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Outline

• Spatial exposure estimation and environmental epidemiology

• Spatial modelling of exposure

• Prediction-induced measurement error

• Methods for accounting for measurement error

• Simulation results
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Spatial exposure estimation in environmental health

1. retrieval of spatio-temporal data from monitoring networks or site
visits

2. space-time modelling, plus use of GIS-derived covariates

3. prediction at locations of individuals in health study
(e.g., large cohort study)

4. epidemiological investigation with exposure predictions
as a covariate
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Cardiopulmonary disease in the Nurses’ Health Study

• Hypothesis: coronary and respiratory disease are associated with
chronic exposure to particulate matter (PM2.5 and PM10)

• Prospective cohort study of 122,000 female nurses

• PM data taken from EPA and government monitoring networks:
1985-2002

• Predictive space-time model with GIS-derived covariates

• Predictions made for each nurse’s geocoded residence for each
month, 1988-2002

• Proportional hazards survival modelling of health outcomes based
on predicted exposure and personal covariates
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Nurses’ Health Study prediction
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Latent variable modelling of traffic exposure in
Boston

• Spatial latent variable model relating several pollutants to latent
measure of traffic particles

• Predictive Bayesian space-time model with GIS-derived covariates

• Goal is to relate traffic exposure score to health outcomes in several
local cohort studies

– Birthweights in Boston
– Diabetes cohort: heart rate variability (HRV) and inflammation

markers (CRP/IL6)
– Normative aging study: HRV and inflammation markers

(CRP/IL6)
– ...
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Predictive Modelling

• Nurses’ Health Study model:

Yi,t ∼ N(gt(si) +
P∑

p=1

f(zi,p), σ2)

– gt(·) represented as a thin-plate regression (knot-based) spline
– individual spatial surfaces for each month (large scale heterogeneity)
– Smooth terms of GIS covariates such as distance to roads, land use (small

scale heterogeneity)
– fit via gam() and backfitting in R

• Boston model:

Yi,t ∼ N(g(si) + h(t) +
P∑

p=1

f(zi,p), σ2)

– g(·) represented as a thin-plate smoothing spline
– single spatial surface with smooth terms of time and GIS covariates
– fit via MCMC
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Classical and Berkson measurement error

• Classical measurement error:

– covariate, X, is measured with error as W

Hi = β0 + β1Xi + β2Zi + εi

Wi = Xi + Ui

X ⊥ U

V ar(W ) = V ar(X) + V ar(U)

• Berkson measurement error

– covariate, X, is instead centered around a proxy

Hi = β0 + β1Xi + β2Zi + εi

Xi = Si + Vi

S ⊥ V

V ar(X) = V ar(S) + V ar(V )
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Regression Calibration

• In classical measurement error, replace X with E(X|W,Z)

– simple setting: E(X|W ) = σ2
x

σ2
x+σ2

u
W

– linear regression: regression calibration is unbiased for β1

– logistic regression:
∗ approximate bias, β1

(1+β2
10.592σ2

X|W )1/2, is small if β1 is small

– survival analysis: bias is small if effect is small (e.g., relative risk
< 2)

• Berkson error: S = E(X)

– unbiased in linear regression
– bias should be small for logistic and Cox regression if effect sizes

are small
– regression calibration produces a Berkson structure (X =

E(X|W ) + V )
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Spatial smoothing as regression calibration

• The principle

– Kriging/Gaussian process modelling/Bayesian smoothing act as
regression calibration
∗ S = E(X|Y ); X = S + V

– Mixed model prediction acts as regression calibration
∗ the BLUP is the expected value of the spatial random effects,

S = E(X|Y )
– Other smoothers are likely to give similar predictions, so should

mimic regression calibration

• The practice (in the Nurses’ Health Study)

V ar(X) = 0.18 V ar(S) = 0.15

Cor(X, U) = −0.44 Cor(S, V ) = −0.18

X = S + V is a better model than S = X + U
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Adjusting for measurement error

1. Use the smoothed estimates directly

2. Joint Bayesian modelling of health outcomes and exposure data,
accounting for heteroscedasticity and correlation of smoothed co-
variate estimates

3. Sample from the exposure distribution and fit multiple health models
to account for uncertainty
– a bad idea as the sampling moves the situation from Berkson
error back to classical error and induces bias

4. Cross-validation to assess under- or over-smoothing and adjust the
naive estimate:
possible model: X = γ0 + γ1S + V
β̂1,adj = β̂1/γ̂1 where γ̂1 is estimated as the slope from regressing
held-out observations on smoothed predictions

– for NHS, γ̂1 =0.88 (need to adjust for smoothing bias)
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Simulation results

Easy Harder

bias MSE coverage bias MSE coverage

true exposure -0.002 0.003 95.2%

classical smoother -0.013 0.011 93% 0.070 0.031 74.4%

classical with sampling 0.124 0.028 86% 0.591 0.375 1.2%

classical with γ correction -0.018 0.028 95.2%

Bayesian -0.031 0.016 99% -0.114 0.083 89.0%
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Conclusions

• Predictive space-time modelling of exposure induces measurement
error

• Error is of the Berkson type, which in principle induces limited bias

• For continuous outcomes, some adjustments can improve estima-
tion, particularly if smoothing problem is hard (e.g., sparse data)

• Further work is needed in the case of survival outcomes
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