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Spatial exposure estimation in environmental health

. retrieval of spatio-temporal data from monitoring networks or site
Visits

. Space-time modelling, plus use of GIS-derived covariates

. prediction at locations of individuals in health study
(e.g., large cohort study)

. epidemiological investigation with exposure predictions
as a covariate



Cardiopulmonary disease in the Nurses’ Health Study

e Hypothesis: coronary and respiratory disease are associated with
chronic exposure to particulate matter (PMs 5 and PM)

e Prospective cohort study of 122,000 female nurses

e PM data taken from EPA and government monitoring networks:
1985-2002

e Predictive space-time model with GIS-derived covariates

e Predictions made for each nurse’s geocoded residence for each
month, 1988-2002

e Proportional hazards survival modelling of health outcomes based
on predicted exposure and personal covariates



Nurses’ Health Study prediction

PM10 predictions in
central New Englanc

January 1992

PMI0 mass (ug/m3)

- High : 40.7

- Low : 5.6

« PMI0 monitors




Latent variable modelling of traffic exposure in
Boston

e Spatial latent variable model relating several pollutants to latent
measure of traffic particles

e Predictive Bayesian space-time model with GIS-derived covariates

e Goalisto relate traffic exposure score to health outcomes in several
local cohort studies

— Birthweights in Boston

— Diabetes cohort: heart rate variability (HRV) and inflammation
markers (CRP/IL6)

— Normative aging study: HRV and inflammation markers
(CRP/IL6)
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Predictive Modelling

Nurses’ Health Study model:

P

Yie ~ N(ge(si)+ Z f(zip),0°)

p=1

— g:(+) represented as a thin-plate regression (knot-based) spline

— individual spatial surfaces for each month (large scale heterogeneity)

— Smooth terms of GIS covariates such as distance to roads, land use (small
scale heterogeneity)

— fit via gam() and backfitting in R

Boston model:

Yir ~ N(g(si) +h(t) + D f(zip),07)

p=1

— g(-) represented as a thin-plate smoothing spline
— single spatial surface with smooth terms of time and GIS covariates
— fit via MCMC



Classical and Berkson measurement error

e Classical measurement error:

— covariate, X, I1Is measured with error as W

H; = po+ 01 Xi+ B2 + €
Wi = X,+U,
X 1 U

Var(W) = Var(X)+ Var(U)

e Berkson measurement error

— covariate, X, is instead centered around a proxy

H; = po+ 51X+ 622 + €
X; = S;+V
S 1LV
Var(X) = Var(S)+ Var(V)



Regression Calibration

e In classical measurement error, replace X with E(X|W, Z)

2
— simple setting: E(X|W) = JQ‘EGQW
— linear regression: regression calibration is unbiased for 3,
— logistic regression:

* approximate bias, (5705927, 172" Is small if 3; is small

— survival analysis: bias is small if effect is small (e.g., relative risk
< 2)

e Berkson error: S = F(X)

— unbiased in linear regression

— bias should be small for logistic and Cox regression if effect sizes
are small

— regression calibration produces a Berkson structure (X =
E(X|W)+V)



Spatial smoothing as regression calibration

The principle

— Kriging/Gaussian process modelling/Bayesian smoothing act as

regression calibration
* S=FEX|Y); X=5+V
— Mixed model prediction acts as regression calibration
«x the BLUP Is the expected value of the spatial random effects,
S=FEX|Y)
— Other smoothers are likely to give similar predictions, so should
mimic regression calibration

The practice (in the Nurses’ Health Study)
Var(X)=0.18  Var(S)=0.15

Cor(X,U)=-044  Cor(S,V)=—-0.18

X =S54+Visabettermodelthan S = X + U "



Adjusting for measurement error

. Use the smoothed estimates directly

. Joint Bayesian modelling of health outcomes and exposure data,
accounting for heteroscedasticity and correlation of smoothed co-
variate estimates

. Sample from the exposure distribution and fit multiple health models
to account for uncertainty

— a bad idea as the sampling moves the situation from Berkson
error back to classical error and induces bias

. Cross-validation to assess under- or over-smoothing and adjust the
naive estimate:

possible model: X =~ + 1S5+ V

51,adg 51/71 where 4, Is estimated as the slope from regressing
held-out observations on smoothed predictions

— for NHS, 41 =0.88 (need to adjust for smoothing bias)
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Simulation results

Easy Harder
bias MSE coverage bias MSE coverage
true exposure -0.002 0.003 95.2%
classical smoother -0.013 0.011 93% 0.070 0.031 74.4%
classical with sampling 0.124 0.028 86% 0.591 0.375 1.2%
classical with ~ correction -0.018 0.028 95.2%
Bayesian -0.031 0.016 99% -0.114 0.083 89.0%
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Conclusions

Predictive space-time modelling of exposure induces measurement

error

Error is of the Berkson type, which in principle induces limited bias

For continuous outcomes, some adjustments can improve estima-

tion, particularly if smoothing problem is hard (e.g., sparse data)

Further work is needed in the case of survival outcomes
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