Statistical integration of disparate information for spatially-resolved PM exposure estimation

Chris Paciorek Department of Biostatistics

May 4, 2006

www.biostat.harvard.edu/~paciorek

 L_YX - FoilTEX - pdfLATEX

Collaborators:

- Yang Liu, Doug Dockery, Francine Laden, Joel Schwartz, Helen Suh (EH-EER)
- Brent Coull (Biostatistics)
- Dave Holland, Ana Rappold (EPA)
- Shobha Kondragunta (NOAA)
- Montse Fuentes (NCSU Statistics)

HSPH Health Studies Using Spatial Estimates of Exposure to PM

- NHS: Mortality and cardiovascular outcomes in the NHS cohort (Laden, Schwartz, Suh)
 - nationwide, chronic exposure
- NAS: Cardiovascular biomarkers in the NAS cohort (Schwartz, Suh)
 - eastern MA, acute exposure
- MA-mortality/admissions: Mortality and hospital admissions in Massachusetts based on DPH data (Schwartz, Coull)
 - MA, acute exposure
- MA-birthweights: Birthweights in Massachusetts based on DPH data (Schwartz)
 - MA, chronic exposure

Current exposure estimation efforts and limitations

- NHS: statistical modeling of EPA monitoring data using spatial and regression techniques
 - gaps in spatial coverage
 - few PM2.5 monitors pre-1999
- NAS: central-site estimates
 - no spatial heterogeneity included yet
 - current effort with spatial model using Harvard monitoring data based on a single spatial surface estimate - no space-time interaction
- MA-mortality/admissions: case-crossover analysis based on central site data
 - no spatial heterogeneity included
 - if spatial heterogeneity included, case-crossover requires time-varying spatial estimates
- MA-birthweights: not analyzed
 - need spatially resolved chronic exposure estimates
 - current spatial model only for greater Boston

NHS modeling effort

Estimated PM for one month

Monitor locations

Satellite and deterministic modeling information

- MODIS and MISR satellite measurements of aerosol optical depth (AOD) (NASA)
 - early 2000-ongoing, every 2-9 days, single measurement
 - 10-20 km pixels
 - missing observations due to cloud cover, surface reflectance
 - AOD measures aerosols (in PM2.5 size range) over entire atmospheric column
- GOES satellite measurements of AOD (NOAA)
 - 1995-ongoing, every 30 minutes
 - 4 km pixels
 - missing observations due to cloud cover, surface reflectance
 - AOD measures aerosols (in PM2.5 size range) over entire atmospheric column
- EPA CMAQ atmospheric chemistry model
 - PM2.5 and a few components: sulfate, nitrate, ammonium, EC, OC (degree of error may vary by component)
 - full 2001 run completed (EPA)
 - other runs for MA may be available, 1988-2002, possibly beyond (NY DEC)
 - 12 km pixels

One day of MODIS observations

Current exposure estimation efforts and opportunities

- NHS: statistical modeling of EPA monitoring data using spatial and regression techniques
 - gaps in spatial coverage MODIS/MISR, GOES, 2001 national CMAQ run
 - few PM2.5 monitors pre-1999 GOES
- NAS: central-site estimates
 - no spatial heterogeneity included yet
 - current effort with spatial model using Harvard monitoring data based on a single spatial surface estimate - no space-time interaction GOES, local CMAQ runs
- MA-mortality: case-crossover analysis based on central site data
 - no spatial heterogeneity included
 - if spatial heterogeneity included, case-crossover requires time-varying spatial estimates GOES, local CMAQ runs
- MA-birthweights: not analyzed
 - need spatially resolved chronic exposure estimates MODIS/MISR, GOES, local CMAQ runs
 - current spatial model only for greater Boston

Spatial coverage in Massachusetts (AQS)

Example day of coverage of MODIS AOD

courtesy of M. Franklin, Y. Liu, P. Koutrakis

Data integration for regional, chronic exposure estimation

- HEI-funded effort to estimate monthly PM2.5 exposure
- 2000-2006
- eastern U.S. at high-resolution (10 km or less)
- data sources:
 - EPA monitors
 - MODIS/MISR satellite AOD
 - GIS-derived and meteorological covariates: distance to road, population density, wind speed
- goal: produce a database of exposure estimates for use in epidemiological analyses
- future work: use GOES to extend estimates back in time (pre-2000)

Proposed statistical approach

- Fit monthly spatial surfaces of PM2.5: $g_t(s)$
- Monitor observations: $\log Y_{i,t}^g \sim \mathcal{N}(g_t(s_i), \sigma^2)$
- Satellite observations: $\log Y_{A,t}^{rs} \sim \mathcal{N}(a_{A,t} + b_{A,t} \sum_{s \in A} g_t(s), \tau^2)$
 - additive $(a_{s,t})$ and multiplicative $(b_{s,t})$ bias may vary in space and time
 - statistical methods may allow us to estimate the bias in smoothly-varying way
- Local covariate information: represent spatial surface as local and less-local structure

-
$$g_t(s) = \sum_k f_k(x_k(s)) + h_t(s)$$

- Constrain $h_t(s)$ to vary smoothly in space
 - ensure smooth surfaces and allow for prediction where no observations are located based on local averaging
 - one possible approach is a computationally-efficient Fourier basis representation of a Gaussian spatial process (Paciorek and Ryan, submitted; Paciorek in prep.)
- Fit a Bayesian statistical model and make predictions of PM2.5 $(g_t(s))$ at new locations, s (Fuentes and Raftery, 2005)

Strengths of statistical integration

- estimation of PM surface based on all information
 - ground data: gold standard + higher resolution in urban area
 - remote sensing: broad spatial coverage but coarse resolution
 - other information can be included:
 e.g., GIS information, possible cloud cover biases, vertical profile information from atmospheric chemistry models (Liu et al. 2004)
 - synthesis of differing resolutions of the data sources
- model structure allows for internal validation/calibration of remote sensing data
- model provides estimates of uncertainty in estimated PM at every location

Pilot study

- focus on 2001 and use GOES and CMAQ
- specific aims:
 - benefits of using GOES and CMAQ for estimation pre-2000
 - benefits of using CMAQ to calibrate total column aerosol
 - benefits of higher-resolution satellite data for post-1999

Data Integration for Local, Acute Estimation

- no funding yet but internal EPA funding proposal underway and much of the health data already in house (Schwartz, Suh) — suggestions for funding?
- high spatial resolution desirable
- daily estimates needed
- time-frame: mortality 1998-2002, birthweight: 1995-2002, NAS 2000-2003; more recent data may be obtained/geocoded
- GOES and CMAQ potentially available for 1995-2005
- birthweight requires chronic estimates: potentially just average over daily estimates or fit a simpler model for monthly average exposure

Proposed statistical approach

- Fit daily spatial surfaces of PM2.5: $g_t(s)$
- Monitor observations: $\log Y_{i,t}^g \sim \mathcal{N}(g_t(s_i), \sigma^2)$
- Satellite observations: $\log Y_{A,t}^{rs} \sim \mathcal{N}(a_{s,t} + b_{s,t} \sum_{s \in A} g_t(s), \tau^2)$
 - additive $(a_{s,t})$ and multiplicative $(b_{s,t})$ bias may vary in space and time
 - statistical approaches may allow us to estimate the bias in smoothly-varying way
- Local covariate information: represent spatial surface as local and less-local structure
 - $g_t(s) = f(x(s)) + h_t(s)$ (approach as taken in NHS analysis)
- Constrain $h_t(s)$ to vary smoothly in space and time
 - ensure smooth surfaces and allow for prediction where no observations are located based on local averaging
 - missing monitor and satellite data require borrowing strength across days: $h_t(s) = \phi h_{t-1}(s) + \epsilon_t$
 - potentially very computationally demanding
- Fit a Bayesian statistical model and make predictions of PM2.5 ($g_t(s)$) at new locations, s

Challenges for local estimation

- obtaining GOES observations: NOAA hasn't processed most years and validation is needed first
- obtaining high-quality CMAQ output for sufficient years
 - CMAQ is computationally demanding
- very high resolution available only through regression on covariates
- speciation?
 - available only at limited monitors
 - CMAQ provides limited components: sulfate, nitrate, EC, OC
 - how to get best estimates of spatial surfaces of components?
 - * estimate total PM surface and decompose into components based on regression relationships?
 - * combine CMAQ and monitors for limited components and coarse spatial resolution?

Additional thoughts...

- Opportunities
 - potential usefulness of satellites for exposure estimation in international context where monitoring is limited
 - satellite data for other pollutants?
 - * NO2 available but at low resolution (GOME satellite, 250 km); OMI at 13 km since 2005
 - * ozone measurements are taken but don't capture surface ozone well
 - * BC at 13 km (OMI since 2005) or BC at 40 km (TOMS)
 - * overlooked possibilities?
 - CMAQ output on other pollutants?
 - need for partnerships with atmospheric chemistry modeling groups?
- Challenges
 - is PM2.5 sufficiently heterogeneous spatially to make the proposed efforts worthwhile?
 - does noise in satellite and CMAQ output limit usefulness at scales of epidemiological interest?
 - given spatially-resolved exposure estimates, how deal with health effects confounded by unmeasured spatially-varying confounders
 - health analyses (particularly survival analysis and logistic regression) that account for measurement error (Berkson-type structure: Gryparis, Paciorek and Coull (in prep.))
 - speciated components