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Spatial and spatio-temporal data

Traditionally, spatial statistics has focused on relatively small
observational datasets.
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To estimate (predict) the spatial surface at all locations, we
estimate how the correlation of observations behaves as a function
of the distance between the locations.

In the last 10-15 years, there has been a lot of attention to larger
datasets and computational impediments.

In particular, remote sensing and computer code output.
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A basic hierarchical model

Models for spatial data typically have a latent Gaussian process at
their core:

Y ∼ N (g, σ2I)

g ∼ N (Xβ,Σ)

Here g has a Gaussian process prior. The structure of Σ determines
the behavior of the spatial field, g.

When one fits the models, the result is a tradeoff between fidelity to
the data and constraints imposed by the process representation and
its covariance (the prior).

Uncertainty about our estimation of g reflects noise in the data and
the strength of the prior.
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Extending the model

A simple model for counts of events:

Y ∼ Poi(exp(g))

g ∼ N (Xβ,Σ)

Depending on the data sources, much more complicated models
build on this basic representation.
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Covariance models

The covariance matrix is based on a covariance function. At
its simplest, one specifies a stationary covariance that is just a
function of distance between the observations:

Exponential:

Σij = τ2 exp

(
−

dij

θ

)
Processes are continuous but not differentiable (like Brownian
motion)

Matern:

Σij = τ2 1

2ν−1Γ(ν)

(
2
√
νdij

θ

)
Kν
(

2
√
νdij

θ

)
Processes are continuous and the number of derivatives
increases with ν.
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Covariance models illustrated
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Discrepancy

Suppose we have a computer code (e.g., climate model,
hydrologic model, etc.). We might embed the code in a
statistical representation to do model validation or model
parameter estimation (calibration).

The difference between the code and the truth is likely
correlated spatially. So we might consider

Y ∼ N (Pm + D, σ2I)

where D is a discrepancy term, spatially-correlated.

Our spatial statistical approach (the Gaussian process) could
then be employed here in terms of D:

D ∼ N (0,Σ)

Chris Paciorek Spatial Statistical Modeling 7



Statistical Framework
Spatial Representations and Computations

Case Study

Scientific goals

Prediction (i.e., mapping, interpolation)

Regression/association analysis that accounts for the spatial
correlation

Borrowing strength spatially in the face of large pixel-specific
uncertainty

Decomposing signal and noise and detection of
patterns/anomalous areas
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Gaussian process computations

Σ is a dense matrix, often of size n × n, as is Σ∗ = Σ + σ2I.

Standard computations involved in maximizing the likelihood,
doing kriging, and doing Bayesian estimation involve Σ∗−1z
and Σ∗−1Z as well as |Σ∗|

Maximimation typically involves a small number of iterations.
MCMC for Bayesian estimation can involve more than 10,000
iterations.

The usual computational approach is to (in each iteration)
compute the Cholesky decomposition, L>L = Σ∗ and solve
the necessary systems of equations.

The Cholesky is O(n3), and this often is the rate-limiting step.
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Computational strategies

Do the covariance calculations faster

Threaded BLAS/Lapack (GotoBLAS, MKL, ACML)
Distributed calculation of the Cholesky decomposition
(Scalapack)

Approximate the covariance calculations

Low-rank approximation of the spatial process

Sparse representation of the covariance (Markov random
fields)
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Fast Cholesky decomposition

Threaded linear algebra packages can greatly speed up the
Cholesky in a multicore environment (shared memory):
GotoBLAS, MKL, ACML

Scalapack does the Cholesky block-wise in a distributed
environment but entails a lot of communication overhead.

For some of our statistical calculations (e.g., Σ∗−1z), we can
avoid a lot of communication cost by doing multiple steps
within the same call to each slave node.

Current implementation:

Using R and Rmpi, divide up the calculation into blocks, a la
Scalapack, and for each block do multi-threaded computations
(in R) based on threaded MKL.
Joint work with Tina Zhuo (Georgia Tech), Prabhat (LBL),
Cari Kaufman (UC Berkeley)
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Markov random field (MRF) models

MRF models extend the idea of a Markov chain to two
dimensions.

Value at one location are conditionally independent of the
other values, given a small number of ’neighbors’.

Note that MRF models are used for data associated with areas
rather than points.

For a Gaussian model, this gives us

gi |gj 6=i ∼ N

 ∑
j∈N(i)

wjgj ,
1

κ ·#N(i)
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MRF models and sparse matrices

The Hammersley-Clifford theorem tells us that this conditional
specification also gives a legitimate joint distribution,

g ∼ N (0, (κQ)−)

where Q is a sparse precision, i.e., inverse covariance, matrix.

There are non-negative values on the diagonal, representing
the number of neighbors for that row’s location.

There are non-zero values on the off-diagonals for i , j pairs
that are neighbors.
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Possible MRF models
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Thin plate spline MRF approximation

The standard CAR model puts a weight of one on the cardinal neighbors
(left).

The limit of a standard CAR model as the grid becomes finer is the
de Wijs process: 2D Brownian motion, which is not differentiable
(Besag and Mondal 2005)

The neighborhood structure on the right gives us a MRF that
approximates a thin plate spline (Rue and Held 2005).

This MRF model gives smoother processes (albeit on a grid), in
concordance with the thin plate spline being differentiable.
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Thin plate spline

A thin plate spline is the function that results from minimizing

n∑
i=1

(yi − g(si ))2 + λJ(g)

where J(g) penalizes ’wiggliness’ in the surface.

J(g) =

Z Z
<2

"„
∂2g(s1, s2)

∂s2
1

«2

+ 2

„
∂2g(s1, s2)

∂s1∂s2

«2

+

„
∂2g(s1, s2)

∂s2
2

«2
#

ds1ds2.

The MRF approximates a thin plate spline by deriving weights
based on a discrete approximation to this penalty.

The result is higher order neighbors and oscillating weights.
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MRF models: surface predictions

observations
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Using MRFs

In many environmental applications, we will have some point-level data,
and we will have areally-aggregated data (e.g., if the ’data’ are computer
code output or remote sensing).

The core approach in my recent work is to represent the latent spatial
process on a fine regular grid,

{Y,A} ∼ N (Pg, σ2I)

g ∼ N (0, (κQ)−)

Each point observations can be taken to relate to the gi for the grid cell
the point falls in, P>i g where Pi picks out the correct cell.

Areal data can be taken to relate to P>i g, a weighted average of the
overlapped grid cells, approximating the integral based on the piecewise
constant representation, g.

The approach handles spatially-misaligned datasets in a coherent fashion,
tackling the regridding problem.
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MRFs and spatial misalignment
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Spatio-temporal extension

We can extend the spatial model by assuming an autoregressive
structure in time:

gt ∼ N (gµ + ρ(gt−1 − gµ), κQ)

Some analytic manipulations give us the distribution of
g = {g1, . . . , gT}:

g ∼ N (0, (H(κ)⊗Q)−)

where H is T by T .
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Particulate matter (PM)

Particulate matter (soot) is produced from emissions from
vehicles, power plants, and other sources.

It is one of the key air pollutants regulated by US EPA, with a
huge amount of scientific work focused on estimating the
short-term and long-term health effects of PM.

Typically health analysis has relied on a network of about
1000 monitors throughout the US.

Ideally, we could get additional information from remote
sensing (satellite aerosol optical depth – AOD) or atmospheric
chemistry modeling (CMAQ).
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Combining information
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Combining information
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Challenges of proxy information

Systematic spatial (and temporal) discrepancy between proxy
and truth

White noise error structure often implausible
This impacts predictions, prediction uncertainty, and
assessment of proxy usefulness
Ignoring the discrepancy leads to overinterpreting patterns in
the proxy
Proxy may not directly quantify the process of interest, hence
’discrepancy’ rather than ’error’ or ’bias’; e.g. AOD is a
vertical column metric.

Spatial misalignment of gridded proxy information and
point-level observations

Proxy datasets are usually very large

Working with standard Gaussian processes is infeasible
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Flexible spatial discrepancy modeling

A hierarchical Bayesian model:

Y ∼ N (Xyβy + Pyg, σ2
y I)

A ∼ N (PAD + β1PAg, σ2
aI)

g ∼ MRF(Xgβg , κgQ)

D ∼ MRF(XDβD , κDQ)

Latent processes, g(·) and D(·), are represented on a fine grid.

We can explore the relationship of the proxy and gold
standard through analysis of spatial variation in D.

Xyβy involves regression terms that explain sub-grid scale
variation in the point measurements, while Xgβg and XDβD

are regression effects on the grid-scale process and the
discrepancy term, respectively.
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Markov chain Monte Carlo

MCMC involves setting up a Markov chain on θ whose
stationary (long-run) distribution is the posterior distribution,

P(θ|Y = y,A = a)

where θ = {g,D, . . .} are the unknowns, including quantities
you want to predict, and y are the data values you have.

We need to run the MCMC for many iterations (often 10000s,
100000s)

Running the MCMC involves calculating various quantities
related to the posterior distribution above, which involves
computations with the covariance or inverse covariance matrix
of the sort we have discussed.
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Exploiting sparsity

If possible, we integrate over the those components of θ that
we can do analytically.

Then in marginal posterior computations, exploit the sparse
structure appropriately.

P(θreduced|A,Y) ∝ |Λ|−
1
2 |VY |−

1
2 |ΣA|−

1
2 |Vb|

1
2 P(θ)·

exp(− 1
2
(YT V−1

Y Y + AT Σ−1
A A−MT

b V−1
b Mb))

Vb = (ZT
Y V−1

Y ZY + ZT
A Σ−1

A ZA + Λ−1)−1

Σ−1
A = V−1

A − V−1
A PVDPT V−1

A

VD = (PT V−1
A P + κQ)−1
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Predicted PM

Y PM = g D A
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Results

Satellite AOD:

The model fitting suggests there is little common spatial
pattern to PM and AOD observations.

The discrepancy term, D(·), varies at both small and large
scales.

As a result the model discounts AOD in predicting PM.

Atmospheric Chemistry Model (CMAQ):

More apparent relationship between CMAQ output and PM.

The discrepancy term also varies at small and large scales, but
more of the variation in the proxy appears to be signal than
for AOD.

Statistical model still heavily discounts the proxy.
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Cross-validation predictive ability, R2 (RMSPE)

Time

scale

Proxy? mid-Atlantic,

2004, MODIS

AOD

mid-Atlantic,

2001,

CMAQ,

space-time

mid-Atlantic,

2001, CMAQ,

spatial models

eastern U.S.,

2001, CMAQ

Monthly1 w/ proxy 0.806 (1.80) 0.640 (2.60) 0.755 (2.14) 0.827 (1.71)

no proxy 0.808 (1.79) 0.686 (2.42) 0.777 (2.04) 0.826 (1.72)

as regr. 0.849 (1.60)

Yearly2 w/ proxy 0.668 (1.00)3 <04 (1.97)3 0.503 (1.32)3 0.800 (1.21)

no proxy 0.650 (1.03)3 0.169 (1.70)3 0.584 (1.20)3 0.835 (1.09)

as regr. 0.849 (1.05)

1 Including monthly averages based on at least five daily observations.
2Including yearly averages (averages of monthly values) based on at least nine months
with at least five daily observations.
3 Excludes one site outside Pittsburgh just downwind of a major industrial facility.
4Squared correlation of held-out data and predictions is 0.473, but observations vs.
predictions are not centered on the one to one line, so error sum of squares exceeds
total sum of squares.
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Conclusions: computation

Certain statistical representations of spatial and
spatio-temporal processes improve computational efficiency.

Markov random field models lead to sparse matrix calculations.
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Spatial Representations and Computations

Case Study

Conclusions: discrepancy

In many problems involving computer codes, characterizing
the discrepancy between the code and the truth is important.

White noise error, while convenient, is generally not
appropriate.
Distinguishing correlated noise from correlated signal is
difficult and likely sensitive to modeling assumptions.

Case study: Is there useful information in the proxies that the
current model structure is not exploiting?

When we don’t have gold standard data, such as in uncertainty
quantification for climate model projections, prior assumptions
about the correlation structure of the discrepancy will be
critical.

What can be said about uncertainty in climate projections at
regional scales?
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