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INTRODUCTION EXPLORATORY ANALYSIS IN EASTERN U.S. MODEL RESULTS, MID-ATLANTIC REGION

* Increasingly researchers seek to use proxy variables such as remote sensing Key Question: At what scales are spatial patterns in proxies reflective of patterns in ground-level PM, 5? Assessing calibrated MODIS AOD in 2004
retrievals and deterministic model output to improve spatial characterization of Cwomsaor cotmaten ascropancy Pocctod Pz

pollution concentrations _ _ | |

« Statisticians have developed methods for 'data fusion' that seek to improve Daily MODIS AOD-PM comparison examples Daily CMAQ-PM comparison examples
predictions of environmental processes by combining sparse gold standard
data with the proxy information.

e Current data fusion models assume that the error or discrepancy in the proxy
relative to the true underlying environmental process of interest is a
combination of white noise and very smoothly-varying spatial discrepancy.

 Here | propose a flexible model for discrepancy between the proxy and the
truth.

 The model is able to discount the proxy at scales at which there is little
correspondence between proxy and gold standard.

e |n addition, the modeling approach holds promise for improving understanding
of how the association of proxy and gold standard varies by scale.

DATA SOURCES

Remote Sensing Observations

« MODIS AOD: 16 day orbit repeat, observations every 1-2 days at 10:30 am for Monthly MODIS AOD-PM comparison examples Monthly CMAQ-PM comparison examples
a given location, 10 km nominal resolution; averaged to the month after e e
calibration to meteorology; 2001-2007 available — we use 2004. o | R

« CMAQ PM,s: 36 km resolution; half-hour estimates; averaged to month; 2001

karch 2004

July 2004

Cctober 2004

Assessing CMAQ PM, . in 2001

Estimated discrepancy PM2.5

CHMAQ PM2.5

kdarch 2001

July 2001

PM, - and Covariate Information

Qctober 2007

PMZ.5, July 2004

 PM,s measurements from AQS and IMPROVE: daily average, every 1, 3, or 6
days; averaged to the month

* Weather data at 32 km, 3 hour resolution from North American Regional
Reanalysis

* GIS-derived information: distance to roads (and road density) by road class,
population density, land use

* NEI point source and county-level area emissions

SUMMARY OF RESULTS

Proportion of variation in proxy explained by the
discrepancy as a function of spatial scale

Variog(¢)

The proposed variogram ratio is: R(d) = Variog(5:P)+ Variog(ot i P)

This makes use of an idea introduced by Jun and Stein (2004)

Associations of MODIS AOD retrievals and PM, «

- . _ Raw MODIS AOD | calibedMoDIs A0D  ASsociations of CMAQ-estimated PM, s and o, MODISADD discrepancy 5 CMAQ discrepancy

1). Carefully-specified Markov random field (MRF) spatial models can capture a 2004 Daily values; eastern U.S. monitored PM o 2"

- - - - : o _ e T e T
variety of types of spatial structure in the discrepancy term. Overall comelation (longitudinal plus cross- 0.60 0.64 20 =_ | 2.
_ ] o _ Average of daily (cross-sectional) correlations 0.35 0.45 CMAQ PM2.5, Layer 1% % S — winter E S

2.) The sparse matrix representations of MRFs allow for efficient computations Average of daily, April-October only 0.42 0.50 Gvorall corelation (longitudinal plus oross. 056 8o — spring 8o

that other statistical representations do not. 2004 Yearly averages, eastern U.S. sectional) of daily values = ol 5o
Overall correlation 0.14 0.36%** Average of daily (cross-sectional) correlations 0.50 ._*'E N_ -% N_

3) In the AOD and CMAQ examp|eS here, the mOdel eStimateS that the - - 2004 Yearly averages;Pennsylva(r)nggFocal Region - Correlatior.lof}./early averages | | | 0..51 | ; EII 1|:I”:| EIIIIIII EI%IIII 4I5D 3}3 IZII 1|:I”:| EIIIIIII EI%IIII -’-1I%IIII
diSCl‘epancy dominates the mOdel for the proxy, heaVin downweighting the A;;T_loztoor;ee::::; _0-.11 0:41*** *¥* Averaging first three layers results in very high correlation with first layer alone. distance (k) distance (km)
COntrIbUtIOn Of the proxy '[O the f|na| predIC'[IOﬂS Th'S SuggeStS that AOD and *;‘:di(;ez?‘fio;l;iiriltucilf(il;?éiactzgrigi[())n is driven by spatial calibration and does not seem to represent All Varlablllty in MODIS AOD is being accounted for in the
CMAQ are not helpful in prediction of PM, 5 In the contexts examined here. P g |

discrepancy term, while for CMAQ PM, ., some of the

STATISTICAL MODEL OF SYSTEMATIC DISCREPANCY USING MARKOV RANDOM FIELDS s procesa, o accoumediorinferen

keli - . O(s) Is specified as a Gaussian Markov random field (MRF) with a
Likelihoods for monthly average data: ﬁéi )hbmrEmd e ’Eo . t}lin e eofine Standard CAR models cannot represent smooth Despite this, for CMAQ, as for MODIS AOD, the proxy
oM V(P(s() Z (2 ) , | T ES) & PP P P processesb(leI]t) while MSF TPShaPPFOXWaUCZU Cha;] contributes little to predictive ability, as seen below.
= v: ~ N(P(s(i)) + zy ), 0% represent both noisy and smooth processes (right). o - _ L
i =Yi k k\Zk.i)> Ty | o N(0rQY) Predictive ability of various model specifications
o~ N(0, K
PI’D}{ = d ~J ,,,I\F j —|— E{} S _|_ 5 P S LT 2 ) ] STANDARD CAR MRF TPS APPROX Monthly R? (correlation) | Yearly R? (correlation)
Ym M (% + &sm) + 1P (sm). 75 m) . i controls the amount of spatial smoothing e Tl e e ModelwithCahbmdl\ymDISAOD, o
M (+), k =1,..., K are nonparametric regression functions of within-grid . The rows of Q give the neighbor weights for a given element of ¢. e s e e core mode D05 003 081
| S | _ o . - SresmE s i Il e T el e No AOD 0.80 (0.90) 0.63 (0.80)
cell covariates. These help to account for fine-scale variation in the gold Standard 01 neighbor weights Weights for thin plate spline approx e s B No discspancy e 0 0.18) <0 (<0
Standard o e e Py e B e e e S R T o w i ga A o i Discrepancy forced very smooth 0.71 (0.84) 0.50 (0.71)
Model with CMAQ PM2.5, 2001
. 0(s) is the key spatially-correlated discrepancy term. 1 T e Core model 074 087) 051 (0.79)
. Py , 8 , $oi o fn = No CMAQ 0.77 (0.88) 0.61(0.79)
Latent PMy g process, P(s), on 4 km grid: S TR e No discrepancy term 0.46 (0.74) <0/(040)
-1 4 -1 T -8 20 -8 l o, 1:'“ x .-*:':: S -_-: .;: - ;i Discrepancy term forced very smooth 0.60 (0.81) <0(0.73)
_ ~ _ e AR T o Sl Core model without covariates 0.72 (0.85) 031 (0.56)
P(Sm) Z hk (Wk (Sm)) T g(sm) | ‘ ’ ‘ - Core model, no covariates or CMAQ 0.71 (0.85) 0.29 (0.55)
k 1 o .
Jhol(). k=1..... K. are nonparametric resression functions of orid | | | | - The main idea is that if the proxy well-represents the truth
klg lbale cmﬁariafesh P 8 & . Q is very sparse, so the matrix calculations for Bayesian estimation are at large but not small scale, the discrepancy term acts to ONGOING WORK
CFE ') e - | o G I' very fast. We work with 17,500 elements in ¢ for the AOD model. account for spatial autocorrelation. . Development of a full spatio-temporal model to avoid
. Z(S) 1s Gaussian spatial process, specitied as a thin plate spline. —r - ST : : .1 If the proxy well-represents the truth at small but not large _ _ B
- Other statistical representations cannot handle this dimensionality and stil scale, the discrepancy corrects for this mismatch, provided assumption of independence between months.
This research is supported by HEI 4746-RFA05-2/06-7. be able to represent both smooth and nggly Processes. sufficient gold-standard data. e Simulation-based assessment of the mode”ng approach_
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