Statistical integration of disparate information for spatially-resolved PM exposure estimation

Chris Paciorek
Department of Biostatistics

May 4, 2006

www.biostat.harvard.edu/~paciorek
Collaborators:

- Yang Liu, Doug Dockery, Francine Laden, Joel Schwartz, Helen Suh (EH-EER)
- Brent Coull (Biostatistics)
- Dave Holland, Ana Rappold (EPA)
- Shobha Kondragunta (NOAA)
- Montse Fuentes (NCSU Statistics)
HSPH Health Studies Using Spatial Estimates of Exposure to PM

• NHS: Mortality and cardiovascular outcomes in the NHS cohort (Laden, Schwartz, Suh)
 – nationwide, chronic exposure

• NAS: Cardiovascular biomarkers in the NAS cohort (Schwartz, Suh)
 – eastern MA, acute exposure

• MA-mortality/admissions: Mortality and hospital admissions in Massachusetts based on DPH data (Schwartz, Coull)
 – MA, acute exposure

• MA-birthweights: Birthweights in Massachusetts based on DPH data (Schwartz)
 – MA, chronic exposure
Current exposure estimation efforts and limitations

- NHS: statistical modeling of EPA monitoring data using spatial and regression techniques
 - gaps in spatial coverage
 - few PM2.5 monitors pre-1999

- NAS: central-site estimates
 - no spatial heterogeneity included yet
 - current effort with spatial model using Harvard monitoring data based on a single spatial surface estimate - no space-time interaction

- MA-mortality/admissions: case-crossover analysis based on central site data
 - no spatial heterogeneity included
 - if spatial heterogeneity included, case-crossover requires time-varying spatial estimates

- MA-birthweights: not analyzed
 - need spatially resolved chronic exposure estimates
 - current spatial model only for greater Boston
NHS modeling effort

Estimated PM for one month

Monitor locations

Legend
PM$_{2.5}$ predictions
- High : 15.4
- Low : 3.8
Satellite and deterministic modeling information

- MODIS and MISR satellite measurements of aerosol optical depth (AOD) (NASA)
 - early 2000-ongoing, every 2-9 days, single measurement
 - 10-20 km pixels
 - missing observations due to cloud cover, surface reflectance
 - AOD measures aerosols (in PM2.5 size range) over entire atmospheric column

- GOES satellite measurements of AOD (NOAA)
 - 1995-ongoing, every 30 minutes
 - 4 km pixels
 - missing observations due to cloud cover, surface reflectance
 - AOD measures aerosols (in PM2.5 size range) over entire atmospheric column

- EPA CMAQ atmospheric chemistry model
 - PM2.5 and a few components: sulfate, nitrate, ammonium, EC, OC (degree of error may vary by component)
 - full 2001 run completed (EPA)
 - other runs for MA may be available, 1988-2002, possibly beyond (NY DEC)
 - 12 km pixels
One day of MODIS observations

Optical_Depth_Land_And_Ocean_Mean

16 December 2005 (350)

MODIS/Terra MOD08D3H.A2005350.004.2005351210739.hdf none
Current exposure estimation efforts and opportunities

• NHS: statistical modeling of EPA monitoring data using spatial and regression techniques
 – gaps in spatial coverage MODIS/MISR, GOES, 2001 national CMAQ run
 – few PM2.5 monitors pre-1999 GOES

• NAS: central-site estimates
 – no spatial heterogeneity included yet
 – current effort with spatial model using Harvard monitoring data based on a single spatial surface estimate - no space-time interaction GOES, local CMAQ runs

• MA-mortality: case-crossover analysis based on central site data
 – no spatial heterogeneity included
 – if spatial heterogeneity included, case-crossover requires time-varying spatial estimates GOES, local CMAQ runs

• MA-birthweights: not analyzed
 – need spatially resolved chronic exposure estimates MODIS/MISR, GOES, local CMAQ runs
 – current spatial model only for greater Boston
Spatial coverage in Massachusetts (AQS)
Example day of coverage of MODIS AOD

MODIS AOT

PM$_{2.5}$ monitors

courtesy of M. Franklin, Y. Liu, P. Koutrakis
Data integration for regional, chronic exposure estimation

- HEI-funded effort to estimate monthly PM2.5 exposure
- 2000-2006
- eastern U.S. at high-resolution (10 km or less)

data sources:
 - EPA monitors
 - MODIS/MISR satellite AOD
 - GIS-derived and meteorological covariates: distance to road, population density, wind speed

goal: produce a database of exposure estimates for use in epidemiological analyses

future work: use GOES to extend estimates back in time (pre-2000)
Proposed statistical approach

- Fit monthly spatial surfaces of PM2.5: \(g_t(s) \)

- Monitor observations:
 \[
 \log Y_{i,t} \sim \mathcal{N}(g_t(s_i), \sigma^2)
 \]

- Satellite observations:
 \[
 \log Y_{A,t}^{rs} \sim \mathcal{N}(a_{A,t} + b_{A,t} \sum_{s \in A} g_t(s), \tau^2)
 \]
 - additive \((a_{s,t})\) and multiplicative \((b_{s,t})\) bias may vary in space and time
 - statistical methods may allow us to estimate the bias in smoothly-varying way

- Local covariate information: represent spatial surface as local and less-local structure

 - \(g_t(s) = \sum_k f_k(x_k(s)) + h_t(s) \)

- Constrain \(h_t(s) \) to vary smoothly in space

 - ensure smooth surfaces and allow for prediction where no observations are located based on local averaging
 - one possible approach is a computationally-efficient Fourier basis representation of a Gaussian spatial process (Paciorek and Ryan, submitted; Paciorek in prep.)

- Fit a Bayesian statistical model and make predictions of PM2.5 \((g_t(s))\) at new locations, \(s\) (Fuentes and Raftery, 2005)
Strengths of statistical integration

• estimation of PM surface based on all information
 – ground data: gold standard + higher resolution in urban area
 – remote sensing: broad spatial coverage but coarse resolution
 – other information can be included:
 e.g., GIS information, possible cloud cover biases, vertical profile information from atmospheric chemistry models (Liu et al. 2004)
 – synthesis of differing resolutions of the data sources

• model structure allows for internal validation/calibration of remote sensing data

• model provides estimates of uncertainty in estimated PM at every location
Pilot study

• focus on 2001 and use GOES and CMAQ

• specific aims:
 – benefits of using GOES and CMAQ for estimation pre-2000
 – benefits of using CMAQ to calibrate total column aerosol
 – benefits of higher-resolution satellite data for post-1999
Data Integration for Local, Acute Estimation

- no funding yet but internal EPA funding proposal underway and much of the health data already in house (Schwartz, Suh) — suggestions for funding?

- high spatial resolution desirable

- daily estimates needed

- GOES and CMAQ potentially available for 1995-2005

- birthweight requires chronic estimates: potentially just average over daily estimates or fit a simpler model for monthly average exposure
Proposed statistical approach

- Fit daily spatial surfaces of PM2.5: \(g_t(s) \)

- Monitor observations: \[\log Y_{i,t}^g \sim \mathcal{N}(g_t(s_i), \sigma^2) \]

- Satellite observations: \[\log Y_{A,t}^{rs} \sim \mathcal{N}(a_{s,t} + b_{s,t} \sum_{s \in A} g_t(s), \tau^2) \]
 - additive \((a_{s,t})\) and multiplicative \((b_{s,t})\) bias may vary in space and time
 - statistical approaches may allow us to estimate the bias in smoothly-varying way

- Local covariate information: represent spatial surface as local and less-local structure
 - \(g_t(s) = f(x(s)) + h_t(s) \) (approach as taken in NHS analysis)

- Constrain \(h_t(s) \) to vary smoothly in space and time
 - ensure smooth surfaces and allow for prediction where no observations are located based on local averaging
 - missing monitor and satellite data require borrowing strength across days: \(h_t(s) = \phi h_{t-1}(s) + \epsilon_t \)
 - potentially very computationally demanding

- Fit a Bayesian statistical model and make predictions of PM2.5 \((g_t(s))\) at new locations, \(s \)
Challenges for local estimation

- obtaining GOES observations: NOAA hasn’t processed most years and validation is needed first

- obtaining high-quality CMAQ output for sufficient years
 - CMAQ is computationally demanding

- very high resolution available only through regression on covariates

- speciation?
 - available only at limited monitors
 - CMAQ provides limited components: sulfate, nitrate, EC, OC
 - how to get best estimates of spatial surfaces of components?
 * estimate total PM surface and decompose into components based on regression relationships?
 * combine CMAQ and monitors for limited components and coarse spatial resolution?
Additional thoughts...

• Opportunities

 – potential usefulness of satellites for exposure estimation in international context where monitoring is limited
 – satellite data for other pollutants?
 * NO2 available but at low resolution (GOME satellite, 250 km); OMI at 13 km since 2005
 * ozone measurements are taken but don’t capture surface ozone well
 * BC at 13 km (OMI since 2005) or BC at 40 km (TOMS)
 * overlooked possibilities?
 – CMAQ output on other pollutants?
 – need for partnerships with atmospheric chemistry modeling groups?

• Challenges

 – is PM2.5 sufficiently heterogeneous spatially to make the proposed efforts worthwhile?
 – does noise in satellite and CMAQ output limit usefulness at scales of epidemiological interest?
 – given spatially-resolved exposure estimates, how deal with health effects confounded by unmeasured spatially-varying confounders
 – health analyses (particularly survival analysis and logistic regression) that account for measurement error (Berkson-type structure: Gryparis, Paciorek and Coull (in prep.))
 – speciated components