Beyond the black box: Flexible programming of hierarchical modeling algorithms for BUGS-compatible models using NIMBLE

Christopher Paciorek UC Berkeley Statistics

Joint work with:
Perry de Valpine (PI) UC Berkeley Environmental Science, Policy and Management
Daniel Turek Williams College
Nick Michaud UC Berkeley Statistics and ESPM
Cliff Anderson-Bergman Sandia National Lab (alumnus)
Duncan Temple Lang UC Davis Statistics

http://r-nimble.org

UCLA Biostatistics seminar
February 2017

Funded by NSF DBI-1147230 and NSF-ACI-1550488
What do we want to do with hierarchical models?

1. Core algorithms
 • MCMC
 • Sequential Monte Carlo
 • Laplace approximation
 • Importance sampling
 • Variational Bayes
What do we want to do with hierarchical models?

1. Core algorithms
 - MCMC
 - Sequential Monte Carlo
 - Laplace approximation
 - Importance sampling
 - Variational Bayes

2. Different flavors of algorithms
 - Many flavors of MCMC
 - Gaussian quadrature
 - Monte Carlo expectation maximization (MCEM)
 - Kalman Filter
 - Auxiliary particle filter
 - Posterior predictive simulation
 - Posterior re-weighting
 - Data cloning
 - Bridge sampling (normalizing constants)
 - YOUR FAVORITE HERE
 - YOUR NEW IDEA HERE
What do we want to do with hierarchical models?

1. Core algorithms
 - MCMC
 - Sequential Monte Carlo
 - Laplace approximation
 - Importance sampling
 - Variational Bayes

2. Different flavors of algorithms
 - Many flavors of MCMC
 - Gaussian quadrature
 - Monte Carlo expectation maximization (MCEM)
 - Kalman Filter
 - Auxiliary particle filter
 - Posterior predictive simulation
 - Posterior re-weighting
 - Data cloning
 - Bridge sampling (normalizing constants)
 - YOUR FAVORITE HERE
 - YOUR NEW IDEA HERE

3. Idea combinations
 - Particle MCMC
 - Particle Filter with replenishment
 - MCMC/Laplace approximation
 - Dozens of ideas in recent JRSSB/JCGS issues

NIMBLE: extensible software for hierarchical models (r-nimble.org)
What can a practitioner do with hierarchical models?

Two basic software designs:

1. Typical R package = Model family + 1 or more algorithms
 - GLMMs: lme4, MCMCglmm
 - GAMMs: mgcv
 - spatial models: spBayes, INLA
What can a practitioner do with hierarchical models?

Two basic software designs:

1. Typical R package = Model family + 1 or more algorithms
 - GLMMs: lme4, MCMCglmm
 - GAMMs: mgcv
 - spatial models: spBayes, INLA

2. Flexible model + black box algorithm
 - BUGS: WinBUGS, OpenBUGS, JAGS
 - PyMC
 - INLA
 - Stan

NIMBLE: extensible software for hierarchical models (r-nimble.org)
Existing software

Model

Algorithm

\[Y(1) \]
\[X(1) \]
\[X(2) \]
\[X(3) \]

\[Y(2) \]
\[Y(3) \]

\[X(1) \rightarrow X(2) \]
\[X(2)
\[\longrightarrow X(3) \]
\[Y(1) \rightarrow Y(2) \]
\[Y(2)
\[\longrightarrow Y(3) \]

e.g., BUGS (WinBUGS, OpenBUGS, JAGS), INLA, Stan, various R packages

NIMBLE: extensible software for hierarchical models (r-nimble.org)
NIMBLE: The Goal

Model

\[Y(1) \rightarrow X(2) \rightarrow X(3) \]

\[Y(2) \rightarrow X(2) \rightarrow X(3) \]

\[Y(3) \rightarrow X(2) \rightarrow X(3) \]

Algorithm language

NIMBLE: extensible software for hierarchical models (r-nimble.org)
Divorcing Model Specification from Algorithm

Your new method

Data cloning

MCEM

Quadrature

Maximum likelihood

NIMBLE: extensible software for hierarchical models (r-nimble.org)
Goals

– Retaining BUGS compatibility
– Providing a variety of standard algorithms
– **Allowing developers to add new algorithms** (including modular combination of algorithms)
– Allowing users to operate within R
– Providing speed via compilation to C++, with R wrappers
NIMBLE System Summary

statistical model (BUGS code) + algorithm (nimbleFunction)

R objects + R under the hood

R objects + C++ under the hood

✧ We generate C++ code,
✧ compile and load it,
✧ provide interface object.

NIMBLE: extensible software for hierarchical models (r-nimble.org)
1. Model specification

 BUGS language \rightarrow R/C++ model object

2. Algorithm library

 MCMC, Particle Filter/Sequential MC, etc.

3. Algorithm specification

 NIMBLE programming language within R \rightarrow R/C++ algorithm object
User Experience: Creating a Model from BUGS

```r
littersCode <- nimbleCode(
  for(j in 1:G) {
    for(l in 1:N) {
      r[i, j] ~ dbin(p[i, j], n[i, j]);
      p[i, j] ~ dbeta(a[j], b[j]);
    }
    mu[j] <- a[j]/(a[j] + b[j]);
    theta[j] <- 1.0/(a[j] + b[j]);
    a[j] ~ dgamma(1, 0.001);
    b[j] ~ dgamma(1, 0.001);
  }
)
```

1. Parse and process BUGS code. Collect information in model object.

2. Use igraph plot method (we also use this to determine dependencies).

3. Provides variables and functions (calculate, simulate) for algorithms to use.

> littersModel <- nimbleModel(littersCode, constants = list(N = 16, G = 2), data = list(r = input$r))
> littersModel_cpp <- compileNimble(littersModel)
The Success of R
Programming with Models

You give NIMBLE:

```r
littersCode <- nimbleCode( {
  for(j in 1:G) {
    for(I in 1:N) {
      r[i, j] ~ dbin(p[i, j], n[i, j]);
      p[i, j] ~ dbeta(a[j], b[j]);
    }
    mu[j] <- a[j]/(a[j] + b[j]);
    theta[j] <- 1.0/(a[j] + b[j]);
    a[j] ~ dgamma(1, 0.001);
    b[j] ~ dgamma(1, 0.001);
  }
})
```

You get this:

```r
> littersModel$a[1] <- 5
> simulate(littersModel, 'p')
> p_deps <- littersModel$getDependencies('p')
> calculate(littersModel, p_deps)
> getLogProb(pumpModel, 'r')
```

NIMBLE also extends BUGS: multiple parameterizations, named parameters, and user-defined distributions and functions.
User Experience: Specializing an Algorithm to a Model

```
littersModelCode <- modelCode({
  for(j in 1:G) {
    for(I in 1:N) {
      r[i, j] ~ dbin(p[i, j], n[i, j]);
      p[i, j] ~ dbeta(a[j], b[j]);
    }
    mu[j] <- a[j]/(a[j] + b[j]);
    theta[j] <- 1.0/(a[j] + b[j]);
    a[j] ~ dgamma(1, 0.001);
    b[j] ~ dgamma(1, 0.001);
  }
})
```

```
sampler_slice <- nimbleFunction(
  setup = function((model, mvSaved, control) {
    calcNodes <- model$getDependencies(control$targetNode)
    discrete <- model$getNodeInfo()[[control$targetNode]]$isDiscrete()
    [...snip...]
  run = function() {
    u <- getLogProb(model, calcNodes) - rexp(1, 1)
    x0 <- model[[targetNode]]
    L <- x0 - runif(1, 0, 1) * width
    [...snip....]
  ...
})
```

```
> littersMCMCspec <- configureMCMC(littersModel)
> littersMCMCspec$getSamplers()
[...snip...]
[3] RW sampler;  targetNode: b[1],  adaptive: TRUE,  adapInterval: 200,  scale: 1
[5] conjugate_beta sampler;  targetNode: p[1, 1],  dependents_dbin: r[1, 1]
[6] conjugate_beta sampler;  targetNode: p[1, 2],  dependents_dbin: r[1, 2]
[...snip...]
> littersMCMCspec$addSampler(‘a[1]’, ‘slice’, list(adapInterval = 100))
> littersMCMCspec$addSampler(‘a[2]’, ‘slice’, list(adapInterval = 100))
> littersMCMCspec$addMonitors(‘theta’)
> littersMCMC <- buildMCMC(littersMCMCspec)
> littersMCMC_Cpp <- compileNimble(littersMCMC, project = littersModel)
> littersMCMC_Cpp$run(20000)
```
User Experience: Specializing an Algorithm to a Model (2)

```r
littersModelCode <- quote(
  for(j in 1:G) {
    for(I in 1:N) {
      r[i, j] ~ dbin(p[i, j], n[i, j]);
      p[i, j] ~ dbeta(a[j], b[j]);
    }
    mu[j] <- a[j]/(a[j] + b[j]);
    theta[j] <- 1.0/(a[j] + b[j]);
    a[j] ~ dgamma(1, 0.001);
    b[j] ~ dgamma(1, 0.001);
  })

buildMCEM <- nimbleFunction(
  while(runtime(converged == 0)) {
    ...
    calculate(model, paramDepDetermNodes)
    mcmcFun(mcmc.its, initialize = FALSE)
    currentParamVals[1:nParamNodes] <- getValues(model,paramNodes)
    op <- optim(currentParamVals, objFun, maximum = TRUE)
    newParamVals <- op$maximum
    ...
  }
)

> littersMCEM <- buildMCEM(littersModel, latentNodes = ‘p’, mcmcControl = list(adaptInterval = 50), boxConstraints = list( list(‘a’, ‘b’), limits = c(0, Inf)), buffer = 1e-6)
> set.seed(0)
> littersMCEM(maxit = 50, m1 = 500, m2 = 5000)
```

Modularity:

One can plug any MCMC sampler into the MCEM, with user control of the sampling strategy, in place of the default MCMC.
1. Model specification

BUGS language \(\rightarrow\) R/C++ model object

2. Algorithm library

MCMC, Particle Filter/Sequential MC, MCEM, etc.

3. Algorithm specification

NIMBLE programming language within R \(\rightarrow\) R/C++ algorithm object
NIMBLE in Action: the Litters Example

Beta-binomial GLMM for clustered binary response data
Survival in two sets of 16 litters of pigs

```r
littersModelCode <- nimbleCode(
  for(j in 1:2) {
    for(l in 1:16) {
      r[i, j] ~ dbin(p[i, j], n[i, j]);
      p[i, j] ~ dbeta(a[j], b[j]);
    }
    mu[j] <- a[j]/(a[j] + b[j]);
    theta[j] <- 1.0/(a[j] + b[j]);
    a[j] ~ dgamma(1, 0.001);
    b[j] ~ dgamma(1, 0.001);
  }
)
```

Challenges of the toy example:

• BUGS manual: “The estimates, particularly a_1, a_2 suffer from extremely poor convergence, limited agreement with m.l.e.’s and considerable prior sensitivity. This appears to be due primarily to the parameterisation in terms of the highly related a_j and b_j, whereas direct sampling of μ_j and θ_j would be strongly preferable.”

• But that’s not all that’s going on. Consider the dependence between the p’s and their a_j, b_j hyperparameters.

• And perhaps we want to do something other than MCMC.
Default MCMC: Gibbs + Metropolis

```r
> littersMCMCspec <- configureMCMC(littersModel, list(adaptInterval = 100))
> littersMCMC <- buildMCMC(littersMCMCspec)
> littersMCMC_cpp <- compileNIMBLE(littersModel, project = littersModel)
> littersMCMC_cpp$run(10000)
```
NIMBLE: extensible software for hierarchical models (r-nimble.org)
Blocked MCMC: Gibbs + Blocked Metropolis

```r
> littersMCMCspec2 <- configureMCMC(littersModel, list(adaptInterval = 100))
> littersMCMCspec2$addSampler(c('a[1]', 'b[1]'), 'RW_block', list(adaptInterval = 100))
> littersMCMCspec2$addSampler(c('a[2]', 'b[2]'), 'RW_block', list(adaptInterval = 100))
> littersMCMC2 <- buildMCMC(littersMCMCspec2)
> littersMCMC2_cpp <- compileNIMBLE(littersMCMC2, project = littersModel)
> littersMCMC2_cpp$run(10000)
```
NIMBLE: extensible software for hierarchical models (r-nimble.org)
Blocked MCMC: Gibbs + Cross-level Updaters

- Cross-level dependence is a key barrier in this and many other models.
- We wrote a new “cross-level” updater function using the NIMBLE DSL.
 - Blocked Metropolis random walk on a set of hyperparameters with conditional Gibbs updates on dependent nodes (provided they are in a conjugate relationship).
 - Equivalent to (analytically) integrating the dependent (latent) nodes out of the model.

```r
> littersMCMCspec3 <- configureMCMC(littersModel, adaptInterval = 100)
> topNodes1 <- c('a[1]', 'b[1]')
> littersMCMCspec3$addSampler(topNodes1, 'crossLevel', list(adaptInterval = 100))
> topNodes2 <- c('a[2]', 'b[2]')
> littersMCMCspec3$addSampler(topNodes2, 'crossLevel', list(adaptInterval = 100))
> littersMCMC3 <- buildMCMC(littersMCMCspec3)
> littersMCMC3_cpp <- compileNIMBLE(littersMCMC3, project = littersModel)
> littersMCMC3_cpp$run(10000)
```
NIMBLE: extensible software for hierarchical models (r-nimble.org)
Litters MCMC: BUGS and JAGS

- Customized sampling possible in NIMBLE greatly improves performance.
- BUGS gives similar performance to the default NIMBLE MCMC
 - Be careful – values of sim.list and sims.matrix in R2WinBUGS output are randomly permuted
 - Mixing for a_2 and b_2 modestly better than default NIMBLE MCMC
- JAGS slice sampler gives similar performance as BUGS, but fails for some starting values with this (troublesome) parameterization
- NIMBLE provides user control and transparency.
 - NIMBLE is faster than JAGS on this example (if one ignores the compilation time), though not always.
 - Note: we’re not out to build the best MCMC but rather a flexible framework for algorithms – we’d love to have someone else build a better default MCMC and distribute for use in our system.
1. Model specification

 BUGS language \Rightarrow R/C++ model object

2. Algorithm library

 MCMC, Particle Filter/Sequential MC, etc.

3. Algorithm specification

 NIMBLE programming language within R \Rightarrow R/C++ algorithm object
NIMBLE: Programming With Models

We want:

• High-level processing (model structure) in R
• Low-level processing in C++
NIMBLE: Programming with Models

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
 calcNodes <- model$getDependencies(targetNode)
},
run = function() {
 model_lp_initial <- calculate(model, calcNodes)
 proposal <- rnorm(1, model[[targetNode]], scale)
 model[[targetNode]] <- proposal
 model_lp_proposed <- calculate(model, calcNodes)
 log_MH_ratio <- model_lp_proposed - model_lp_initial

 if(decide(log_MH_ratio)) jump <- TRUE
 else jump <- FALSE

 # Various bookkeeping operations ...
})
NIMBLE: Programming with Models

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
 calcNodes <- model$getDependencies(targetNode)
},

run = function() {
 model_lp_initial <- calculate(model, calcNodes)
 proposal <- rnorm(1, model[[targetNode]], scale)
 model[[targetNode]] <- proposal
 model_lp_proposed <- calculate(model, calcNodes)
 log_MH_ratio <- model_lp_proposed - model_lp_initial

 if(decide(log_MH_ratio)) jump <- TRUE
 else jump <- FALSE

 # ... Various bookkeeping operations ...

})

NIMBLE: extensible software for hierarchical models (r-nimble.org)
sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
 calcNodes <- model$getDependencies(targetNode)
},

run = function() {
 model_lp_initial <- calculate(model, calcNodes)
 proposal <- rnorm(1, model[[targetNode]], scale)
 model[[targetNode]] <<- proposal
 model_lp_proposed <- calculate(model, calcNodes)
 log_MH_ratio <- model_lp_proposed - model_lp_initial

 if(decide(log_MH_ratio)) jump <- TRUE
 else jump <- FALSE

 # Various bookkeeping operations ...
})
The NIMBLE compiler

Feature summary:
• R-like matrix algebra (using Eigen library)
• R-like indexing (e.g. X[1:5,])
• Use of model variables and nodes
• Model calculate (logProb) and simulate functions
• Sequential integer iteration
• if-then-else, do-while
• Declare input & output types only
• Access to much of Rmath.h (e.g. distributions)
• Automatic R interface / wrapper
• Many improvements / extensions planned
How an Algorithm is Processed in NIMBLE

- DSL code (run code) within nimbleFunction()
 - Parse in R
 - Parse tree of code
 - Process to a Reference Class in R
 - Abstract syntax tree
 - .Cpp and .h files in R TMPDIR
 - g++/llvm/etc.
 - DLL in R TMPDIR
 - Generation of R wrapper functions that use .Call
 - Access via wrappers from R

NIMBLE: extensible software for hierarchical models (r-nimble.org)
Modular algorithms: particle MCMC

- Particle filter (SMC) approximates a posterior for latent states using a sample.
- Traditionally used in state space models where the sample particles are propagated in time to approximate: $p(x_k | y_{1:k}, \theta)$.

Figure 2: Particle filtering (from (Lehmann 2003))

- Weights from ‘correction’ step can be used to estimate $p(y_{1:k} | \theta)$.
- Embed in MCMC to do approximate marginalization over $x_{1:k}$.

NIMBLE: extensible software for hierarchical models (r-nimble.org)
Particle MCMC in NIMBLE

sampler_PMCMC <- nimbleFunction(

setup = function(model, mvSaved, target, control) {

 my_particleFilter <- buildAuxiliaryFilter(model, control$latents, control = list(saveAll = TRUE, smoothing = TRUE, lookahead = lookahead))

},
run = function() {

 modelLP0 <- modelLL0 + calculate(model, target)
 propValue <- rnorm(1, mean = model[[target]], sd = scale)
 model[[target]] <<- propValue
 modelLL1 <- my_particleFilter$run(m)
 modelLP1 <- modelLL1 + calculate(model, target)
 jump <- my_decideAndJump$run(modelLP1, modelLP0, 0, 0)

})
Status of NIMBLE and Next Steps

• First release was June 2014 with regular releases since. Lots to do:
 – Improve the user interface and speed up compilation
 – Allow indices of vectors to be random (e.g., mixture models)
 • Bayesian nonparametrics with Abel Rodriguez (UCSC)
 – Refinement/extension of the DSL for algorithms
 • e.g., automatic differentiation, parallelization
 – Additional algorithms written in NIMBLE DSL
 • e.g., normalizing constant calculation, Laplace approximations

• Interested?
 – Announcements: nimble-announce Google site
 – User support/discussion: nimble-users Google site
 – Write an algorithm using NIMBLE!
 – Help with development of NIMBLE: email nimble.stats@gmail.com or see github.com/nimble-dev
Goal: Improve the predictive capacity of terrestrial ecosystem models

“\textit{This large variation among carbon-cycle models ... has been called ‘uncertainty’. I prefer to call it ‘ignorance’}.”
- Prentice (2013) Grantham Institute

Critical issue: model parameterization and representation of decadal- to centennial-scale processes are poorly constrained by data

Approach: use historical and fossil data to estimate past vegetation and climate and use this information for model initialization, assessment, and improvement
PalEON Statistical Applications

• Estimate spatially-varying composition and biomass of tree species from count and zero-inflated size data in year 1850
• Estimate temporal variations in temperature and precipitation over 2000 years from tree rings and lake/bog records
• Estimate tree composition spatially over 2000 years from fossil pollen in lake sediment cores
• Estimate biomass over time at a site from fossil pollen in lake sediment cores
Fossil Pollen Data

Berry Pond, W Massachusetts

Year AD

Pine

Henlock

Birch

Oak

Hickory

Beach

Chesnut

Grass & weeds

Charcoal/Pollen

% organic matter

European settlement

Onset of Little Ice Age
Inferring Biomass from Pollen

• Calibration with multiple spatial locations:
 – “Regress” multinomial counts on biomass
 – For each taxon, have proportion of the taxon be a smooth function of biomass using splines and Dirichlet parameters:
 • $\alpha_k = \exp(Z(b)\beta_k)$
 – Estimate spline coefficients for each taxon

• Predict biomass over time at one location:
 – State space model for biomass over time
 – Fixed spline coefficients from calibration
 – Inverse problem (just Bayesian inference)
 • $\alpha_k = \exp(Z(b_t)\beta_k)$
Relating biomass to composition

• Using multiple sites (i = 1,...,n) with measured pollen composition \((y_i)\) for \(k=1,...,K\) taxa and known local biomass \((b_i)\), we regress the counts on biomass:

\[
\alpha_{i,k} = \exp(Z(b_i)\mathbf{^T}\beta_k)
\]

\[
p_i \sim \text{Dirich}(\alpha_{i,})
\]

\[
y_i \sim \text{Multinom}(p_i)
\]

• This uses b-splines to relate proportional abundance of a taxon to biomass.

• Estimate the \(\beta_k\) parameters (basis coefficients) for each taxon, \(k=1,...,K\).
Prediction Model

\[
\sigma \\
\beta_k \\
\alpha_{tk} \\
p_{tk} \\
\gamma_{tk} \\

b_t \\
\longleftarrow Z(b_t) \\
\text{time } t
\]

\[
\text{taxon } k
\]

NIMBLE: extensible software for hierarchical models (r-nimble.org)
Prediction Model

```r
for(t in 1:nTimes)
  Y[t, 1:nTaxa] ~ ddirchmulti(alpha[t, 1:nTaxa], n[t])

for (k in 1:nTaxa)
  for(t in 1:nTimes)
    alpha[t, k] <- exp(Zb[t, 1:nKnots] %*% beta[1:nKnots, k])

for( t in 1:nTimes)
  Zb[t, 1:nKnots] <- bspline(b[t], knots[1:w])

for(t in 2:nTimes)
  b[t] ~ dlnorm(log(b[t-1]), sdlog = sigma)

sigma ~ dunif(0, 10) # Gelman (2006)
b[1] ~ dunif(0, 400)
```

- **Pollen Likelihood**: $Y[t, 1:nTaxa] \sim ddirchmulti(alpha[t, 1:nTaxa], n[t])$
- **Latent Predictor**: $\alpha[t, k] \leftarrow \exp(Zb[t, 1:nKnots] \times beta[1:nKnots, k])$
- **Biomass Evolution**: $b[t] \sim dlnorm(\log(b[t-1]), \text{sdlog} = \sigma)$
- **Hyperpriors**: $\sigma \sim \text{dunif}(0, 10)$ # Gelman (2006), $b[1] \sim \text{dunif}(0, 400)$

NIMBLE: extensible software for hierarchical models (r-nimble.org)
Results at one site

Calibration sites and prediction site (red)

Biomass over time
How Can NIMBLE Help?

• More flexible model specification
 – Dirichlet-multinomial (user-defined distribution)
 – b-spline construction (user-defined function)

• User control over MCMC specification

• Alternative algorithms, such as particle filter, particle MCMC

• Provide algorithms for model comparison and model criticism

• Transparency when an algorithm fails
PalEON Acknowledgements

• Pollen-biomass Collaborators: Ann Raiho, Jason McLachlan (Notre Dame Biology)
• PalEON investigators: Jason McLachlan (Notre Dame, PI), Mike Dietze (BU), Andrew Finley (Michigan State), Amy Hessl (West Virginia), Phil Higuera (Idaho), Mevin Hooten (USGS/Colorado State), Steve Jackson (USGS/Arizona), Dave Moore (Arizona), Neil Pederson (Harvard Forest), Jack Williams (Wisconsin), Jun Zhu (Wisconsin)
• NSF Macrosystems Program

NIMBLE: extensible software for hierarchical models (r-nimble.org)