Beyond the black box: Using, programming, and sharing hierarchical modeling algorithms such as MCMC and Sequential MC using NIMBLE

Christopher Paciorek UC Berkeley Statistics

Joint work with:
Perry de Valpine (PI) UC Berkeley Environmental Science, Policy and Management
Daniel Turek Williams College, Mathematics and Statistics
Claudia Wehrhahn UC Santa Cruz, Applied Math and Statistics
Abel Rodriguez UC Santa Cruz, Applied Math and Statistics
Nick Michaud UC Berkeley Statistics and ESPM

https://r-nimble.org

ISBA Edinburgh World Meeting
June 2018

Funded by the US National Science Foundation
What do we want to do with hierarchical models?

1. More and better MCMC
 • Many different samplers
 • Better adaptive algorithms

2. Numerical integration
 • Laplace approximation
 • Adaptive Gaussian quadrature
 • Hidden Markov models

3. Maximum likelihood estimation
 • Monte Carlo EM
 • Data cloning
 • Monte Carlo Newton-Raphson

4. Sequential Monte Carlo
 • Auxiliary Particle Filter
 • Ensemble Kalman Filter
 • Unscented Kalman Filter

5. Normalizing constants (AIC or Bayes Factors)
 • Importance sampling
 • Bridge sampling
 • Others

6. Model assessment
 • Bootstrapping
 • Calibrated posterior predictive checks
 • Cross-validation
 • Posterior re-weighting

7. Idea combinations
 • PF + MCMC
 • Resample-move
 • MCMC + Laplace/quadrature

These are just some ideas from a vast literature.

NIMBLE: extensible software for hierarchical models (r-nimble.org)
NIMBLE makes BUGS extensible from R:
- Add new functions
- Add new distributions
- Call external code
Goals

– Retaining BUGS compatibility
– Providing a variety of standard algorithms
– Allowing users to easily modify those algorithms
– **Allowing developers to add new algorithms** (including modular combination of algorithms)
– Allowing users to operate within R
– Providing speed via compilation to C++, with R wrappers
NIMBLE: Programming with models

Graph queries:
- Dependencies
- Topological order
- Node traits

Data structures:
- mu
- b
- z

Node Functions:
- mu: calculate, simulate, getLogProb, getParam
- b: calculate, simulate, getLogProb, getParam
- z: calculate, simulate, getLogProb, getParam

Model API (interface)

> model$getDependencies('b[1]')
> model$getDistribution('mu')

> model$mu
> values(model, c('mu', 'z[1]'))

> model$simulate('b[1]')
> model$getParam('mu', 'sd')
Model-generic algorithm programming

Wanted: a Metropolis-Hastings sampler with normal random-walk proposals.

Challenge: It should work for any node of any model.
Solution: Two-stage evaluation.

NIMBLE: extensible software for hierarchical models (r-nimble.org)
Model-generic algorithm programming

Model A

Target Node: "a[1]"
Calculation Nodes: "mu", "a[1]", "y[1]"

Model B

Target Node: "b[1]"
Calculation Nodes: "mu", "b[1]", "z[1]", "z[2]", "z[3]"

Model C

Target Node: "c[1]"
Calculation Nodes: "mu", "c[1]", "c[2]", "y[1]"
NIMBLE: Model-generic programming

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
 calcNodes <- model$getDependencies(targetNode)
},

run = function() {
 model_lp_initial <- calculate(model, calcNodes)
 proposal <- rnorm(1, model[[targetNode]], scale)
 model[[targetNode]] <<- proposal
 model_lp_proposed <- calculate(model, calcNodes)
 log_MH_ratio <- model_lp_proposed - model_lp_initial
 if(decide(log_MH_ratio)) jump <- TRUE
 else jump <- FALSE
 # Various bookkeeping operations ...
 #}

NIMBLE: extensible software for hierarchical models (r-nimble.org)
NIMBLE: Model-generic programming

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
 calcNodes <- model$getDependencies(targetNode)
},
run = function() {
 model_lp_initial <- calculate(model, calcNodes)
 proposal <- rnorm(1, model[[targetNode]], scale)
 model[[targetNode]] <<- proposal
 model_lp_proposed <- calculate(model, calcNodes)
 log_MH_ratio <- model_lp_proposed - model_lp_initial

 if(decide(log_MH_ratio)) jump <- TRUE
 else jump <- FALSE
 # Various bookkeeping operations ...
})
NIMBLE: Model-generic programming

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
 calcNodes <- model$getDependencies(targetNode)
},

run = function() {
 model_lp_initial <- calculate(model, calcNodes)
 proposal <- rnorm(1, model[['targetNode']], scale)
 model[['targetNode']] <<- proposal
 model_lp_proposed <- calculate(model, calcNodes)
 log_MH_ratio <- model_lp_proposed - model_lp_initial

 if(decide(log_MH_ratio)) jump <- TRUE
 else jump <- FALSE

 # Various bookkeeping operations ...
})

the actual (generic) algorithm
The NIMBLE compiler (run code)

Feature summary:
• R-like matrix algebra (using Eigen library)
• R-like indexing (e.g. X[1:5,])
• Use of model variables and nodes
• Model calculate (logProb) and simulate functions
• Sequential integer iteration
• If-then-else, do-while
• Access to much of Rmath.h (e.g. distributions)
• Call out to your own C/C++ or back to R
• Many improvements / extensions planned
 • Derivatives (coming soon)
NIMBLE: extensible software for hierarchical models (r-nimble.org)
How an Algorithm is Processed in NIMBLE

DSL code (run code) within nimbleFunction()

Parse in R

Parse tree of code

Process to a Reference Class in R

Abstract syntax tree

.Cpp and .h files in R TMPDIR

Writing to files from R

DLL in R TMPDIR

g++/clang++/etc.

Generation of R wrapper functions that use .Call

Access via wrappers from R

NIMBLE: extensible software for hierarchical models (r-nimble.org)
NIMBLE’s algorithm library

– MCMC samplers:
 • Conjugate, adaptive Metropolis, adaptive blocked Metropolis, slice, elliptical slice sampler, particle MCMC, specialized samplers for particular distributions (Dirichlet, CAR, Chinese Restaurant Process)
 • Flexible choice of sampler for each parameter
 • User-specified blocks of parameters
 • Cross-validation, WAIC

– Sequential Monte Carlo (particle filters)
 • Various flavors

– MCEM

– Write your own
NIMBLE’s MCMC engine

– One master nimbleFunction
 • initialize model values and sampler control parameters
 • iterate over MCMC iterations
 – cycle through samplers
 – save current parameter values

– Each kind of sampler is a nimbleFunction

– Default rules for “configuring” the MCMC (assigning samplers to the model nodes)

– Users can override the defaults
 • Choose different NIMBLE-provided samplers
 • Block parameters arbitrarily
 • Write their own samplers (a nimbleFunction!) and use them immediately
NIMBLE in Action: the Litters Example

Beta-binomial GLMM for clustered binary response data
Survival in two sets of 16 litters of pigs

littersModelCode <- nimbleCode({
 for(j in 1:2) {
 for(l in 1:16) {
 r[i, j] ~ dbin(p[i, j], n[i, j]);
 p[i, j] ~ dbeta(a[j], b[j]);
 }
 mu[j] <- a[j]/(a[j] + b[j]);
 theta[j] <- 1.0/(a[j] + b[j]);
 a[j] ~ dgamma(1, 0.001);
 b[j] ~ dgamma(1, 0.001);
 }
})

Challenges of the toy example:

• BUGS manual: “The estimates, particularly \(a_1, a_2 \) suffer from extremely poor convergence, limited agreement with m.l.e.’s and considerable prior sensitivity. This appears to be due primarily to the parameterisation in terms of the highly related \(a_j \) and \(b_j \), whereas direct sampling of \(\mu_j \) and \(\theta_j \) would be strongly preferable.”
• But that’s not all that’s going on. Consider the dependence between the \(p \)’s and their \(a_j, b_j \) hyperparameters.
• And perhaps we want to do something other than MCMC.
Default MCMC: Gibbs + Metropolis

```r
> littersConf <- configureMCMC(littersModel, control = list(adaptInterval = 100))
> littersMCMC <- buildMCMC(littersConf)
> littersMCMC_cpp <- compileNIMBLE(littersModel, project = littersModel)
> littersMCMC_cpp$run(10000)
```
Red line is MLE
Blocked MCMC: Gibbs + Blocked Metropolis

```r
> littersConf2 <- configureMCMC(littersModel, control = list(adaptInterval = 100))
> littersConf2$addSampler(c('a[1]', 'b[1]'), 'RW_block', list(adaptInterval = 100))
> littersConf2$addSampler(c('a[2]', 'b[2]'), 'RW_block', list(adaptInterval = 100))
> littersMCMC2 <- buildMCMC(littersConf2)
> littersMCMC2_cpp <- compileNIMBLE(littersMCMC2, project = littersModel)
> littersMCMC2_cpp$run(10000)
```
NIMBLE: extensible software for hierarchical models (r-nimble.org)
Blocked MCMC: Cross-level Updaters

• Cross-level dependence is a key barrier in this and many other models.
• We wrote a new “cross-level” updater function using the NIMBLE DSL.
 • Blocked Metropolis random walk on a set of hyperparameters with conditional Gibbs updates on dependent nodes (provided they are in a conjugate relationship).
 • Equivalent to (analytically) integrating the dependent (latent) nodes out of the model.
 • Knorr-Held and Rue (2002)’s ‘one-block’ sampler

```r
> littersConf3 <- configureMCMC(littersModel, control = list(adaptInterval = 100))
> topNodes1 <- c('a[1]', 'b[1]')
> littersConf3$addSampler(topNodes1, 'crossLevel', list(adaptInterval = 100))
> topNodes2 <- c('a[2]', 'b[2]')
> littersConf3$addSampler(topNodes2, 'crossLevel', list(adaptInterval = 100))
> littersMCMC3 <- buildMCMC(littersConf3)
> littersMCMC3_cpp <- compileNIMBLE(littersMCMC3, project = littersModel)
> littersMCMC3_cpp$run(10000)
```
User-defined sampler

sampler_awesome <- nimbleFunction(

setup = function(model, mvSaved, targetNode, control) {
 calcNodes <- model$getDependencies(targetNode)
},
run = function() {
 model_lp_initial <- calculate(model, calcNodes)
 proposal <- rnorm(1, model[[targetNode]], scale)
 model[[targetNode]] <<- proposal
 model_lp_proposed <- calculate(model, calcNodes)
 log_MH_ratio <- model_lp_proposed - model_lp_initial

 if(decide(log_MH_ratio)) jump <- TRUE
 else jump <- FALSE

 # Various bookkeeping operations ...
})
Bayesian nonparametrics

Goal: provide Dirichlet process (DP) and related nonparametric density modeling in a general system.

Status:

• Two standard representations of Bayesian nonparametric mixture models based on DPs
 • Chinese restaurant process distribution for clustering observations
 • Collapsed Gibbs sampler
 • Stick-breaking finite-dimensional approximation
 • Blocked Gibbs sampler (conjugate beta-categorical samplers for stick-breaking parameters)

• Plans:
 • More efficient implementations
 • Dependent DP, hierarchical DP, etc.
codeBNP <- nimbleCode({
 for(i in 1:nStudies) {
 y[i] ~ dbin(size = m[i], prob = q[i]) # avandia MIs
 x[i] ~ dbin(size = n[i], prob = p[i]) # control MIs
 q[i] <- expit(theta + gamma[i]) # Avandia log-odds
 p[i] <- expit(gamma[i]) # control log-odds
 gamma[i] ~ dnorm(muTilde[xi[i]], # random effects (from mixture)
 var = tauTilde[xi[i]]) # with mean/var from one component
 }
 # mixture component (cluster) parameters drawn from DP base measures
 for(i in 1:nStudies) {
 muTilde[i] ~ dnorm(mu0, sd = sd0)
 tauTilde[i] ~ dinvgamma(a0, b0)
 }
 # CRP for clustering studies to mixture components
 xi[1:nStudies] ~ dCRP(alpha, size = nStudies)
 # hyperparameters
 alpha ~ dgamma(1, 1)
 mu0 ~ dnorm(0, sd = 10)
 sd0 ~ dunif(0, 100)
 a0 ~ dunif(0, 100)
 b0 ~ dunif(0, 100)
 theta ~ dflat() # effect of Avandia
})
DP Mixture example: Avandia meta-analysis

confBNP = configureMCMC(modelBNP, print = TRUE)

[1] CRP_concentration sampler: alpha
[2] conjugate_dflat_dnorm sampler: mu0
[3] RW sampler: sd0
[4] RW sampler: a0
[5] RW sampler: b0
...
[104] RW sampler: gamma[1]
[105] RW sampler: gamma[2]
[106] RW sampler: gamma[3]
DP Mixture example: Meta-analysis with stick-breaking

codeBNP <- nimbleCode(
 for(i in 1:nStudies) {
 y[i] ~ dbin(size = m[i], prob = q[i]) # avandia MIs
 x[i] ~ dbin(size = n[i], prob = p[i]) # control MIs
 q[i] <- expit(theta + gamma[i]) # Avandia log-odds
 p[i] <- expit(gamma[i]) # control log-odds
 gamma[i] ~ dnorm(muTilde[xi[i]], var = tauTilde[xi[i]]) # random effects (from mixture)
 xi[i] ~ dcat(prob[1:nSub]) # cluster assignment
 }
)

mixture component (cluster) parameters drawn from DP base measures
for(i in 1:nStudies) {
 muTilde[i] ~ dnorm(mu0, sd = sd0)
 tauTilde[i] ~ dinvgamma(a0, b0)
}

prob[1:nSub] <- stick_breaking(z[1:(nSub-1)])
for(i in 1:(nSub-1))
 z[i] ~ dbeta(1, alpha)
hyperparameters
alpha ~ dgamma(1, 1)
mu0 ~ dflat()
sd0 ~ dunif(0, 100)
a0 ~ dunif(0, 100)
b0 ~ dunif(0, 100)
theta ~ dflat() # effect of Avandia
)
Modular algorithms: particle MCMC

- Particle filter (SMC) approximates a posterior for latent states using a sample
- Traditionally used in state space models where the sample particles are propagated in time to approximate: $p(x_t|y_{1:t}, \theta)$

Figure 2: Particle filtering (from (Lehmann 2003))

- Weights from ‘correction’ step can be used to estimate $p(y_{1:t}|\theta)$
- Embed in MCMC to do approximate marginalization over $x_{1:t}$
Particle MCMC in NIMBLE

sampler_PMCMC <- nimbleFunction(

setup = function(model, mvSaved, target, control) {

 my_particleFilter <- buildAuxiliaryFilter(model, control$latents, control = list(saveAll = TRUE, smoothing = TRUE, lookahead = lookahead))

},
run = function() {

 modelLogProb0 <- modelLogLik0 + calculate(model, target)
 propValue <- rnorm(1, mean = model[[target]], sd = scale)
 model[[target]] <<- propValue
 modelLogLik1 <- my_particleFilter$run(m)
 modelLogProb1 <- modelLogLik1 + calculate(model, target)
 jump <- decide(modelLogProb1 - modelLogProb0)

})

nested
nimbleFunction
(composable algorithm)
Reproducible Research

Algorithm/methods developers tend to write their own algorithms in R, Python, MATLAB, or C/C++ because they are implementing new computations and need language flexibility.

Drawbacks:
- code may not be discoverable by a large audience
- users must become familiar with a new system
- parts of the code may duplicate other work

Applied statisticians tend to write their own model-specific code in R, Python, MATLAB, or C/C++ because available software is not flexible enough (e.g., unusual model structures, specialized MCMC samplers, specialized numerical implementation).

Drawbacks:
- users may not have the expertise to implement some methods
- parts of the code may duplicate other work, requiring additional work of the analyst
- code may not be well-tested
NIMBLE: What can I program?

- Your own distribution for use in a model
- Your own function for use in a model
- Your own MCMC sampler for a variable in a model
- A new MCMC sampling algorithm for general use
- A new algorithm for hierarchical models
- An algorithm that composes other existing algorithms (e.g., MCMC-SMC combinations)
Status of NIMBLE and Next Steps

• First release was June 2014 with regular releases since. Lots to do:
 – Improve the user interface and speed up compilation (in progress)
 – Scalability for large models (in progress)
 – Ongoing Bayesian nonparametrics with Claudia Wehrhahn & Abel Rodriguez
 – Refinement/extension of the DSL for algorithms (in progress)
 • e.g., automatic differentiation, parallelization
 – Additional algorithms written in NIMBLE DSL
 • e.g., normalizing constant calculation, Laplace approximations

• Interested?
 – We have funding for a postdoc or programmer
 – We have funding to bring selected users to Berkeley for intensive collaboration
 – Announcements: nimble-announce Google site
 – User support/discussion: nimble-users Google site
 – Write an algorithm using NIMBLE!
 – Help with development of NIMBLE: email nimble.stats@gmail.com or see github.com/nimble-dev