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Ecologists use the relative abundance of fossil pollen in sediments to estimate how tree species abundances change over space and time. To

predict historical forest composition and quantify the available information, we build a Bayesian hierarchical model of forest composition

in central New England, USA, based on pollen in a network of ponds. The critical relationships between abundances of taxa in the pollen

record and abundances as actual vegetation are estimated for the modern and colonial periods, for which both pollen and direct vegetation

data are available, based on a latent multivariate spatial process representing forest composition. For time periods in the past with only pollen

data, we use the estimated model parameters to constrain predictions about the latent spatio-temporal process conditional on the pollen data.

We develop an innovative graphical assessment of feature significance to help to infer which spatial patterns are reliably estimated. The

model allows us to estimate the spatial distribution and relative abundances of tree species over the last 2,500 years, with an assessment of

uncertainty, and to draw inference about how these patterns have changed over time. Cross-validation suggests that our feature significance

approach can reliably indicate certain large-scale spatial features for many taxa, but that features on scales smaller than 50 km are difficult to

distinguish, as are large-scale features for some taxa. We also use the model to quantitatively investigate ecological hypotheses, including

covariate effects on taxa abundances and questions about pollen dispersal characteristics. The critical advantages of our modeling approach

over current ecological analyses are the explicit spatio-temporal representation, quantification of abundance on the scale of trees rather than

pollen, and uncertainty characterization.
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1. INTRODUCTION

Scientific inference about forest composition in the past relies
heavily on sediment records of fossil pollen taken from ponds
and other depositional environments (Davis 1981; Delcourt and
Delcourt 1987). Fossil pollen collected from multiple sites over
time acts as a proxy for the abundance of different tree taxa
(species or genera), telling us about spatio-temporal vegetation
dynamics over thousands of years. Paleoecologists ask questions
such as the following: How have relative population abundances
and range boundaries changed over time? Do stable assemblages
of species exist for long periods of time or are forest composi-
tions constantly shifting? How have forest communities changed
in response to past climate shifts, and what can forest compo-
sition tell us about climate? Practical environmental questions
relate to how human manipulation of forests compare to natural
forest change.

However, inferring tree abundance on the landscape from
pollen abundance in sediments is not straightforward, because
the relationship between the relative abundance of trees near a
pond and pollen in the sediment of that pond is not simple.
Different tree species produce different amounts of pollen on
average (Jackson 1990), and the representation of any indi-
vidual tree in deposited pollen is a complex function of dis-
tance to the deposition basin, size of the deposition basin,

landscape openness, forest structure, wind regime, and pres-
ervation in sediments (Prentice 1985; Jackson and Lyford
1999; Nielsen and Sugita 2005). Our understanding of the
timing of sediment deposition depends on indirect and inexact
measurements of sediment age (through radiometric dating and
stratigraphic markers). The aggregate effect of these sources of
uncertainty is pollen assemblages that are noisy reflections of
the trees in the surrounding landscape.

Because of these uncertainties, most paleoecological studies
do not attempt to make explicit inference about the distribution
of trees based on fossil pollen data. Instead, they assume that
robust changes in pollen abundances over space and time
generally correspond to changes in vegetation at the scales
described previously, primarily using multivariate time series
at one or more sites (Fuller, Foster, McLachlan, and Drake
1998). Efforts to explicitly correct for differential pollen pro-
duction across taxa range from primarily statistical (Tauber
1965; Prentice, Berglund, and Olsson 1987) to more mecha-
nistic approaches (Bunting and Middleton 2005). These studies
highlight the difficulty of inferring a complicated spatial pat-
tern of pollen source contributions across the landscape from
pollen proportions in a single deposition site. The power to
disentangle this spatial signal using a network of sites was
explored by Webb (1974) and Sugita (1993, 1994, 2007a,b).
Our work provides a statistical framework to estimate the
signal and quantify the uncertainty in this process based on a
spatial network of noisy data.

Building on recent work in Bayesian spatio-temporal statis-
tics (e.g., Wikle, Milliff, Nychka, and Berliner 2001; Banerjee,
Carlin, and Gelfand 2004; Fuentes and Raftery 2005; Royle
and Wikle 2005; Gelfand et al. 2006; Haslett et al. 2006), we
developed an approach for modeling forest composition based
on vegetation data from two key time points and pollen data
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from sediment cores, using a multivariate latent spatio-temporal
process representing the relative abundances of different taxa.
The model allows inference across space and time, based on
modeling the relationship between forest composition and
pollen composition for locations and times at which both
vegetation and pollen data are available. Assuming consistency
in the relationships over time, the model then predicts veg-
etation in the past using proxy pollen data. The statistical
challenges are in computationally efficient and sufficiently
resolved representation of the latent spatio-temporal surfaces,
modeling spatially correlated compositional data, and carefully
borrowing strength across space, time, and taxa. We seek to
allow the pollen data to provide as much information as pos-
sible, avoiding oversmoothing, while constraining the model
sufficiently to achieve reasonable prediction that accounts for
bias and noisiness. Finally, this high-dimensional model must
be fit; Markov chain Monte Carlo (MCMC) in such situations
is often time-consuming and prone to mixing difficulties
(Knorr-Held and Rue 2002; Christensen, Roberts, and Sköld
2006; Paciorek 2007). There has been recent fruitful collabo-
rative work between statisticians and ecologists in under-
standing patterns of species distributions (e.g., Hooten, Larsen,
and Wikle 2003; Royle and Wikle 2005; Gelfand et al. 2006).
Our work is in this tradition, but differs in its consideration of a
multitaxon spatial process and its use of proxy data to predict
distributions over time, as well as through careful consideration
of how to assess the significance of predicted spatial patterns.

Our analysis focuses on central New England in the north-
eastern United States over the past 2,500 years. The network of
pollen sites that we model is among the most dense sets of
pollen data in existence and has taken decades to produce. Our
goals are both particular to this domain and quite general. In
particular, we first want to understand the relationship between
the pollen record in a pond and vegetation in the surrounding
area. Second, we want to estimate and compare vegetation in
our space-time domain in the colonial and modern eras. Third,
our key application goal is to predict, and quantify uncertainty
in, spatio-temporal patterns in tree abundances over the past
2,500 years. More generally, we want to explore the ability of
the pollen record to inform vegetation composition and dynamics
spatially and temporally and create a modeling infrastructure
useful in different areas and time periods.

Section 2 describes the pollen and vegetation data available
from central New England. In Section 3 we build an estimation
model to calibrate pollen to vegetation at times at which both
types of data are available and then present a prediction model
that uses parameter estimates from the estimation model to
make predictions when only pollen data are available. We
assess the model, considering the consistency and strength of
the association between the proxy pollen composition and forest
vegetation composition, as well as using cross-validation, and
then use the model for prediction over the past 2,500 years
(Section 4). We also introduce innovative graphics that take
advantage of the rich information in the posterior samples to
assess a variety of contrasts of interest. The discussion in Section
5 highlights the contributions of the modeling approach to the
ecological problem. Additional ecological analysis of model
results is currently underway and will be presented in the eco-
logical literature. Additional details on model performance and

results are provided in a technical report that expands upon this
manuscript (Paciorek and McLachlan 2008), noted in several
places in the text.

2. DATA

2.1 Study Area and Study Taxa

Our study area extends from 43°219N, 73°309W in the north-
west to 41°379N, 71°139 W in the southeast corner in south-
central New England, USA, focusing on central and western
Massachusetts, west of the Boston metropolitan area. In pro-
jected coordinates, this defines a region, 192 3 192 km2, which
for computational reasons we divide into a 16 3 16 grid, with
each grid cell 12 km on a side. All computations are done at the
resolution of the grid cell.

We focus on nine particular taxa (genus or species), includ-
ing the most common taxa in the area: oak (Quercus spp.), pine
(Pinus spp.), maple (Acer spp.), hemlock (Tsuga canadensis),
and beech (Fagus grandifolia); as well as several additional
taxa of particular interest, namely hickory (Carya spp.), birch
(Betula spp.), spruce (Picea spp.), and chestnut (Castanea
dentata). Other tree taxa, excluding taxa that are primarily
shrubs and small trees, are grouped into a tenth category and
included in the analysis as a tenth reference ‘‘taxon.’’ Note that
because of chestnut blight there have been essentially no adult
pollen-producing chestnut in the study area in the last 100
years, so many of our figures omit chestnut.

2.2 Pollen Data

Plant pollen from trees, shrubs, and herbaceous plants falls
on the surfaces of ponds, sinks to the bottom, and accumulates
in sediment. Over time, these sediments are buried by layers
from successive time periods, creating a sediment record of
what fell into the pond. The scale of vegetation that corre-
sponds most closely to the composition of pollen in the
sediments of small ponds and depositional environments is
generally vegetation within 1 to 2 km (Jackson 1990; Jackson
and Lyford 1999; Nielsen and Sugita 2005), but more than half
of the total pollen in those sediments may originate beyond that
distance (Sugita 1994; Sugita, Gaillard, and Bronstrom 1998;
Sugita 2007b).

As described later, the period of colonial settlement and the
modern period are times when vegetation and pollen data can
be compared. Although separated only by a few hundred years,
these periods are likely to be as disparate in forest structure
and composition as any two time periods considered, because
of the drastic ecological effects of postsettlement land use
(Foster, Motzkin, and Slater 1998; Fuller et al. 1998; Oswald
et al. 2007). Colonial era surveys provide historical vegetation
data, but the surveys occurred at different times in different
parts of the study region. Therefore, we used the appearance of
agricultural weed pollen to select pollen samples (;500 grains)
at individual times from 23 ponds with archived sediment cores
to best match the time at which the survey in the township
encompassing each pond was completed [(Fig. 1(a)]. Because
settlement occurred over a period of time, the colonial era
data do not represent a fixed snapshot in time, but rather a
reasonably consistent window within the settlement process,
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stretching over the years ca. 1635–1800. Because of the long
lifespans of trees and the relatively quick settlement, we con-
sider this treatment of the colonial data to be reasonable. For
the modern era we use surface sediment samples to best rep-
resent current vegetation, taken from 38 ponds [Fig. 1(b)].

To make predictions back in time, we make use of the full
archived cores from the 23 ponds. The temporal coverage
varies, with ponds having records of length varying between
the most recent 1,000 years and the most recent 15,000 years,
with the most recent 2,500 years being our full period of
interest. Each core is divided into intervals and approximately
500 grains from a sample of sediment in each interval are
identified and counted. A subset of samples is dated using
radiocarbon dating, with linear interpolation providing dates
for all samples, resulting in samples at different and irregular
times for each pond. The uncertainties in the dating include the
natural stochasticity of radioactive decay, the linear inter-
polation, uncertainty in the calibration of radiocarbon to cal-
endar years, and uncertainty in the assignment of calendar age
to the appearance of weed pollen in the cores, in addition to
uncertainty in the lead-210 dating used for the most recent 150
years. Paciorek and McLachlan (2008) outline a potential ap-
proach to extend the Bayesian calibration methods of Blaauw
and Christen (2005) to the spatial context. We do not account for

the dating uncertainties here, in part because of our focus on
changes at time scales of several hundred years or more, for
which uncertainties in dating should have limited impact.

Some sediment mixing occurs in upper sediments, so any
individual sample represents pollen deposited over a period of
years, naturally smoothing the data. The long lifespan of trees
also causes smoothness. Accordingly, in our spatio-temporal pre-
dictions, we aggregate all samples into intervals of 100 calendar
years and base the prediction model on this set of discrete times.
The first interval is centered on 1950 (defined to be the ‘‘pres-
ent’’ or year 0 in the paleoecological dating scheme), and the last
is centered on 550 B.C. (denoted henceforth as year 2500).

2.3 Vegetation Data

2.3.1 Colonial Witness Tree Data. During settlement of
central New England in the 17th and 18th centuries, colonial
surveyors surveyed lots of size 0.5–65 ha for settlement, citing
‘‘witness’’ trees as permanent markers of the lot corners within
townships (approximately 6-mile square). Records of these
witness trees have been recovered from town archives, and
surveyor identifications have been mapped to modern taxonomic
classification (Cogbill, Burk, and Motzkin 2002). These data are
available aggregated to the township, with between 26 and 3,149

Figure 1. (a) Pollen composition by pond for the colonial era. (b) Pollen composition by pond for the modern era. (c) Witness tree vegetation
composition for the colonial era (plotted at the centroids of colonial townships). (d) Forest service plot vegetation composition for the modern era.
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trees per township for 183 townships with known boundaries in
our study region, providing 87,114 trees in total [(Fig. 1(c)].

2.3.2 Modern Vegetation Data. The U.S. Forest Service
(USFS) Forest Inventory Analysis (FIA: www.fia.fs.fed.us)
program samples vegetation using randomly located plots on
both public and private land, counting and identifying (to
species) all trees in four 7.3 m radius subplots located 36.6 m
apart. Our data consist of FIA tree counts of individuals greater
than 10 cm diameter at breast height (1.3 m) from 1990 for
1094 plots in the study area, with individuals aggregated into
our 10 taxa [Fig. 1(d)]. Because of privacy concerns, USFS
randomizes the plot locations to within 1.6 km of actual loca-
tion. The plots contain between one and 115 trees per plot, with
29,938 trees in total.

3. MODEL DESCRIPTION

3.1 Notation

Let p ¼ 1, . . ., P (for population) index the P ¼ 10 tree taxa.
The subscript i indexes the vegetation plots or townships. We
work on a regular grid, with s ¼ 1, . . ., S indexing the S ¼ 162

spatial locations on the grid and t¼ 1, . . ., T indexing the T time
points, discretized in 100 year intervals. To simplify the nota-
tion, we suppress the dependence on t when considering the
modern and colonial periods.

3.2 Overview

Our modeling proceeds in two basic steps. First, in ‘‘esti-
mation runs,’’ we use the modern and colonial data to estimate
key parameters describing the pollen-vegetation relationships
and critical hyperparameters that constrain the model structure,
borrowing strength across multiple ponds based on the spatial
process structure. Second, in ‘‘prediction runs,’’ we use only
pollen data and the estimated key parameter values to make
predictions in the past. The critical hyperparameters reflect the
general structure of vegetation and parameterize spatial process
variability, regression coefficient variability, and long-distance
pollen dispersal. They serve to constrain the model to produce
reasonable predictions with only a small number of ponds.

An alternative is to fit a coherent Bayesian model to all the
pollen and vegetation data at all points in time. However, with a
complicated model and multiple data sources, model mis-
specification and difficulty in model development and assess-
ment are major concerns that would be exacerbated in a single
integrated analysis. Our approach also allows us to carefully
control what information is used to inform and constrain the
inference at different points in time, for example, making
inference about parameters related to the general structure of
the vegetation based only on the vegetation data (Section
3.3.4). It also eases the computational burden.

We note that our multivariate nonnormal outcome prevents
conjugate updates of the latent process values and analytic
integration over these process values, greatly affecting MCMC
mixing and limiting our ability to fit complicated structure in the
model hierarchy. This stands in contrast to much recent work
with normal data that extends simple Bayesian spatial models to
spatio-temporal, multivariate, nonseparable, and other settings.

This constraint, combined with sparse, noisy, and complicated
data, necessitates careful attention to deciding upon the key
aspects of reality to represent in the model structure.

3.3 Estimation Model

3.3.1 Likelihood Terms. Our likelihood terms are condi-
tional on a latent multivariate spatial process, which provides
the the composition vector for each grid cell, r(s) ¼ (r1(s), . . .,
rP(s)), described in Section 3.3.2. Here we define the separate
likelihoods for modern plot data, colonial witness tree data, and
pollen data.

Vegetation. For the vegetation, our basic strategy is to use a
Dirichlet-multinomial (DM) structure (also known as the com-
pound multinomial distribution, a generalization of the beta-
binomial) (Dey and Maiti 2002) to account for overdispersion in
the vegetation data due to heterogeneity of vegetation within
grid cells. First, consider the FIA plot data. We associate each
plot, i, with the grid cell in which the plot falls, s(i). The like-
lihood for the vector of tree counts, conditionally independent
between plots, is yi ¼ {y1,i, . . ., yP,i} ; DM(ni, aFIAr(s(i))),
where ni ¼

P
p yp;i. The scalar Dirichlet precision parameter,

aFIA, is multiplied by each element of the composition vector
for the grid cell in which the plot falls, r(s(i)). For the witness
trees, the structure is similar, except that the tree counts are
aggregated into townships, which are generally larger than the
grid cells and are misaligned with respect to the grid. To
account for this, we consider the count of trees in a township, i,
to represent a weighted average of the trees in the grid cells that
the township overlaps, s 2 O(i), where O(i) is the set of over-
lapped grid cells. The weighting is based on the proportion of
the township falling in each grid cell, wi(s). This gives us the
likelihood for the ith township, yi ; DMðni;aWT�rðiÞÞÞ;where
�rðiÞ ¼ ð�r1ðiÞ; . . . ; �rPðiÞÞ and the proportion of the pth taxa in
the ith township is �rpðiÞ ¼

P
s2OðiÞ wiðsÞrpðsÞ: In other words,

the composition for the township is calculated as the integral
over the gridded piecewise composition surface. Other ap-
proaches are possible, such as using the intersections of the
grid cells and townships (Mugglin, Carlin, and Gelfand 2000)
in the discretization of the spatial domain, but seem unlikely to
materially affect the results.

Pollen. For the pollen, the likelihood must account for the
fact that pollen production and dispersal vary by taxon, which
causes the proxy pollen data to be biased for the local vege-
tation, even if one were to directly measure pollen falling to
the ground. We again use the Dirichlet-multinomial form for
the pollen count data for the modern and colonial eras, but we
differentially scale the vegetation composition in the grid cell
to account for the bias. The likelihood for the vector of pollen
counts at location i, ci, is

ci ¼ fc1;i; . . . ; cP;ig ; DMðni;f � rðsðiÞÞÞ; ð1Þ
where f is a vector of taxon-specific scaling factors that relate
pollen to vegetation and r(s(i)) is the vegetation composition of
the grid cell in which the pond lies. Note that the multiplication
is done element-wise (i.e., a Hadamard product). Because of
chestnut blight, there are essentially no pollen-producing
chestnut adults in the modern era, so we cannot estimate f for
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chestnut in the modern era and assume this value is the same as
for the ‘‘other’’ category.

An added complication is that examination of the pollen data
suggests a substantial fraction of pollen is derived from long-
distance dispersal. Based on nearby vegetation data in the
modern and colonial periods and on site visits by the authors,
many ponds have taxa present despite little evidence that the
taxa exist locally in sufficient quantity to explain the pollen
abundance. The model assumes that 0 # g # 1 of the pro-
portion of pollen produced in a cell remains in the cell and the
remaining 1 � g distributes in a distance-weighted fashion in a
15 3 15 grid of cells (some of which extend beyond our core
grid) centered around each cell (see also Nielsen and Sugita
2005 for a similar decomposition of local and long-distance
dispersal). The result is to replace rp(s(i)) in (1) with

grpðsðiÞÞ þ ð1� gÞ 1

C

X
sk 6¼sðiÞ

rpðskÞwðsðiÞ; skÞ; ð2Þ

where C is a normalization term calculated by summing
w(s(i), sj) over cells sj in the 15 3 15 grid surrounding the
focal cell. The second term is a weighted average of the veg-
etation composition in the core grid cells other than s(i), where
weights,

wðsðiÞ; skÞ ¼ exp � dðsðiÞ; skÞ2

c2

 !

are calculated based on the distance between the cell in which
the pond resides and the other cells based on the grid cell
centroids, d(s(i), sk), scaled by a dispersal distance parameter c.
The result is that the model attempts to distinguish the portion
of the pollen data that is informative about the cell vegetation,
ignoring pollen that reflects vegetation similar to the region as
a whole, and essentially attempting a deconvolution.

The induced Dirichlet precision parameter for the pollen
data depends on the scaling parameters and varies between
ponds in different grid cells,

apollenðiÞ ¼
X

p

fp

3 grpðsðiÞÞ þ ð1� gÞ 1

C

X
sk 6¼sðiÞ

rpðskÞwðsðiÞ; skÞ

0
@

1
A;
ð3Þ

with somewhat lower values and therefore lower precision for
ponds on the periphery of the domain because of the lack of
modeled pollen input from cells outside the domain.

Ideally we would use an anisotropic, skewed dispersal kernel
that reflects the effects of prevailing wind direction, but we
were not able to find a reasonable skewed kernel parameter-
ization. It would also be preferable to extend the domain to
include vegetation at fairly large distances in all directions
from the study ponds to limit boundary effects.

3.3.2 Spatially Correlated Vegetation Composition
Process. Using the spatial representation described below,
which provides an approximate thin plate spline-based spatial
process, gp(�), for each taxon, we define the proportions of the
ten taxa at a given location using the additive log-ratio trans-

formation (Aitchison 1986, p. 113), where the proportion of
taxon p at location s is

rpðsÞ ¼
expðgpðsÞÞPP

k¼1 expðgkðsÞÞ
0
X

p

rpðsÞ ¼ 1: ð4Þ

This approach allows us to use standard spatial models, yet
create a multivariate framework for compositional data, and is
very similar to the approach of Haslett et al.(2006). Note that
the Aitchison (1986, p. 113) model has a one in the denomi-
nator in place of the contribution to the sum from the tenth,
‘‘other’’ category, as well as replacing the numerator with one
for p ¼ P. For our MCMC implementation (Section 3.5), we
specify gP(�) to improve mixing. The result is that the processes
are not fully identifiable, but the vegetation compositions are,
because of the sum to one constraint (4).

Latent Processes. We take the P¼ 10 latent spatial processes
to be independent spatial processes, gp(�), defined at each grid
cell location as gp(s), using a knot-based radial basis function
approximation to a thin plate spline (Ruppert, Wand, and
Carroll 2003, chap. 13). The value of the process at the 256 grid
locations is

gp ¼ b0;p1þ
X

k

xkbk;p þCup: ð5Þ

Here, C is a reduced-rank basis matrix constructed using thin
plate spline generalized covariance matrices on an equally
spaced 9 3 9 grid of knots. The 81 basis coefficients are taken
to have prior distribution up ; N(0, s2I), with the single var-
iance component controlling the amount of smoothing. The
covariates are described later.

We recognize that vegetation is likely to be nonstationary,
whereas the construction is stationary, but believe that by
including key covariates in the mean structure, in particular
elevation, we have accounted for a major source of non-
stationarity. Our approach avoids the computational difficulties
of nonstationary processes and recognizes the limitations on
resolution caused by the sparseness of the pollen data. The
inclusion of covariates also helps to justify our use of a single
s2 common to all taxa [an approach that Haslett et al. (2006)
also find to be sufficient] reflecting that taxon abundances tend
to change in tandem spatially.

Also note that our model assumes prior dependence between
taxa only to the extent induced by a sum to one constraint,
reflecting our desire to avoid a dependence structure that
because of data sparsity would need to be implausibly constant
over space. Critically, for every pond we have a large multi-
nomial sample and direct information on each taxon from its
count. Borrowing strength across taxa through a dependence
structure introduces potential for bias from misspecification of
the dependence structure, whereas the balanced sampling of
data provides limited opportunity for variance reduction.

Landscape Covariates. Vegetation abundance is strongly
related to covariates, such as elevation, soil type, and climate.
Covariates are represented in the spatial process representation
(5), where xk is a vector of values of the kth covariate at each
grid cell, and bk,p is the coefficient for the pth taxon. To predict
in the past, we are limited to covariates whose values are known
at every time point, generally those that have not changed much
over time. In particular, we use elevation (averaged over the
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grid cell) and latitude (after projection) in the current model, as
these are readily available and are the covariates most likely to
influence vegetation at the spatial resolution of our grid. Note
that latitude (at the cell centroid) is merely a linear spatial term.
We include only a linear term in latitude and not in longitude
because vegetation is likely to vary most substantially with
climate differences that vary most strongly with latitude, and
for the prediction runs, with 23 or fewer ponds, we wanted to
estimate as few parameters as possible, leaving any variability
by longitude to be accounted for in the radial basis portion of
the spatial process. Both covariates are centered about their
means, with elevation scaled to units of 1 km and latitude to
100 km.

3.3.3 Hyperparameter Representation, Prior Distributions,
and Shrinkage. The goal for our prior distributions for the
various parameters is to allow the data to play the primary role
in estimating the parameters, while borrowing strength as
necessary in contexts in which the data provide limited infor-
mation. This is particularly relevant for the prediction runs, for
which the small number of ponds provides limited information
about spatial structure and covariate effects.

For the covariate effects, we use exchangeable prior struc-
tures to allow us to estimate hyperparameters in the estimation
runs that can be used to constrain the relevant parameters in the
prediction runs. We take b1 and b2, the coefficients for ele-
vation and latitude, respectively, as bk ; Nð0; s2

bk
IÞ; k ¼ 1, 2.

In the estimation runs, the coefficient for each taxon could be
estimated individually with independent prior distributions
with little difficulty based on the dense vegetation data, but
the variance components allow us to stabilize the estimates of
the coefficients in the prediction runs, while still allowing the
coefficients to vary in time. Note that the coefficients are taken
to have mean zero because (4) causes the mean to not be
identifiable; only relative differences can be estimated.

For the remaining parameters, fb0, f, g, s2, aFIA, aWT, c,
s2

b1
, s2

b2
g, we use noninformative, but proper priors, with the

components of b0 and f taken to be independent. In particular,
for variance components, we have used uniform priors on the
standard deviation scale to avoid the use of diffuse inverse
gamma priors (Gelman 2006), which have sharp spikes in
density at small values, and decay extremely rapidly to zero
density at values smaller than the location of the spike. For all
the parameters, we impose lower and upper limits on the
parameter values to prevent the MCMC sampler from wan-
dering in areas of the parameter space in which the data provide
little information and ensure propriety. In all cases of non-
informative priors, the posterior distributions were con-
centrated away from the limits, suggesting that the diffuseness
of the prior is not of particular concern (see the considerations
of Berger, DeOliveira, and Sansó 2001).

3.3.4 Model Misspecification and Model Incoherence. With
regard to model misspecification, we know that sediment pol-
len records are an error-prone and biased proxy for vegetation,
whereas the modern plot data, and likely the colonial vegeta-
tion data to a lesser extent, are relatively error-free. Thus in
doing the estimation runs, we would like to estimate the key
parameters used to constrain predictions in such a way that our

vegetation surface estimates are informed primarily by the
vegetation data. In our joint estimation model for vegetation
and pollen data, in cells with limited vegetation data, the
vegetation estimates in a cell can overfit to the pollen data. To
avoid this, in the estimation runs, our MCMC samples of
parameters used to construct the latent vegetation process, r(s),
are done conditional only on the vegetation data, ‘‘cutting
feedback’’ in a manner recently introduced into the BUGS
software (Spiegelhalter, Thomas, Best, and Lunn 2003) and
discussed in detail in Rougier (2008). Yucel and Zaslavsky
(2005) have also considered this issue in models with multiple
data sources in which one data source directly informs a
parameter, but a second, larger, set of data can also influence
the inference more strongly than desired because of model
misspecification. In our setting the pollen dataset acts as the
‘‘larger’’ dataset within individual grid cells with ponds
because of the large number of pollen grains compared with the
tree counts. A sensitivity analysis suggested that the coherent
model without cutting feedback overfits to some degree, but
not a substantial amount, with increased estimates of the pre-
cision in the pollen data and of the proportion of grid-cell
pollen, g.

3.4 Prediction Model

After fitting the model in the estimation runs for the colonial
and modern eras, we use fixed parameter values from those
runs in the prediction runs, which have the same model form as
the estimation runs, but with temporal autocorrelation intro-
duced as described below. To account for uncertainty in the
parameters from the estimation runs, we compute separate
predictions conditional on samples from the posterior of the
parameters from a given estimation run. In the prediction runs,
only b0;pðtÞ;b1;pðtÞ;b2;pðtÞ; and upðtÞ; which are the parts of
the model that directly determine the vegetation composition at
each time, and autocorrelation parameters for these time series,
are estimated. This approach ensures that the vegetation pre-
dictions are primarily informed by the pollen proportions at the
time of interest, but that structural information that is well-
informed only with rich vegetation data is based on the esti-
mation runs.

The temporal structure gives us the ability to smooth over
time to better estimate rp(s, t) and assess how the relationships
between taxon abundances and covariates have changed over
time (e.g., Williams, Shuman, and Webb 2001) as inferred from
the pollen data. For each of the temporally varying terms, we
include an overall mean that we integrate over for better
MCMC mixing, giving us two temporal variance components.
For example,

b0;p ; Nð0;s2
0ðd0J þ ð1� d0ÞRðr0ÞÞÞ;

where d0 2 (0, 1) is the proportion of variance for the long-term
mean, J is a matrix of ones, s2

0 is the overall variance, and
R(r0) is the correlation matrix, a function of decay parameter
r0 and the relevant time lags. We use a Matérn correlation
function with n ¼ 2 but also consider the exponential [i.e.,
AR(1)] correlation function. The priors for b1,p and b2,p are
analogous but with s2

b1
and s2

b2
in place of s2

0; and r1 and r2 in
place of r0. We choose s2

0 to be large, imposing no constraints
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on the overall mean, b0, while using the variance components
for b1 and b2 from the estimation runs to stabilize their esti-
mation. To provide for residual spatio-temporal structure, we
specify an analogous temporal correlation structure for the
basis coefficients

uk;p ; Nð0;s2ðdJ þ ð1� dÞRðrÞÞÞ;
again independent between coefficients for different knots and
where s2 is taken from the estimation runs. This constraint
ensures that the amount of spatial heterogeneity is based on
information from the rich vegetation data in the estimation
runs. Nonseparability may come into play, particularly at times
of range expansion and contraction, but would be difficult to
estimate based on the small number of sites, and would add
even more complexity to the modeling. For the proportion of
variance and the decay parameters we use uniform priors,
where for the latter we impose upper and lower bounds based
on the discrete time lag and length of the time period.

Because vegetation changed markedly upon European set-
tlement (Fuller et al. 1998), introducing a likely nonstationarity
in time, we run the prediction model separately for the pre-
settlement (2,500–300 years before present) and postsettlement
periods (500–0 years before present). Note the inclusion of a
buffer on either side of the settlement period for both runs to
avoid boundary effects.

In our prediction runs, we make use of the posterior dis-
tributions for all parameters, except those mentioned pre-
viously, from either the modern or colonial estimation run. To
incorporate uncertainty in these parameters, we fit the pre-
diction model using 50 draws from the joint posterior dis-
tribution of ff, g, c, s2, s2

b1
, s2

b2
g from the chosen estimation

run, running a separate MCMC for each draw, and combining
the iterations from the 50 chains to estimate posterior quanti-
ties. In this way we incorporate parameter uncertainty into our
predictions, but we do not update these distributions as the
pollen data alone do not contain sufficient information to
inform the parameters.

3.5 Implementation

Details on MCMC implementation, including sampling
schemes and evidence of adequate mixing are provided in
Paciorek and McLachlan (2008). We note that the lack of
conjugacy and inability to integrate over the latent processes in
our hierarchical multivariate space-time model with a non-
normal likelihood seriously affect mixing and require long run
times, even with the simplifications in our model structure. One
critical detail is that dependence between the hyperparameters
and associated random effects (e.g., between s2 and u or
between s2

b1
and b1) can greatly slow mixing (Knorr-Held and

Rue 2002; Rue and Held 2005; Paciorek 2007), so we use joint
proposals for hyperparameters and their random effects fol-
lowing Paciorek (2007). The posterior estimates for a given
estimation run (modern or colonial era) are based on three
separate chains, whereas for the prediction runs, they are based
on the aforementioned 50 separate chains.

4. MODEL RESULTS AND ASSESSMENT

Results from the model come in several forms. In Section 4.1
we use the estimation runs to learn about the relationship

between pollen and vegetation in the modern and colonial
periods. We consider the ecological implications of parameter
estimates and contrast results from the modern and colonial
estimation runs to understand potential differences in vegeta-
tion structure. In Section 4.2, we assess the use of the model for
prediction in a cross-validatory fashion. Having argued that our
model performs reasonably, in Section 4.3, we apply the pre-
diction model to pollen data over the past 2,500 years. Addi-
tional details on model performance and results are provided in
Paciorek and McLachlan (2008).

4.1 Estimation Model Results

4.1.1 Pollen as Proxy for Vegetation. Differential Pollen
Production and Dispersal. The estimation runs allow us to
characterize the relationship between pollen in sediments and
local vegetation, thereby informing us about the ability of
pollen to serve as proxy data for vegetation. Our model
attempts to find the best fit between pollen and vegetation
across a regional network of sites. As a residual diagnostic, we
compare pollen composition in each pond to the spatially
smoothed estimated vegetation composition of the encom-
passing grid cell from the model. Although differences
between pollen and vegetation composition may arise because
the grid-scale vegetation is poorly estimated, most ponds fall
in areas with nearby FIA plots or township data (see Fig. 1), so
we expect that most differences are a result of long-distance
pollen transport and local (within grid cell) vegetation heter-
ogeneity.

For the modern era, Figure 2 plots relative pollen abundance
in ponds versus model-smoothed grid cell relative vegetation
abundance for each taxon (red crosses). Most taxa show
increasing relationships. The lack of 1:1 relationship shows the
importance of including f to adjust for differential pollen
production and dispersal. After scaling the smoothed vegeta-
tion by the estimated values of f, we see the values falling
around the 1:1 line in Figure 2 (black squares), albeit with some
taxa, such as oak and hickory, showing more consistent rela-
tionships than others, such as spruce. The substantial remaining
variability makes it difficult to precisely estimate f. Results
are similar for the colonial era (not shown).

Based on plots by pond rather than by taxon (not shown),
most ponds show an increasing relationship between relative
abundance of each taxon in the pollen and in pollen as pre-
dicted from vegetation, scaling by f, although some ponds
show sharp differences, particularly for some of the more
abundant taxa. Fortunately, in almost all cases, taxa with low
abundance in the vegetation can be distinguished from taxa
with high abundance in the vegetation based on the pollen.
Further exploration has not indicated any relationships with
covariates or spatial patterns that might explain which ponds
have more noisy relationships between the pollen and smoothed
vegetation proportions. Nor are the ponds with the noisy rela-
tionships consistent between the modern and colonial eras. This
makes more sophisticated error modeling difficult.

The estimation runs also allow us to investigate differential
taxon-specific pollen production and dispersal. For both the
modern and colonial parameter estimates, large uncertainties
prevent us from readily distinguishing among most taxa based
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on f, but the two taxa whose estimates are clearly different
than the others are maple, with low production/dispersal, and
birch, with high production/dispersal, agreeing with previous
finer-scale analyses of the relationship between trees and pollen
assemblages in the eastern United States (e.g., Jackson 1990).

Long-Distance Dispersal. Based on diagnostic plots similar
to Figure 2, the full model accounting for long-distance dis-
persal produced smaller deviations between the raw pollen
proportions and pollen as predicted from vegetation than a
model without long-distance dispersal, setting g [ 1. The
simpler model fits substantially worse than allowing g to be
estimated in the estimation runs, with a DDIC (Deviance
Information Criterion) of 307 (427) for the modern (colonial
era). Not surprisingly, the estimated precision of the pollen data
is smaller when g [ 1, with values of �apollen of 35 compared
with 60 for the modern run and 27 compared with 97 for the
colonial run, as the additional unexplained heterogeneity is
accounted for in the Dirichlet heterogeneity parameter. Further
assessment using cross-validation supported the use of the
mixture model, with the model without long-distance dispersal
producing predicted vegetation surfaces with much less distinct
spatial patterns (not shown) and less posterior confidence about
feature significance, as we would expect with the smaller
estimated Dirichlet heterogeneity parameter for the pollen data.
In future ecological analyses we will consider different
approaches for pollen source contributions in more detail, as this
is an issue of critical paleoecological importance and others
have attempted to infer relative contributions by various meth-
ods (e.g., Jackson and Lyford 1999; Nielsen and Sugita 2005).

For the pollen data, g represents the proportion of pollen
data consistent with vegetation estimated in the encompassing
grid cell, with 1 � g the proportion based on weighting the
composition in the other grid cells in the domain. In both the
colonial and modern eras, g is about one-half, 0.48 for the
modern era (with a 95% credible interval of 0.30, 0.61) and
0.50 (0.41, 0.59) for the colonial era, indicating that much of
the pollen in the ponds is not consistent with the grid-cell-
estimated vegetation. The pollen could be associated with long-
distance transport, reflecting the vegetation in other grid cells,
or with local subgrid-scale vegetation that happens to be more
similar to the region-wide vegetation than the model-estimated
vegetation in the grid cell of the pond. Although local varia-
bility and lack of identifiability in the model surely contribute
to some extent, site visits by the authors suggest that many of
the ponds visited had few nearby trees of the type indicated by
the anomalous pollen, suggesting that much of the pollen
may be due to long-distance transport. Our results are con-
sistent with previous paleoecological work (Jackson and
Lyford 1999; Davis 2000; Nielsen and Sugita 2005), which
suggests that mixing of pollen sources makes it difficult
to distinguish local from regional sources. For taxa that are at
high abundance in most locations, such as maple in the modern
era, it is particularly difficult to distinguish pollen from the
grid cell compared with long-distance transport. Additional
vegetation data from field surveys near ponds could
help estimate local vegetation, thereby distinguishing long-
distance from local pollen and improving our estimation of f
and g. A strength of the model is that it synthesizes already

Figure 2. For the modern era, scatterplots by taxon of pollen proportions in each pond against both the model-smoothed vegetation proportions
in the grid cell of the pond (red crosses) or model-predicted pollen proportions based on scaling the smoothed vegetation in the cell by f (black
squares).
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existing data, but it could readily incorporate local vegetation
data.

Ecologists expect that the contribution of local pollen dis-
persal, g, and the distance-based decay in dispersal, c, may
differ by taxa (Jackson 1990), but a model with g and c
varying by taxa, both parameterized by exchangeable priors,
showed little ability to distinguish differences between taxa,
albeit with a small improvement in DIC (6.7 for the modern era
and 9.0 for the colonial). These parameters are difficult to
estimate, because the model involves a deconvolution of the
deposited pollen, so all taxa show high levels of posterior
uncertainty.

4.1.2 Spatial Smoothing of Composition Data. By run-
ning the model for the modern and colonial eras, we can
smooth the available vegetation data and provide estimates of
colonial and modern vegetation in a visually appealing fashion,
with associated uncertainty. In accounting for the count data
structure, this simple application of the model has advantages
over nonstatistical smoothing and graphical display, allowing
us to consider the ecological differences since European set-
tlement in light of the estimated uncertainty. In Figure 3(a), we
see the smoothed composition estimates for the modern era.

Spatial gradients in vegetation appear to have become less
distinct with European settlement (not shown). Figure 3(b)
shows uncertainty estimates for each taxon, suggesting that
with the rich vegetation data of the FIA surveys we have rea-
sonably precise estimates. However note that this is done at the
grid level, and there is certainly a large amount of within-cell
heterogeneity that causes individual stands of trees to have
compositions that differ drastically from the composition
estimate in a cell. The standard deviations are larger for more
common taxa, but this reflects only that we can be quite certain
in absolute terms that less common taxa are uncommon; the
coefficient of variation (not shown) indicates that relative
uncertainty is greater for the less common taxa and, for a given
taxon, in locations in which the taxon is less common.

Our model relies on key parameters to translate between
pollen data and vegetation predictions in the prediction runs. In
particular, the variance component for the basis coefficients of
the spatial process representation influences the amount of
smoothing, which not only influences point predictions by
determining the degree of local averaging, but perhaps more
importantly determines the degree of uncertainty, with uncer-
tainty increasing rapidly with increasing distance from ponds
when the smoothing parameters specify more unsmooth spatial

Figure 3. (a) Posterior means and (b) standard deviations of vegetation estimates from modern estimation runs. Note that some maple and oak
proportions are truncated to 0.4.
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processes. As expected because of changes in vegetation
postsettlement and sparser data in the modern surveys, the
estimated heterogeneity is less in the modern era with an
estimate of s of 1.8 (1.2, 2.5) compared with 5.9 (4.1, 8.2) in
the colonial era. This difference and the difference in the
estimates of f highlight the importance of choosing between
the estimation parameters estimated for the modern and colo-
nial periods when predicting in the past.

4.2 Cross-Validation.

Our estimation runs allow us to compare reasonable model
specifications, but the true test of the model is its ability to
predict and provide good uncertainty estimations for vegetation
when only pollen data are available. Our next assessment uses
cross-validation, first using modern parameter estimates to
predict in the colonial period and then using colonial parameter
estimates to predict in the modern period. Note that while only
several hundred years apart, the modern and colonial eras are
separated by vast ecological changes induced by European
settlement, as great as any differences expected over the past
2,500 years (Fuller et al. 1998; Oswald et al. 2007); this pro-
vides an important check on the model.

4.2.1 Feature Significance. Uncertainty assessment is a
major concern for a complicated model with an ambitious
prediction goal. Pointwise standard deviations of prediction for
each taxon provide some information about how certain we can
be about our point predictions of vegetation composition,
including which taxa are most reliably predicted and at which
spatial locations we can be most certain. However, this does not
give us a complete picture concerning our certainty about
spatial features of the predictive surfaces. Our primary interest
lies in determining which spatial areas can be reliably deter-
mined to have higher or lower abundances of a given taxon than
other areas, although detection of gradients and extrema may
also be of interest. We also want to compare abundances of
individual taxa across time and between taxa at individual
times and spatial locations.

To make assessments about relative abundances of a single
taxon across locations at fixed time, we make use of the pos-
terior distributions of contrasts between different locations. We
take a graphical approach focused on pointwise comparisons,
hoping to provide approximate inference about all the locations
at the expense of some loss of information about joint prop-
erties. In general, the use of exchangeable prior distributions
with the resulting shrinkage justifies not adjusting for multi-
plicity (Berry and Hochberg 1999, Carlin and Louis 2000, p.
339; Gelman, Hill, and Yajima 2008). We do not adjust for
multiplicity because our spatial model has this flavor of
exchangeability through the spatial process structure for the
vegetation processes that smooths abundances toward each
other, potentially giving flat surfaces (s2 � 0) if the data
suggest little spatial variability. The prediction model also
smooths in time.

Our approach is to consider pairwise posterior probabilities
of differential abundance for a given taxon and plot the results
in an informative way, demonstrated in the third column of
plots in Figure 4. For each pair of grid cells, we compute the
posterior probability that the abundance of the taxon in one grid

cell is higher than the abundance in the other grid cell. We
sequentially consider each grid cell as the focal cell, making a
subplot in which we color the other grid cells for which pair-
wise differences between the focal cell and the other cell have
at least 90% posterior probability of lying on one side of zero.
The colors indicate the sign of the difference and the posterior
probability of lying on that side of zero. Finally, we make a
mosaic of the subplots, with each subplot placed on a map in
the position of its focal grid cell and an ‘‘x’’ marking the rel-
ative position of the focal location within the subplot. By tiling
the subplots into a full plot, we present a color map of point-
wise, pairwise probabilities of differential abundance. Viewing
the mosaic of subplots as a single plot, areas of substantial
probability of differential abundance from other areas show
themselves as deep colors, whereas individual subplots can still
be examined to assess differences between a given focal
location and all other locations. In Figure 4 we see that for
beech, the northwestern and north-central areas indicated in
dark red show high probability of higher abundance than the
south-central and eastern areas. In contrast, for hickory, the
evidence is less strong, with moderate probability of a small
area in the northwest (in blue) having lower abundance than
most of the rest of the region.

4.2.2 Assessment of Predicted Surfaces and Uncertainty
Characterization. In Figure 4 for the colonial period (and in
Paciorek and McLachlan (2008) for the modern period), we
compare our best estimate of vegetation, from the colonial
estimation run, with predictions based on pollen from the
colonial period and parameter estimates from the modern
period. We also show feature significance plots and plots of
posterior standard deviations of prediction to assess uncer-
tainty. Based on comparisons of the vegetation-predicted sur-
faces with the pollen-predicted surfaces, interpreted in light of
the feature significance plots, it appears the model is doing a
reasonably good job of predicting spatial patterns. For the
colonial period, the features are quite similar in the prediction
and estimation runs, and patterns detected in the feature sig-
nificance plots are seen in the vegetation-predicted surfaces
when considered at a fairly coarse resolution, suggesting
minimal type one error, with few nonexistent patterns detected.
For the modern predictions, the results are not as good, par-
ticularly for hemlock. The model fails to capture some large-
scale patterns and is overly confident about the patterns it does
estimate. The poorer results in predicting modern vegetation
may more strongly reflect difficulties in predicting modern
vegetation than problems with the colonial parameter estimates
per se. Land-use change postcolonization makes spatial pat-
terns in modern vegetation less distinct and less strongly
associated with the covariates than in the colonial era (Foster
et al. 1998; Fuller et al. 1998), making prediction more diffi-
cult. The larger precision of the pollen data as a proxy for
vegetation in the colonial estimation runs than in the modern
estimation runs causes overconfidence in the modern pre-
dictions. Given that vegetation structure in the past is very
likely to be more similar to the colonial vegetation than the
modern vegetation, the success of the model in predicting
colonial patterns gives us confidence in the ability of the model
to make predictions.
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In terms of absolute abundance, the model generally indi-
cates the taxa with high and low abundance reasonably (maple
is an exception) but often incorrectly predicts overall relative
abundance of a taxon (Fig. 4). This relates to whether the
estimated values of f are appropriate for the time period. In
particular, maple is overpredicted in the colonial era and
underpredicted in the modern, whereas the reverse is true for
oak and beech. This occurs because the estimated values of f
for the two taxa are different for the two eras; use of the
parameter estimate from estimation runs for the same era as the
prediction runs improves prediction of the overall level, indi-
cating the sensitivity of predictions to this key parameter.
Given that we expect vegetation before settlement to be more
similar to the colonial vegetation than the modern vegetation;
this suggests we should focus on the colonial parameter esti-
mates for prediction before settlement.

Posterior uncertainty varies widely between taxa and across
space (Fig. 4). Uncertainty is the greatest far from ponds, as
should be the case. Maple is particularly uncertain, because the
low pollen production/dispersal of maple causes inference
about maple to rely on a small number of pollen grains in each
pond, creating a large signal to noise ratio.

To assess temporal changes, we can contrast abundance
estimates for each taxon between any pair of time points on a
pointwise cell by cell basis, again without post hoc correction
for multiple testing because of the temporal smoothing done by
the model. The comparison takes the simple form, at each grid
cell, of computing the posterior probability for the chosen
taxon that the abundance is greater in one period than a second
period. If this posterior probability exceeds a threshold (we
use 90% in our plots) for either period, we plot the poste-
rior probability as the color shade in the cell. As an example,

Figure 4. For the colonial period, vegetation estimated in the colonial estimation run (making use of witness tree vegetation data) (first
column), vegetation predicted in the colonial prediction run based on colonial pollen and modern parameter estimates (second column), feature
significance for the prediction run (third column), and posterior prediction standard deviations (fourth column). In the first column some cell
abundances are truncated at 0.5.
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Figure 5 shows distinct changes in beech over time when com-
paring the present (i.e., 1950), with the years 100–400 years
before present. The areas of predicted robust decrease in beech
match estimated declines based on the colonial and modern
vegetation data (but note that this is not full cross-validation
given our use of the modern estimation run parameters).
Assessment of this and other such contrast plots in light of the
modern and colonial vegetation data suggest the model can
detect changes over time with reasonable specificity and some
sensitivity to real changes in composition.

These results suggest that our model is performing as well as
may reasonably be expected, able to resolve many spatial
patterns and temporal changes at coarse scale but missing the
fine-scale details of vegetation and some coarse patterns.

4.3 Operational Prediction Model Results.

Here we describe initial results from the prediction runs over
the past 2,500 years. Many other uses of the full posterior
distribution are possible. For display purposes, we use pre-
dictions based on colonial parameter estimates; more detailed
ecological analysis will assess robustness with respect to the
estimation run used.

The parameter estimates for the temporal variance compo-
nents indicate that changes over time occur smoothly, partic-
ularly for the regression coefficients, but also for the residual
spatio-temporal structure.

Surface predictions and posterior standard deviations, as
well as feature significance plots, are possible for each pre-
diction time point, allowing inference about spatial patterns,
but are not shown for brevity. In Figure 6, we show temporal
contrast plots for the presettlement period, which suggest that
there was a trend toward increased oak abundance in higher-
elevation areas in central Massachusetts in the period 1,000–
500 years before present and a decreasing trend in roughly the
same area 2,500–2,000 years before present. There are no
detectable trends in areas furthest to the east that have high oak
abundance.

A common presentation of pollen data is in the form of a
pollen diagram showing changes in pollen composition in a
pond over time. An analogous presentation using model output
is to estimate vegetation composition and associated uncer-
tainty in a given grid cell, demonstrating the ability of the
model to estimate and characterize uncertainty in vegetation
based on pollen. In Figure 7 we compare pollen composition to
model-estimated vegetation, including decomposition into the
average across time and temporal deviation from that average
that allows assessment of contrasts across time. Maple, chest-
nut, spruce, and hickory pollen are all represented at low
abundance throughout the period of interest. After accounting
for taxon-specific biases in pollen representation and bor-
rowing strength both spatially and based on environmental
covariates, the model provides some evidence that birch,
chestnut, maple, oak, and spruce increased over time preset-
tlement, whereas the more common beech and hemlock do
not show a robust trend. In general, the model-estimated trends
in the grid cell match those from the pollen in the single pond,
but spatial smoothing in the model can cause differences
between raw pollen and estimated vegetation, such as seen for
maple.

Plots of the elevation and latitude regression coefficients
over time (not shown) show little trend for most taxa, sug-
gesting a lack of stark changes in the relationships of vegeta-
tion to abiotic factors.

We also considered running the prediction model at time
intervals of 50 years and with an exponential temporal corre-
lation function. For most aspects of the predictions these
changes had little effect, but there was some sensitivity in the
temporal contrasts.

5. DISCUSSION

Almost 100 years ago, von Post (1917) described the prob-
lem of interpreting forest composition from fossil pollen
assemblages. Long-distance pollen dispersal, differential pol-
len production, and a generally high level of process noise have

Figure 6. Posterior probabilities of differences in presettlement oak
abundance between pairs of time points 500–2,500 years before present
(1950) based on colonial parameter estimates. Each cell indicates the
posterior probability (with a threshold of 90%) that the cell has lower
(blue) or higher (red) abundance in the later time period than the earlier
time period. See Fig. 4, third column for color legend.

Figure 5. Posterior probabilities of differences in recent beech
abundance between pairs of time points 0–400 years before present
(1950) based on modern parameter estimates. Each cell indicates the
posterior probability (with a threshold of 90%) that the cell has lower
(blue) or higher (red; no examples here) abundance in the later time
period than the earlier time period. See Fig. 4, third column for color
legend.
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been major obstacles for the interpretation of paleoecological
data ever since. Analyses of pollen data have identified im-
portant trends in the data (Berglund 1991; Davis, Calcote,
Sugita, and Takahara 1998; Fuller et al. 1998; Soepboer,
Sugita, Lotter, Van Leeuwen, and Van der Knapp 2007), but
they have not quantified these trends in an inferential frame-
work that explicitly accounts for the various sources of
uncertainty and the natural spatial context of the data. Although
theory and models about pollen production, dispersal, and
accumulation have continuously evolved (Webb 1974; Jackson
1990; Davis 2000; Haslett et al. 2006; Sugita 2007a,b), most
paleoecological literature simply presents raw pollen percen-
tages and asks the reader to understand that these are rough and
unquantified approximations of the forest composition, which
is the real variable of interest.

Our work tackles this problem, building a statistical frame-
work for inferring historical forest composition based on
proxy pollen sediment data. We present a multivariate spatio-
temporal model for compositions. We build the model in
stages, allowing easier model assessment. Under a set of simple
assumptions about the relationship between trees and pollen
through space and time, our model adds a quantitative estimate
of uncertainty to inference about changing vegetation, pro-

viding the first spatially explicit statistical analysis of paleo-
ecological data, and borrowing strength across multiple ponds
and across time in a coherent way. Innovative graphical
assessments of feature significance based on the full posterior
distribution suggest that the pollen data can reliably indicate
certain large-scale spatial features for some taxa, but that fea-
tures on scales smaller than ;50 km are not possible to dis-
tinguish, nor are large-scale features for some taxa, such as
those with low pollen production/dispersal relative to other
taxa. The model does not resolve the substantial problems
involved in using pollen data to estimate forest composition,
but does suggest which inferences are more reliable and what
additional data would be most helpful.

Specific results from the model demonstrate the advantages
of the spatially explicit modeling approach that calibrates
pollen to vegetation. For example, Figure 7 estimates the extent
to which a classic pollen diagram misrepresents changing
forest composition. Most paleoecological studies (e.g., Fuller
et al. 1998) would show only the blue pollen proportions and
interpret forest change by acknowledging that the representa-
tion of certain tree taxa is likely to be biased in pollen data. Our
analysis quantifies this in a coherent probabilistic framework.
The recent decrease in beech trees suggested in Figure 7 is

Figure 7. Vegetation diagrams for the grid cell encompassing pond 20 (Snake Pond) with the recent period based on modern parameter
estimates (top; 0–500 years before present) and the presettlement period based on colonial parameter estimates (bottom, 300–2,500 years before
present). Black lines represent the posterior mean and gray shading the 95% credible intervals for vegetation abundance, rp(s, t), with blue lines
showing corresponding pollen proportions from Snake Pond. Red lines represent 95% pointwise credible intervals for the deviations over time in
the vegetation ðrpðs; tÞ � �rpðsÞÞ;which are plotted as offsets relative to the posterior mean of �rpðsÞ: Plotting the credible interval for the deviation
in this way removes the effect of uncertainty in fp, which affects all times in the same way, and avoids the overly conservative contrasts of
abundance across time indicated by the gray shading.
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depicted in a regional context in Figure 5. Previous studies
(Fuller et al. 1998; Oswald et al. 2007) have identified this
regional decrease, but were unable to describe this trend in a
continuous spatial setting. Graphical representations of output
from our model allow a resolution of spatial analysis previously
unavailable to paleoecologists. More importantly, confidence
in the strength of the inferences is articulated. A similar set of
maps for maple (not shown) shows very little significant trends,
because of the large uncertainty about maple abundance. Given
the amount of noise in the pollen representation and the relative
sparseness of fossil pollen datasets, it is important that paleo-
ecologists are able to confidently detect patterns emerging
above the noise in their data.

The long-term and broad-scale nature of modern environ-
mental problems ensures that networks of paleoecological sites
will continue to provide important benchmarks for environ-
mental change (Botkin et al. 2007). Our model provides the
framework for testing ecological theory through the incorpo-
ration of covariates and through its ability to distinguish
important spatial and temporal trends from noise. The model
was designed with few biological assumptions, but it could be
modified to incorporate such constraints, as well as additional
data, such as more finely specified pollen dispersal data,
environmental covariates, or spatial genetic information, as
these data become available. We anticipate that our work, along
with parallel efforts by others to interpret paleoecological data
in better articulated statistical terms (Haslett et al. 2006; Sugita
2007a,b), will allow this longstanding data source to be better
integrated into modern environmental analysis.

[Received September 2007. Revised August 2008.]
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