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SUMMARY

A unique challenge in air pollution cohort studies and similar applications in environmental epidemiology

is that exposure is not measured directly at subject locations. Instead, pollution data from monitoring

stations at different locations than the subjects are used to predict exposures, and these predicted exposures

are used to estimate the health effect parameter of interest. It has been widely assumed that it is desirable

to minimize the error in predicting the true exposure in order to improve health effect estimation. We show

in a simulation study that this is not always the case. We interpret our results in light of recently developed

statistical theory for measurement error, and we discuss implications for the design and analysis of future

epidemiological research.
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1. ACCURATE EXPOSURE PREDICTION MAY NOT IMPROVE HEALTH EFFECT ESTIMATION

There has been a significant emphasis in air pollution epidemiology research on developing statistical

models to predict exposures at subject locations where measurements are not available (Yanosky et al.

2009; Szpiro et al. 2010; Brauer 2010; Fanshawe et al. 2008; Su et al. 2009; Jerrett et al. 2005a; Hoek et al.

2008). These efforts are predicated on the assumption that exposure predictions with less measurement

error relative to the unknown true values will improve health effect estimation (Jerrett et al. 2005b; Kunzli

et al. 2005; Puett et al. 2009). We demonstrate in a simulation study that this is not always the case, and

we interpret our results using recently developed statistical theory for measurement error resulting from

spatially misaligned data (Szpiro et al. 2011).

2. MATHEMATICAL FRAMEWORK AND SIMULATION STUDY

Most modern statistical models for predicting long-term average air pollution concentrations are based

on “land-use” regression (LUR). In LUR modeling, a linear regression model with geographic (land-

use) covariates such as population density, proximity to traffic, and proximity to commercial areas is fit

to monitoring data and is then used to predict concentrations at subject locations. Elaborations on this

framework account for spatial and spatio-temporal correlation and various approaches to model selection,

but LUR remains a central component. We focus on a pure LUR model in this paper.

2.1 Stochastic data-generating model

Consider an association study with the N × 1 vector of observed health outcomes Y , N × 1 vector of

exposures X , and N ×m matrix of covariates Z. Assume a linear regression model

Y = β0 +XβX + ZβZ + ε, (2.1)
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with coefficient of interest βX and ε an N × 1 random vector with independent elements distributed as

Gaussian random variables with mean 0 and variance σ2
ε (i.e., N(0, σ2

ε)).

We are interested in the situation where Y and Z are observed, but instead ofX we observe theN∗×1

vector X∗ of exposures at different locations. N∗ is the number of exposure monitors. Assume that X ,

the subject exposures, and X∗, the monitor concentrations, are jointly distributed as

(
X
X∗

)
=

(
S
S∗

)
α+

(
η
η∗

)
. (2.2)

In this expression, S and S∗ are random N × k and N∗ × k dimensional matrices of the k geographic

covariates used in the LUR model observed without error, α is an unknown k × 1 vector of coefficients,

and η and η∗ are independent vectors with elements distributed as N(0, σ2
η). The stochasticity in S and

S∗ derives from random selection of subject and monitor locations. If the exposure model is known, it

is standard practice to estimate α based on X∗ and then use W = Sα̂ in place of X in equation (2.1)

to estimate βX . That is predictions from the LUR model are used as estimated exposures in place of the

unknown true values, a form of regression calibration (Gryparis et al. 2009).

We quantify the accuracy in approximating X by W by

R2
W = 1 −

N∑
i=1

(
Wi −Xi

)2
/

N∑
i=1

(
Xi −

1

N

N∑
i=1

Xi

)2
,

where larger R2
W values correspond to less measurement error. This defines an out-of-sample measure of

prediction accuracy since it is based on prediction error at subject locations, and it is not subject to bias

from overfitting the exposure model to the monitoring data (Hastie et al. 2001, Ch. 7). R2
W is a random

quantity that varies for each realization of the data-generating model, and we denote its expectation R̄2
W .

There are a number of criteria for evaluating the validity and reliability of health effect estimates.

Following Kim et al. (2009), we consider bias, standard deviation, root mean squared error (RMSE), and
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coverage probability (the proportion of 95% confidence intervals that include the true βX ).

2.2 Misspecified exposure model

We generally do not know the exact form of the exposure model and may use a misspecified model for

prediction. One form of model misspecification is to omit a geographic covariate from the LUR model.

This corresponds to only observing the N × (k − 1) and N∗ × (k − 1) matrices S′ and S∗′ obtained

by deleting the kth columns of S and S∗. We then estimate the corresponding (k − 1) × 1 vector of

coefficients α′ and replace X in equation (2.1) by W ′ = S′α̂′ to obtain β̂′X . We denote measures of

exposure prediction accuracy R2′

W and R̄2′
W as in the case of the correctly specified exposure model.

We generally expect R2
W to be larger than R2′

W , which from the perspective of exposure modeling

implies that the correctly specified exposure model gives better predictions than the misspecified one. It

is reasonable to expect that this will also lead to improved health effect estimation. However, in the next

subsection we will demonstrate a class of examples in which R2
W is consistently larger than R2′

W , but

β̂X has more error than β̂′X as measured in terms of bias, variance, RMSE, and coverage probability. We

emphasize thatR2
W is not inflated by overfitting since it is based on the correctly specified exposure model

and quantifies out-of-sample prediction accuracy at subject locations.

2.3 Simulation study

We set k = 4 (three geographic covariates and an intercept) and consider scenarios with N between

100 and 10,000 subjects and N∗ equal to 100 monitors. We assume the three geographic covariates are

independent of each other at all locations and are independent between subjects. In particular, for each

subject i we assume the jth geographic covariate Sij is independently distributed as N(0, 1). Similarly
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we assume the S∗ij are distributed as N(0, 1) for j = 1, 2, but the third geographic covariate for the

monitoring sites is distributed as N(0, σ2) for σ2 = 0.1, 1.0, or 4.0. Finally, we set α0 = 0, αj = 4 for

j = 1, 2, 3, β0 = 1, βX = 2, σε = 25, and ση = 4, and we assume there are no additional covariates Z.

Example simulation code in R (R Development Core Team 2010) can be found in the Appendix.

The choice of σ2 controls the level of variability in the third geographic covariate at the monitoring

locations. By comparing the misspecified model (i.e., the model that does not contain the third geographic

covariate) to the correctly specified full model, we are able to assess the added value of including the

third geographic covariate in predictions, depending on its variability. The situation with σ2 = 0.1 is of

particular interest, as it represents a geographic covariate that has limited variability in the monitoring data

compared to the other geographic covariates but is equally variable in the subject data where it will be used

to predict exposures. This is realistic, for example, if the covariate measures near-road traffic exposure.

Regulatory monitors are often sited away from roadways in order to measure background pollution levels,

so they may not span the full range of covariate values relevant for predicting exposures at subject home

locations, a significant fraction of which are near major roads.

In Table 1 and Figure 1, we show the results from 80,000 Monte Carlo simulations with N = 10,000

subjects, N∗ = 100 monitoring sites, and σ2 = 1.0. The coefficient for the third geographic covariate α3

is estimated well in the full model and is statistically significant in all simulations. The corresponding ex-

posure prediction accuracyR2
W is consistently near 0.75, compared toR2′

W near 0.50 with the misspecified

model. Health effect estimation efficiency is improved by using the correctly specified exposure model,

which gives a standard deviation for β̂X of 0.12 compared to 0.21 for β̂′X with the misspecified model.

The coverage probabilities for both models are poor since the standard error estimates fail to account for

exposure measurement error. The correctly specified exposure model results in a modest improvement in



6

coverage probability, although it also introduces slightly more bias than the misspecified model.

Analogous results are shown in Table 1 and Figure 2 for σ2 = 0.1, representing a situation where

one of the geographic covariates is less variable in the distribution of monitoring locations than are the

other geographic covariates. The smaller value of σ2 results in more variability in estimating α3, but this

parameter is still estimated well and is statistically significant in 83% of Monte Carlo simulations. There

is clear improvement in the exposure predictions from using the full model with R2
W at least 0.67 in

95% of simulations, as compared to the misspecified model with R2′

W consistently near 0.50. But in this

situation, the health effect estimation is more precise when we use the misspecified exposure model, with

the standard deviation of β̂′X equal to 0.16, compared to 0.23 for β̂X using the fully specified model. The

misspecified model also results in less bias and a modest improvement in coverage probability.

We vary the number of subjects as well as σ2 and summarize the results in Figure 3 by plotting the

difference between the standard deviation of β̂′X based on the misspecified exposure model and β̂X based

on the correct exposure model on the vertical axis against N on the horizontal axis; a positive difference

indicates the correctly specified model is more efficient. We restrict to 5,000 Monte Carlo simulations

since this is sufficient to estimate the standard deviations (the biases are smaller and require more Monte

Carlo simulations). The difference is positive for σ2 = 1.0 and 4.0, consistent with the prior expectation

that more accurate exposure predictions result in more efficient health effect estimation. But it is negative

for σ2 = 0.1 except for the case where there are onlyN = 100 subjects, demonstrating that in larger health

studies the misspecified exposure model results in more efficient health effect estimation even though it

gives less accurate exposure predictions. For all simulations we considered, the average out-of-sample

exposure model prediction accuracies are R̄2
W between 0.73 and 0.75 for the correctly specified model

and R̄2′

W between 0.49 and 0.50 for the misspecified model that omits the third geographic covariate.
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3. THEORETICAL INTERPRETATION IN A MEASUREMENT ERROR FRAMEWORK

The results of our simulation study seem paradoxical in that we have shown a class of examples where

more accurate exposure predictions do not lead to improved health effect estimation. Table 1 shows that

for σ2 = 0.1 the correctly specified model consistently gives more variable exposure predictions and

more accurate out-of-sample prediction than the misspecified exposure model. However, a small part

of the additional exposure variability is induced by error in estimating α3, which leads to less efficient

estimation of βX . These findings can be understood in a theoretical context by referring to the statistical

measurement error framework developed for this setting by Szpiro et al. (2011); see also Gryparis et al.

(2009).

Briefly, for a fairly general class of exposure models there are two components to the measurement

error. The Berkson-like component of error results from smoothing the exposure surface using a model

that may not account for all sources of variation and can be thought of as the part of the true exposure

that is not predictable from the model. It is similar to standard Berkson error (Carroll et al. 2006) in that it

inflates the health effect estimate standard deviation and introduces little or no bias, but it is different from

Berkson error in that it is correlated in space and is not completely independent of the predicted exposures.

The classical-like component results from uncertainty in estimating the exposure model parameters. It is

similar to classical measurement error since it is a source of variability in the predicted exposures and can

introduce bias in health effect estimates as well as change their standard errors. The classical-like com-

ponent is different from classical measurement error since the additional variability from exposure model

parameter estimation is shared across all prediction locations rather than being independent. Additional

details on this decomposition can be found in Szpiro et al. (2011).

For the simple LUR exposure model considered here, the Berkson-like component is pure Berkson
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error because there is no spatial dependence structure in η and η∗ and the Sij and S∗ij are independent.

When we use the correctly specified exposure model, the Berkson error is just η, but misspecifying the

model by omitting the third geographic covariate increases the Berkson error substantially, resulting in

a degradation of prediction accuracy. However, Berkson error plays the same role mathematically as the

random ε in the disease model, so its impact on the health effect estimation error diminishes for large N .

On the other hand, each coefficient that needs to be estimated in the exposure model contributes to the

classical-like error, and this part of the error remains important regardless of the number of subjects. In

some situations, this could result in a bias-variance tradeoff since classical-like error induces bias while

Berkson-like error does not.

It turns out that for σ2 = 0.1 in the monitoring data, we get relatively variable estimates of α3 when

using the full exposure model, while still improving out-of-sample prediction accuracy at subject loca-

tions. This results in substantial classical-like measurement error that (for sufficiently large N ) is more

important than the additional Berkson error that is introduced by omitting the corresponding geographic

covariate. There is very little bias in any of our simulations, so the dominant classical-like error primarily

results in more variable estimates of βX .

4. IMPLICATIONS FOR FUTURE RESEARCH

We have shown a class of examples where more accurate exposure prediction does not lead to improved

health effect estimation. It bears emphasis that this does not result from overfitting the exposure model, at

least not as overfitting is traditionally understood for prediction models (Hastie et al. 2001, page 194). In

all cases we considered, using the correctly specified model that includes all three geographic covariates

results in improved prediction accuracy, as measured by out-of-sample R2
W evaluated at the subject loca-
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tions. In addition, the estimated coefficient α̂3 for this covariate is nearly always statistically significant.

Our findings have important implications for the design and analysis of future environmental epidemi-

ological studies. Most importantly, we believe that a paradigm shift is needed in environmental epidemi-

ology. Development of models for exposure prediction and health effect estimation should be considered

simultaneously, as opposed to the current practice of treating them distinctly by first selecting an exposure

model to optimize prediction accuracy and then using the resulting predictions for health effect estimation.

Recent papers that address measurement error in air pollution cohort studies represent progress in this di-

rection (Kim et al. 2009; Szpiro et al. 2011; Gryparis et al. 2009; Madsen et al. 2008). Our results do not

necessarily suggest employing a joint statistical estimation model for the exposure and health parameters

in which the health data would influence estimation of the exposure model parameters. The issue we have

highlighted relates more directly to model selection than parameter estimation.

There is extensive literature on penalization and other methods for optimizing accuracy of prediction

models (Hastie et al. 2001), but these techniques are not directly applicable because better prediction

accuracy may induce less precise health effect estimation. New statistical methodology is needed to select

exposure models to optimize efficiency of health effects inference, perhaps involving alternative forms of

penalization that account for the structure in both the monitoring and health outcome data. It is also worth

exploring asymptotic methods to estimate the bias and variance of β̂X in order to select optimal geographic

covariates, particularly when there is a relatively large number of monitoring locations compared to the

geographic covariates.

Since the relative benefits of different air pollution exposure models depend on the variability of ge-

ographic covariates in the subject population and monitor locations and on the size of the cohort, it is

evident that study design can be improved by accounting for statistical issues at the intersection of expo-
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sure prediction and health effect estimation. All else being equal, it is preferable to design an exposure

monitoring campaign to maximize the variability of pertinent geographic covariates across monitor loca-

tions. An asset allocation algorithm (Kanaroglou et al. 2005) may be useful for optimizing the monitoring

design to predict exposures in an epidemiology study with known subject locations.

We have only considered the relatively simple setting of a linear disease model with an exposure model

that is LUR with independent geographic covariates. Even in this case we have shown that more accurate

exposure prediction does not necessarily lead to improved health effect estimation. We expect that similar

phenomena can occur in other settings, but further research is needed to identify general conditions and

assess the implications of more complex situations.
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σ2 = 1 σ2 = 0.1

Correct Misspecified Correct Misspecified
model model model model

Exposure predictions
R̄2
W 0.74 0.49 0.73 0.50

V̄ar(W ) 48.5 32.7 50.2 32.3

Exposure model parameter estimate α̂3

Standard deviation 0.41 − 1.37 −
Statistically significant (p < 0.05) 100% − 83% −

Health effect parameter estimate β̂X
Bias −0.007 −0.001 −0.035 0.001

Standard deviation 0.12 0.21 0.23 0.16

RMSE 0.12 0.21 0.23 0.16

E(SE) 0.038 0.049 0.038 0.049

95% CI coverage 45% 35% 26% 46%

Table 1. Results from 80,000 Monte Carlo simulations with N = 10,000 and N∗ = 100. The R̄2
W and V̄ar(W )

are the out-of-sample prediction R2
W and variance of predicted exposures, respectively, averaged over 80,000 Monte

Carlo simulations. The bias, standard deviation, and fraction of Monte Carlo runs statistically significant are given for

estimates of α̂3 in the correctly specified exposure model only, since this parameter is not included in the misspecified

model. The bias, standard deviation, root mean squared error (RMSE), and 95% confidence interval coverage are given

for estimates of the health effect parameter β̂X . We also report the average estimated standard error (SE) for β̂X . The

Monte Carlo standard error in estimating the bias of β̂X in all models is less than 0.001.
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Fig. 1. Results from 80,000 Monte Carlo simulations with N = 10,000, N∗ = 100, and σ2 = 1.0. For the cor-

rectly specified exposure model the average out-of-sample prediction accuracy is R̄2
W = 0.74 and the health effect

estimation standard deviation is 0.12 with a bias of −0.007 (95% CI: -0.008 to -0.006). Corresponding statistics for

the misspecified exposure model are R̄2′
W = 0.49 and health effect estimation standard deviation 0.21 with a bias

of −0.001 (95% CI: -0.002 to 0.0006). The standard error of α̂3 for the correctly specified model is 0.41, and α̂3 is

statistically significant in all simulations.
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Fig. 2. Results from 80,000 Monte Carlo simulations with N = 10,000, N∗ = 100, and σ2 = 0.1. For the cor-

rectly specified exposure model the average out-of-sample prediction accuracy is R̄2
W = 0.73 and the health effect

estimation standard deviation is 0.23 with a bias of −0.035 (95% CI: -0.037 to -0.034). Corresponding statistics for

the misspecified exposure model are R̄2′
W = 0.50 and health effect estimation standard deviation 0.16 with a bias

of 0.001 (95% CI: -0.0003 to 0.002). The density plot for R2
W shows some small outliers for the full model, but the

prediction accuracy is better than for the misspecified model in all but 144 of the 80,000 simulations. The standard

deviation of α̂3 for the correctly specified model is 1.37, and α̂3 is statistically significant in 83% of simulations.
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Fig. 3. Results from 5,000 Monte Carlo simulations with N∗ = 100, σ2 = 0.1, 1.0, 4.0, and N ranging from 100 to

10,000. The vertical axis shows the difference between standard deviation of β̂X from the misspecified and correct

exposure models. A positive difference indicates that the correctly specified model is more efficient. For all values

of σ2, the average exposure model prediction accuracies are R̄2
W between 0.73 and 0.75 and R̄2′

W between 0.49 and

0.50.
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APPENDIX

A. EXAMPLE R CODE TO PRODUCE THE RESULTS IN TABLE 1 .

set.seed(10000)
N <- 80000
n.subjs.list <- c(10000)
n.samps.list <- c(100,100)
z3.sd.list <- c(0.3,1.0)
for (i.scen in c(1:2)){
n.samps <- n.samps.list[i.scen]
z3.sd <- z3.sd.list[i.scen]
fname <- paste("save.new2_",n.samps,"_",round(z3.sd,1),sep="")

sd.eps <- 25
sd.eta <- 4

beta.est.list <- list()
se.est.list <- list()
r2.list <- list()
exp.var.list <- list()
alpha3.est.list <- list()
alpha3.se.list <- list()

alpha1 <- 4
alpha2 <- 4
alpha3 <- 4
beta0 <- 1
beta1 <- 2

for (i.subjs.list in c(1:length(n.subjs.list))){

n.subjs <- n.subjs.list[i.subjs.list]

beta.est <- data.frame(matrix(rep(NA,N*3),ncol=3))
se.est <- data.frame(matrix(rep(NA,N*3),ncol=3))
r2 <- data.frame(matrix(rep(NA,N*3),ncol=3))
exp.var <- data.frame(matrix(rep(NA,N*3),ncol=3))
colnames(beta.est) <- c("true","model1","model2")
colnames(se.est) <- c("true","model1","model2")
colnames(r2) <- c("true","model1","model2")
colnames(exp.var) <- c("true","model1","model2")
alpha3.est <- rep(NA,N)
alpha3.se <- rep(NA,N)

for (i in 1:N){

if (floor(i/1000)==i/1000) print(i)

z1.subjs <- rnorm(n.subjs)
z2.subjs <- rnorm(n.subjs)
z3.subjs <- rnorm(n.subjs)
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z1.samps <- rnorm(n.samps)
z2.samps <- rnorm(n.samps)
z3.samps <- rnorm(n.samps,0,z3.sd)

exp.subjs <- alpha1*z1.subjs + alpha2*z2.subjs + alpha3*z3.subjs +
rnorm(n.subjs,0,sd.eta)

exp.samps <- alpha1*z1.samps + alpha2*z2.samps + alpha3*z3.samps +
rnorm(n.samps,0,sd.eta)

y.subjs <- beta0 + beta1*exp.subjs+rnorm(n.subjs,0,sd.eps)

# true exposure
exp.subjs.est.true <- exp.subjs
lm.fit <- lm(y.subjs˜exp.subjs.est.true)
beta.est[i,"true"] <- summary(lm.fit)$coef[2,1]
se.est[i,"true"] <- summary(lm.fit)$coef[2,2]
r2[i,"true"] <- summary(lm(exp.subjs.est.true˜exp.subjs))$r.sq
exp.var[i,"true"] <- var(exp.subjs.est.true)

# model 1 (Misspecified Model)
exp.lm.fit <- lm(exp.samps˜z1.samps+z2.samps)
exp.subjs.est.m1 <- exp.lm.fit$coef[1] + exp.lm.fit$coef[2]*z1.subjs +

exp.lm.fit$coef[3]*z2.subjs
lm.fit <- lm(y.subjs˜exp.subjs.est.m1)
beta.est[i,"model1"] <- summary(lm.fit)$coef[2,1]
se.est[i,"model1"] <- summary(lm.fit)$coef[2,2]
r2[i,"model1"] <- summary(lm(exp.subjs.est.m1˜exp.subjs))$r.sq
exp.var[i,"model1"] <- var(exp.subjs.est.m1)

# model 2 (Correctly Specified Model)
exp.lm.fit <- lm(exp.samps˜z1.samps+z2.samps+z3.samps)
exp.subjs.est.m2 <- exp.lm.fit$coef[1] + exp.lm.fit$coef[2]*z1.subjs +

exp.lm.fit$coef[3]*z2.subjs + exp.lm.fit$coef[4]*z3.subjs
lm.fit <- lm(y.subjs˜exp.subjs.est.m2)
beta.est[i,"model2"] <- summary(lm.fit)$coef[2,1]
se.est[i,"model2"] <- summary(lm.fit)$coef[2,2]
r2[i,"model2"] <- summary(lm(exp.subjs.est.m2˜exp.subjs))$r.sq
exp.var[i,"model2"] <- var(exp.subjs.est.m2)
alpha3.est[i] <- exp.lm.fit$coef[4]
alpha3.se[i] <- summary(exp.lm.fit)$coef[4,2]

}

print(n.subjs)
beta.est.list[[i.subjs.list]] <- beta.est
se.est.list[[i.subjs.list]] <- se.est
r2.list[[i.subjs.list]] <- r2
exp.var.list[[i.subjs.list]] <- exp.var
alpha3.est.list[[i.subjs.list]] <- alpha3.est
alpha3.se.list[[i.subjs.list]] <- alpha3.se

}
save.image(file=paste(fname,".Rdata",sep=""))

}




