE

1. Model specification

 BUGS language \(\rightarrow\) R/C++ model object

2. Algorithm library

 MCMC, Particle Filter/Sequential MC, MCEM, etc.

3. Programming algorithms

 NIMBLE programming language within R \(\rightarrow\) R/C++

 algorithm object

Spatio-temporal dependence: a blessing and a curse for computation and inference
NIMBLE’s algorithm library

– MCMC samplers:
 • Conjugate, adaptive Metropolis, adaptive blocked Metropolis, slice, elliptical slice sampler, particle MCMC, specialized samplers for particular distributions (Dirichlet, CAR)
 • Flexible choice of sampler for each parameter
 • User-specified blocks of parameters

– Sequential Monte Carlo (particle filters)
 • Various flavors

– MCEM

– Write your own
NIMBLE

1. Model specification

 BUGS language \rightarrow R/C++ model object

2. Algorithm library

 MCMC, Particle Filter/Sequential MC, etc.

3. Algorithm specification

 NIMBLE programming language within R \rightarrow R/C++
 algorithm object
NIMBLE: Programming With Models

We want:

• High-level processing (model structure) in R

• Low-level processing in C++
NIMBLE: Programming With Models

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
 calcNodes <- model$dependencies(targetNode)
},
run = function() {
 model_lp_initial <- calculate(model, calcNodes)
 proposal <- rnorm(1, model[[targetNode]], scale)
 model[[targetNode]] <<- proposal
 model_lp_proposed <- calculate(model, calcNodes)
 log_MH_ratio <- model_lp_proposed - model_lp_initial

 if(decide(log_MH_ratio)) jump <- TRUE
 else jump <- FALSE
.... Various bookkeeping operations ...
})
NIMBLE: Programming With Models

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
 calcNodes <- model$dependencies(targetNode)
},

run = function() {
 model_lp_initial <- calculate(model, calcNodes)
 proposal <- rnorm(1, model[[targetNode]], scale)
 model[[targetNode]] <<- proposal
 model_lp_proposed <- calculate(model, calcNodes)
 log_MH_ratio <- model_lp_proposed - model_lp_initial

 if(decide(log_MH_ratio)) jump <- TRUE
 else jump <- FALSE

 # Various bookkeeping operations ...

})
NIMBLE: Programming With Models

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
 calcNodes <- model$getDependencies(targetNode)
},

run = function() {
 model_lp_initial <- calculate(model, calcNodes)
 proposal <- rnorm(1, model[[targetNode]], scale)
 model[[targetNode]] <<- proposal
 model_lp_proposed <- calculate(model, calcNodes)
 log_MH_ratio <- model_lp_proposed - model_lp_initial

 if(decide(log_MH_ratio)) jump <- TRUE
 else jump <- FALSE

 # Various bookkeeping operations ... #
}

the actual (generic) algorithm
Spatio-temporal dependence: a blessing and a curse for computation and inference
The NIMBLE compiler (run code)

Feature summary:

• R-like matrix algebra (using Eigen library)
• R-like indexing (e.g. X[1:5,])
• Use of model variables and nodes
• Model calculate (logProb) and simulate functions
• Sequential integer iteration
• If-then-else, do-while
• Access to much of Rmath.h (e.g. distributions)
• Automatic R interface / wrapper
• Call out to your own C/C++ or back to R
• Many improvements / extensions planned

Spatio-temporal dependence: a blessing and a curse for computation and inference
NIMBLE: What can I program?

- Your own distribution for use in a model
- Your own function for use in a model
- Your own MCMC sampler for a variable in a model
- A new MCMC sampling algorithm for general use
- A new algorithm for hierarchical models
- An algorithm that composes other existing algorithms (e.g., MCMC-SMC combinations)
NIMBLE: What can I program?

• Your own distribution for use in a model
• Your own function for use in a model
• Your own MCMC sampler for a variable in a model
• A new MCMC sampling algorithm for general use
• A new algorithm for hierarchical models
• An algorithm that composes other existing algorithms (e.g., MCMC-SMC combinations)
Status of NIMBLE and Next Steps

• First release was June 2014 with regular releases since. Lots to do:
 – Improve the user interface and speed up compilation
 – Refinement/extension of the NIMBLE programming language
 • e.g., automatic differentiation, parallelization, sparse matrices
 – Additional algorithms written in NIMBLE DSL
 • e.g., normalizing constant calculations, Laplace approximations, HMC and other samplers
 • Bayesian nonparametrics with Claudia Wehrhahn Cortes and Abel Rodriguez (UCSC)

• Interested?
 – Announcements: nimble-announce Google site
 – User support/discussion: nimble-users Google site
 – Write an algorithm using NIMBLE!
 – Help with development of NIMBLE: email nimble.stats@gmail.com or see github.com/nimble-dev
Application 2: Predicting biomass from compositional data

Calibration: at settlement time we have biomass estimates (based on survey data and a spatial model) and pollen composition (from sediment cores)

Prediction: based on calibration model and pollen composition over time, predict biomass
Application 2: Calibration model

• Pollen proportion for each taxon determined by transformation of a flexible (spline) function of biomass
 • shape1 and shape2 parameters of beta distribution are splines of biomass
 • Primary calibration parameters are spline coefficients
• Multinomial likelihood for pollen counts given modeled proportions
• Fit in NIMBLE (could be fit in various other packages)
Mean and variability of modeled pollen proportions across ponds vary with biomass

Spatio-temporal dependence: a blessing and a curse for computation and inference
Application 2: Prediction Model

Spatio-temporal dependence: a blessing and a curse for computation and inference
Application 2: Prediction Model

for(t in 1:nTimes)
 Y[t, 1] ~ dbetabin(alpha1[t, 1], alpha2[t, 1], n[t])
for(k in 2:(nTaxa-1)) {
 Y[t, k] ~ dbetabin(alpha1[t, k], alpha2[t, k], n[t]-sum(Y[t, 1:(k-1)]))
}

for (k in 1:nTaxa) {
 for(t in 1:nTimes) {
 alpha1[t, k] <- exp(Zb[t, 1:nKnots] %*% beta1[1:nKnots, k])
 alpha2[t, k] <- exp(Zb[t, 1:nKnots] %*% beta2[1:nKnots, k])
 }
for(t in 1:nTimes)
 Zb[t, 1:nKnots] <- bspline(b[t], knots[1:nKnots])

for(t in 2:nTimes)
 b[t] ~ dnorm(b[t-1]), sd = sigma)

sigma ~ dunif(0, 10) # Gelman (2006)
b[1] ~ dunif(0, 400)
Key ecological question: how does biomass (carbon storage) evolve over time?
Statistical question: how to model temporal process? Smoothness?
 - Discrete first-order autoregressive (i.e., CAR) model is not smooth
 - Discrete second-order autoregressive (i.e., thin plate spline) is very smooth
 - Nonstationarity?
Application 2: Generalized Pareto / Trend filtering

- Discrete autoregressive model is a model (prior) for temporal contrasts (in biomass)
- Nonstationarity could be achieved by setting some contrasts to zero
 - Reversible jump
 - L1 prior (Laplace / double exponential) a la the Lasso
 - Generalized Pareto extends the Laplace prior based on extensive work on properties of shrinkage priors (Carvalho et al (2010), Tansey et al. (2016), Taddy (2013))
 - Looks like Laplace prior but with fatter tails
- Could consider first-order (piecewise constant model), second-order (piecewise linear), third-order (piecewise quadratic) contrasts
Application 2: Generalized Pareto / Trend filtering

• Marginalized model (third order)

\[b_t \sim \text{GenPar}(3b_{t-1} - 3b_{t-2} + b_{t-3}, \psi, \sigma) \]

• Sparsity-inducing prior and modeling of contrasts produces very complicated and often very strong temporal dependence

• Hard to make good MCMC proposals

• Model (third order) with data augmentation

\[
\begin{align*}
 b_t & \sim \mathcal{N}(3b_{t-1} - 3b_{t-2} + b_{t-3}, \omega_t) \\
 \omega_t & \sim \text{Exp}(\lambda_t^2/2) \\
 \lambda_t & \sim \text{Ga}(\psi, \sigma)
\end{align*}
\]

• Now have normal prior for \(b_{1:T}\) but no conjugacy so still hard to find good proposals

• And we have additional hierarchical levels that can impede MCMC mixing
Application 2: MCMC performance

Mixing with data augmentation using default NIMBLE MCMC

Mixing in marginalized model using HMC in Stan

Spatio-temporal dependence: a blessing and a curse for computation and inference
Application 2: MCMC performance (2)

Spatio-temporal dependence: a blessing and a curse for computation and inference
Application 2: Customized block sampling in NIMBLE

1. Use data augmentation with normal approximation to likelihood \([y|b]\) at each point to provide approximately conjugate proposals for biomass process
 - Simple to approximate with mode and curvature of likelihood
2. Joint updates for \(\omega_t, \lambda_t, b_{t-l:t+l}\): bivariate random walk for hyperparameters and approximate conjugate update for biomass process values
 - Joint updating of hyperparameters and process addresses cross-level dependency
 - Joint updating of multiple biomass values addresses temporal dependency
 - Local neighborhood updates for biomass reduce computation and avoid high-dimensional approximate conjugacy

Sampling done in NIMBLE using a user-defined sampler, combined with standard samplers for other model parameters.
Application 2: Customized MCMC performance

Mixing with data augmentation using customized NIMBLE MCMC

Spatio-temporal dependence: a blessing and a curse for computation and inference
Application 2: Initial results

Spatio-temporal dependence: a blessing and a curse for computation and inference
Concluding thoughts

• The spatio(-temporal) dependence we need for smoothing/prediction can greatly affect algorithm performance.

• Blocked sampling can address dependence but good proposals can be hard to find, particularly with:
 – non-conjugate models and
 – dependence across model levels.

• Even with algorithm advances, computational limitations still greatly limit our ability to fit rich model structures.

• NIMBLE provides a platform for
 – customizing algorithms for particular models and
 – developing general-purpose algorithms for hierarchical models.
PalEON Acknowledgements

• Pollen-biomass Collaborators: Ann Raiho, Jason McLachlan (Notre Dame Biology)

• PalEON investigators: Jason McLachlan (Notre Dame, PI), Mike Dietze (Boston U.), Andrew Finley (Michigan State), Amy Hessl (West Virginia), Phil Higuera (Idaho), Mevin Hooten (USGS/Colorado State), Steve Jackson (USGS/Arizona), Dave Moore (Arizona), Neil Pederson (Harvard Forest), Jack Williams (Wisconsin), Jun Zhu (Wisconsin)

• NSF Macrosystems Program
NIMBLE Acknowledgements

NIMBLE development team:

• Perry de Valpine (PI) UC Berkeley Environmental Science, Policy and Management (ESPM)
• Daniel Turek Williams College
• Nick Michaud UC Berkeley Statistics and ESPM
• Fritz Obermeyer UC Berkeley Statistics and ESPM
• Duncan Temple Lang UC Davis Statistics
• and various development team alumni

NIMBLE can be installed from CRAN in the usual way for an R package, and a full website with link to the User Manual is at http://r-nimble.org.

