
Chapter 2

Theoretical Development

2.1 Introduction

In this chapter I present a new class of nonstationary correlation functions and determine the

smoothness properties of Gaussian processes (GPs) whose correlation functions lie in the class.

The new class is a generalization of the kernel convolution covariance of Higdon et al. (1999).

Next, I review results on the continuity and differentiability of sample paths from isotropic Gaus-

sian processes based on the characteristics of the correlation functions of the GPs. I apply these

results to the generalized kernel convolution correlation functions and show that they retain the

smoothness properties of the isotropic correlation functions upon which they are based, provided

that the underlying kernel structure is sufficiently smooth. I close by discussing some potential

advantages of the generalized kernel convolution correlation.

2.2 Nonstationary Covariance Functions Using Convolutions of Ker-

nels

In this section, I describe in detail the approach of Higdon et al. (1999) (henceforth HSK) for defin-

ing nonstationary covariance functions. HSK propose a nonstationary spatial covariance function,

C(·, ·), defined by

C(xi,xj) =

∫

<2

Kxi
(u)Kxj

(u)du, (2.1)
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where xi, xj , and u are locations in <2, and Kx is a kernel function centered at x. They motivate

this construction as the covariance function of a white noise process, ψ(·), convolved with the

kernel function to produce the process, Z(·), defined by

Z(x) =

∫

<2

Kx(u)ψ(u)du.

One can avoid the technical details involved in carefully defining such a white noise process by

using the definition of positive definiteness to show directly that the covariance function is positive

definite in every Euclidean space, <p, p = 1, 2, . . .:

n∑

i=1

n∑

j=1

aiajC(xi,xj) =
n∑

i=1

n∑

j=1

aiaj

∫

<P
Kxi

(u)Kxj
(u)du

=

∫

<P

n∑

i=1

n∑

j=1

aiKxi
(u)ajKxj

(u)du

=

∫

<P

n∑

i=1

aiKxi
(u)

n∑

j=1

ajKxj
(u)du

=

∫

<P

(
n∑

i=1

aiKxi
(u)

)2

du

≥ 0. (2.2)

The key to achieving positive definiteness is that each kernel is solely a function of its own location.

Apart from this restriction, the structure of the kernel is arbitrary. I will return to this proof of

positive definiteness when I generalize the HSK approach in Section 2.3.

Next I show the closed form of the HSK covariance for Gaussian kernels based on the equiva-

lence of convolutions of densities with sums of independent random variables:

C(xi,xj) =

∫
Kxi

(u)Kxj
(u)du

=

∫
1

(2π)
P
2 |Σi|

1

2

exp

(
−1

2
(xi − u)T Σ−1

i (xi − u)

)

× 1

(2π)
P
2 |Σj |

1

2

exp

(
−1

2
(xj − u)T Σ−1

j (xj − u)

)
du.

Recognize the expression as the convolution

∫
hA(u− xi)hU (u)du =

∫
hA,U (u− xi,u)du,
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where h(·) is the normal density function, A ∼ N(0,Σi), U ∼ N(xj ,Σj), and A and U are

independent. Now consider the transformation W = U −A and V = U , which has Jacobian of

1. This gives us the following equalities based on the change of variables:

∫
hA,U (u− xi,u)du =

∫
hW ,V (u− (u− xi),u)du

=

∫
hW ,V (xi,u)du

= hW (xi).

SinceW = U −A,W ∼ N(xj ,Σi + Σj) and therefore

C(xi,xj) = hW (xi)

=
1

(2π)
P
2 | Σi + Σj |

1

2

exp

(
−1

2
(xi − xj)

T (Σi + Σj)
−1(xi − xj)

)
.

Absorbing the necessary constants into the matrices in the quadratic form and dividing by the stan-

dard deviation function, σ(xi) = 1

2
P
2 π

P
4 |Σi|

1
4

, we arrive at the nonstationary correlation function,

R(·, ·), defined by

R(xi,xj) =
2

P
2 |Σi|

1

4 |Σj |
1

4

|Σi + Σj |
1

2

exp

(
−(xi − xj)

T

(
Σi + Σj

2

)−1

(xi − xj)

)
. (2.3)

Examining the exponential and its quadratic form, we see that this is nothing but a squared ex-

ponential stationary correlation, but in place of the squared Mahalanobis distance, τ 2 = (xi −
xj)

T Σ−1(xi − xj), for arbitrary fixed positive definite matrix Σ, we instead use a quadratic form

with the average of the kernel matrices for the two locations. If the kernel matrices are constant, we

recover the special case of the squared exponential correlation based on Mahalanobis distance. If

they are not constant with respect to x, the evolution of the kernel covariance matrices in space pro-

duces nonstationary covariance. To construct a covariance function, one merely includes a variance

function.

Independently, Gibbs (1997, p. 49, equ. 3.82) derived a special case of the HSK covariance

function in which the kernel matrices, Σi, are taken to be diagonal positive definite matrices. Gibbs

(1997) makes an astute observation about the characteristics of the nonstationary covariance model

that applies to the HSK covariance and to my generalization of HSK as well (Section 2.3). When

the size of the kernels changes quickly, the resulting correlation structure can be counterintuitive
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because of the function, which Gibbs calls the ’prefactor’, in front of the exponential in (2.3). When

the kernels centered at xi and xj are similar in size, the numerator and denominator more or less

cancel out, but when one kernel is much larger than the other, the square root of the determinant

in the denominator dominates the product of the fourth roots of the determinants in the numerator;

this effect causes smaller correlation than achieved based solely on the exponential term. This is

most easily seen graphically in a one-dimensional example in Figure 2.1, where I showR(−0.5, x)

(the correlation between the point −0.5 and all other points) and R(0.5, x), when the kernel size

changes drastically at x = 0. We see that the correlation of x = 0.5 with the points to its left

drops off more quickly than the correlation of x = −0.5 with its neighboring points, because of the

effect of the prefactor, even though the kernel centered at x = 0.5 is large, and the kernel centered

at x = −0.5 is small. This is counter to intuition and to our goal for the nonstationary function

because at certain distances, the correlation between two points whose kernels are relatively small

is larger than the correlation between a point whose kernel is small and a point whose kernel is

large. For this example, sample functions are least smooth at the x values where the kernel size

changes quickly (Figure 2.1d), rather than being least smooth at the x values with the small kernels.

This effect seems to be restricted to situations in which the kernel sizes change very quickly, so it

may not be material in practice. However, the phenomenon may arise occasionally in sample paths

in the regression modelling, as discussed in Section 4.6.1.

2.3 Generalized Kernel Convolution Covariance Functions

One potential drawback to the kernel convolution approach is that the HSK formulation using

Gaussian kernels produces a nonstationary covariance with smoothness properties similar to the

stationary squared exponential correlation (as shown in Section 2.5.5). In particular, if the kernel

matrices vary sufficiently smoothly in the covariate space, then the sample paths based on the

nonstationary covariance are infinitely differentiable. Stein (1999) discusses in detail why such

highly smooth paths are undesirable and presents an asymptotic argument for using covariance

functions in which the smoothness is allowed to vary. In hopes of avoiding such a high degree of

smoothness, one might think of extending the HSK approach by using non-Gaussian kernels, but

unless the convolution (2.1) can be done in closed form, this would entail numerical integration.
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Figure 2.1. (a) Correlation of f(−0.5) with the function at all other points. (b) Correlation of

f(0.5) with the function at all other points. (c) Kernel variance as a function of x. (d) Five sample

functions drawn from the Gaussian process distribution; notice that the functions are least smooth

at the location of the sharp change in the kernel size.

In this section I extend the HSK covariance in a way that provides a closed form correlation

function. I produce a class of nonstationary correlation functions that provide more flexibility than

the HSK formulation. Consider the quadratic form,

Qij = (xi − xj)
T

(
Σi + Σj

2

)−1

(xi − xj), (2.4)

at the heart of the correlation function (2.3) constructed via the kernel convolution. We have seen
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that the HSK nonstationary correlation function is nothing but the squared exponential correlation

with this new quadratic form in place of a Mahalanobis distance. This relationship raises the

possibility of producing a nonstationary version of an isotropic correlation function by using Qij

in place of τ 2 = τ Tτ in the isotropic function. In practice, one uses τ
κ

=
√
Qij , since the

scale parameter κ is redundant and can be absorbed into the kernel matrices, Σi and Σj , which

are allowed to vary in size during the modelling anyway. The following general result applies in

particular to correlation functions that are positive definite in Euclidean space of every dimension,

in particular the power exponential, rational quadratic, and Matérn correlation functions (1.2-1.4).

Theorem 1 If an isotropic correlation function, R(τ), is positive definite on <p for every p =

1, 2, . . ., then the function, R(·, ·), defined by

R(xi,xj) =
2

p

2 |Σi|
1

4 |Σj |
1

4

|Σi + Σj |
1

2

R
(√

Qij

)
(2.5)

with
√
Qij used in place of τ , is positive definite on <p, p = 1, 2, . . ., and is a nonstationary

correlation function.

Proof: The proof is a simple application of Theorem 2 of Schoenberg (1938, p. 817), which states

that the class of functions positive definite on Hilbert space is identical with the class of functions

of the form,

R(τ) =

∫ ∞

0
exp

(
−τ2s

)
dH(s), (2.6)

where H(·) is non-decreasing and bounded and s ≥ 0. The class of functions positive definite on

Hilbert space is identical to the class of functions that are positive definite on <p for p = 1, 2, . . .

(Schoenberg 1938). We see that the covariance functions in this class are scale mixtures of the

squared exponential correlation. The underlying stationary correlation function with argument
√
Qij can be expressed as

R
(√

Qij

)
=

∫ ∞

0
exp (−Qijs) dH(s)

=

∫ ∞

0
exp


−(xi − xj)

T

(
Σi

s
+

Σj

s

2

)−1

(xi − xj)


 dH(s)

=

∫ ∞

0

∫

<P
Kxi,s(u)Kxj ,s(u)dudH(s).
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Since s is non-negative, it becomes part of the kernel matrices, and the last expression can be seen

to be positive definite based on (2.2).

Q.E.D.

This approach replaces the kernel at each location with a scale mixture of kernels where a

common scale is used for all the locations (See Matérn (1986, pp. 32-33) for some discussion

of generating new stationary correlation functions as scale mixtures of stationary correlation func-

tions.) Using different distributions,H , for the scale parameter, S, produces different nonstationary

correlation functions. A nonstationary version of the rational quadratic correlation function of the

form (2.5) is

R(xi,xj) =
2

P
2 |Σi|

1

4 |Σj |
1

4

|Σi + Σj |
1

2

(
1

1 +Qij

)ν

.

This can be seen to be of the scale mixture form by taking S ∼ Γ(ν, 1),

∫
exp(−Qijs)dH(s) = E(exp(−Qijs)) = MS(−Qij ; ν, 1) =

(
1

1 +Qij

)ν

,

where MS is the moment generating function of S. This makes sense since the rational quadratic

correlation function has the form of a t density, which is a mixture of Gaussians with an inverse

gamma distribution for the variance of the Gaussian, which is proportional to 1
S

. A nonstationary

version of the Matérn correlation function is

R(xi,xj) =
2

P
2 |Σi|

1

4 |Σj |
1

4

|Σi + Σj |
1

2

1

Γ(ν)2ν−1

(√
2νQij

)ν

Kν

(√
2νQij

)
. (2.7)

Using an integral expression for the Bessel function (Gradshteyn and Ryzhik 1980, p. 340, equ. 9;

McLeish 1982), one can easily show that in this case S is distributed inverse-gamma (ν, 1/4). In

Section 2.5.4 (stationary) and Section 2.5.5 (nonstationary), I show that the existence of moments

of S is directly related to the existence of mean square and sample path derivatives of processes

whose covariance is produced by mixing a squared exponential covariance over the scale param-

eter. Rather than producing a closed form nonstationary correlation function by substituting the

quadratic form (2.4) into an isotropic correlation function, one can instead construct nonstation-

ary correlation functions (possibly without closed form) by choosing a distribution over the scale

parameter, with the distribution chosen to produce the desired smoothness properties based on the

moments of the distribution.
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The Matérn correlation function is proportional to the Bessel density function (McLeish 1982).

Based on the fact that convolutions of Bessel densities are also Bessel densities (McLeish 1982;

Matérn 1986, pp. 29-30), we might expect that the Matérn nonstationary correlation (2.7) could be

derived directly from a convolution of Bessel densities. However, the Bessel distribution is closed

under convolution only for fixed scale parameters (this can be seen by multiplying two t densities,

since the characteristic function of the Bessel density is proportional to a t density), so it does not

directly correspond to a convolution of the type (2.1) for which Σi 6= Σj .

The quadratic form (2.4) defines a semi-metric space (Schoenberg 1938), in which the distance

function is (x′
i − x′

j)
T (x′

i − x′
j), where x′

i =
(

Σi+Σj

2

)− 1

2 · xi. However, the new location, x′
i,

varies depending on the other point, xj , through its dependence on Σj . The distance function

violates the triangle inequality, even if one considers the points as lying in a higher dimensional

space, so the space is not an inner-product space. To see this, consider a one-dimensional example

with three points on a line, two points equidistant from the central point and on either side, x1 =

−1, x2 = 0, x3 = 1. Let the Gaussian kernel at the center point decay slowly along the line,

Kx2
(x) = φ(x;−1, 32) while the two other Gaussian kernels decay more quickly along the line,

Kx1
(x) = φ(x;−1, 1),Kx3

(x) = φ(x; 1, 1). The distance between the central point and either

side point is then 0.2, which smaller than half the distance, 4, between the two side points.

To construct the nonstationary correlation functions introduced here, we need kernels at all

locations in the space X . As described in Section 3.2, the kernels are modelled as functions of

stochastic processes that determine the kernel eigenvectors and eigenvalues. This induces stochas-

tic processes for the elements of the kernel matrices. As I will discuss in Section 2.5.5, the smooth-

ness properties of these elements in part determine the smoothness of stochastic processes param-

eterized by the nonstationary correlation introduced here.

2.4 Nonstationary Covariance on the Sphere

The generalized kernel convolution covariance model can be extended for use on the sphere, S2,

and other non-Euclidean spaces. On the sphere, the equivalence of translation and rotation causes

difficulty in defining kernels that produce correlation behavior varying with direction. The fol-

lowing recipe allows one to create a nonstationary model for the sphere. First, define a truncated
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Gaussian kernel at each location in a Euclidean projection of the sphere centered at that location.

Let the value of the kernel be zero for distances at which the Euclidean approximation to angular

distance is poor. As usual, let the kernels vary smoothly in space. Project the kernels from the

Euclidean projection back to the spherical domain, thereby defining a set of kernels on S2, one

kernel at each location of interest. Then define the correlation function as the convolution in the

spherical domain. The key to showing positive definiteness (2.2) of the kernel convolution covari-

ance is that each kernel is solely a function of the location of the kernel; this approach satisfies that

condition. The additional integration over a scale parameter can also be done here in the spher-

ical domain to produce a class of nonstationary correlation functions on the sphere. In practice,

as described in Section 5.4.1.4, I have calculated the correlations directly in the Euclidean projec-

tions with untruncated kernels so as to be able to use the analytic form for the correlation (2.5). I

found that the resulting correlation, although not guaranteed to be positive definite, does not cause

numerical problems. Note that smoothness properties of processes on S2 follow from those of

processes on <3 ⊃ S2 if one chooses a covariance function that is positive definite on <3 and sets

τij = 2 sin
(ρij

2

)
, where ρij is the angular distance between locations xi and xj .

There has been little work on nonstationary covariance modelling on the sphere apart from a

nonlinear mapping approach (Das 2000) that extended the work of Sampson and Guttorp (1992).

Das (2000) mapped the original sphere to a new sphere in which stationarity is assumed to hold

and then used stationary covariance models valid on S2.

2.5 Smoothness Properties of Covariance Functions

2.5.1 Overview

The functional form and parameter values of the covariance function of a Gaussian process dis-

tribution determine the smoothness properties of the process and sample paths drawn from the

distribution. Covariance functions can give Gaussian processes whose sample paths range from

discontinuous to analytic. While data can inform the choice of covariance function to some degree,

this decision is also a philosophical choice based on one’s conception of the underlying physical or

scientific process.
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Two important characteristics of stochastic processes are mean square properties and sample

path properties, which I define in Section 2.5.2. All of the Gaussian processes I consider here

are both mean square and sample path continuous based on simplifications of the arguments given

here. The key difference amongst correlation functions lies in the differentiability properties asso-

ciated with them. Using results from the stochastic process literature, in Section 2.5.4 I derive the

mean square and sample path differentiability properties of stochastic processes parameterized by

the stationary correlation functions (1.2-1.4). These results are well-known but are not collected

or proven in one place to my knowledge. In particular, sample path properties of familiar isotropic

correlation functions are relatively little discussed (but see Abrahamsen (1997)). I present the

material here because the smoothness properties associated with the nonstationary kernel convolu-

tion correlation functions (Section 2.5.5) follow from those of the underlying isotropic correlation

functions on which they are based. I focus particularly on sample path properties, because I be-

lieve these are most relevant when selecting a correlation function. The analyst is more likely to

be able to make some intuitive judgement about sample path properties of the process at hand than

about mean square properties. Mean square properties are easier to derive, being directly related

to derivatives of the covariance function and moments of the spectral distribution, and much of the

literature concentrates on these (e.g., Stein (1999)). Even if one is not directly interested in mean

square properties, they are useful as a first step in determining sample path properties, as we will

see. At times hereafter I refer to mean square and sample path properties of a correlation function,

by which I mean properties of mean-zero stochastic processes with the given correlation function.

For sample path properties, the results hold only for Gaussian processes.

2.5.2 Theoretical framework

First I give brief definitions of mean square and sample path continuity and differentiability, fol-

lowing Adler (1981). In the remaining sections of this chapter, I will use x, y, and u to indicate

locations in the covariate space and xp to indicate the pth scalar element of x. In the stationary

case, let τ = ‖x − y‖, and in the isotropic case, let τ = ‖τ‖ =
√
τTτ . This avoids having

double subscripts indicating both location and covariate. However as a notational exception for

the following definition, let xi, i = 1, 2, . . . be a sequence of locations such that ‖xi − x‖ → 0
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as i → ∞. If Z(xi)
m.s.→ Z(x) as i → ∞, then Z(·) is continuous in mean square at x. If the

convergence is almost sure, then Z(·) is almost surely continuous at x. If there exists Z (1)
p (x) such

that

Z(x+ εup) − Z(x)

ε
m.s.→ Z(1)

p (x), ε→ 0

where up is the unit vector in the pth direction, then Z (1)
p (x) is the mean square derivative of Z(·)

at x. Again if the convergence is almost sure, then Z (1)
p (x) is the pth-order almost sure partial

derivative at x. M th-order partial derivatives, either mean square or almost sure, can be defined in

similar fashion. If almost sure continuity or differentiability hold simultaneously with probability

one for all x ∈ I ⊂ <P then Z(·) is sample path continuous or has a sample path partial derivative,

respectively, on I . Sample path differentiability involves the existence and continuity of sample

path partial derivatives, as I will discuss shortly.

In general, because the finite dimensional distributions of a stochastic process do not determine

the sample path properties of the process, showing sample path continuity or differentiability relies

on the notion of separability pioneered by Doob (1953, pp. 51-53) and discussed in detail in Gih-

man and Skorohod (1974, p. 164) and Adler (1981, p. 14). A separable process is one for which

the finite-dimensional distributions determine the sample path properties. By virtue of Theorem 2.4

of Doob (1953, p. 57), for any stochastic process, Z̃(x),x ∈X with X a linear space, there exists

a version of the process, Z(x), that is separable and is stochastically equivalent to the original pro-

cess. Once one assumes that one is working with the separable version of the stochastic process,

almost sure continuity (differentiability) can be extended to sample path continuity (differentia-

bility) because the probability one statement at individual points holds simultaneously on a dense

countable set of points, and the sample path properties of the separable process are determined by

the properties of the process on the dense countable set. From this point forward, I will assume all

processes are separable.

Mean square properties of correlation functions are frequently analyzed, in part because they

can be readily determined from the correlation function, or for stationary correlation functions,

from the spectral representation of the correlation function. A process is mean square continuous

at u if and only if the covariance function C(x,y) is continuous at x = y = u (Cramér and

Leadbetter 1967, p. 83; Loève 1978, p. 136; Adler 1981, p. 26). All the correlation functions
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considered in this work are continuous, and therefore processes with these correlation functions

are mean square continuous. Mean square differentiability is directly related to the existence of

derivatives of the correlation function. A random field, Z(·), has mean square partial derivative at

u, Z(1)
p (u) if and only if ∂2C(x,y)/(∂xp∂yp) exists and is finite at (u,u) (Adler 1981, p. 27).

If the derivative exists, the covariance function of the mean square partial derivative process is

the partial derivative of the original covariance function. For stationary processes, one need only

consider the partial derivative evaluated at 0, and the correlation function of the partial derivative

process is ∂2C(τ )/∂τ 2
p . The existence of M th-order mean square partial derivatives is equivalent

to the finiteness of the relevant 2M th-order partial derivatives of the covariance function (Adler

1981, p. 27; Vanmarcke 1983, p. 111),

∂2MC(x,y)

∂xp1
· · · ∂xpM

∂yp1
· · · ∂ypM

,

evaluated at (u,u) for pm ∈ {1, . . . , P} ,m ∈ {1, . . . ,M}.

Stationary covariance functions can be expressed as the Fourier transform of the spectral dis-

tribution, H(·),

C(τ ) =

∫

<P
exp(iwTτ )dH(w).

If H(·) is absolutely continuous with respect to Lebesgue measure, then the spectral density, h(·),
exists and can be expressed as

h(w) =
1

(2π)P

∫

<P
exp(−iwTτ )C(τ )dτ .

In other words, the covariance function is the characteristic function of the distribution, H(·).
In the isotropic case, H(w) depends only on ‖w‖ (Adler 1981, p. 35). Using the well-known

relationship between derivatives of a characteristic function evaluated at the origin and moments

of the distribution, one can see that mean square differentiability is equivalent to the existence of

moments of the spectral distribution. A process on <1 is mean square differentiable if and only if

∫
w2dF (w) <∞,

because the existence of the second moment is equivalent to having two derivatives of the covari-

ance at the origin (Stein 1999, p. 27). As mentioned above, in higher dimensions, the existence of
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a 2M th-order partial derivative of the covariance at the origin is equivalent to having the respec-

tive M th-order mean square partial derivative exist. This is also equivalent to the existence of the

2M th-order spectral moments (Adler 1981, p. 31),

(−1)M ∂2MC(τ )

∂τ2
p1
· · · ∂2

pM

∣∣∣∣∣
τ=0

=

∫

<P
w2

p1
· · ·w2

pM
dH(w) <∞, (2.8)

for pm ∈ {1, . . . , P} ,m ∈ {1, . . . ,M}. While the spectral relationship is very useful for assessing

mean square differentiability in the stationary case, it does not provide the covariance function of

the mean square derivative, only the value of the covariance at 0.

Mean square properties are important in part because they are useful for showing sample path

properties. In the discussion that follows in this paragraph, except where noted, the cited results are

for processes on <1. While I have not seen the results shown formally on <P , I presume they hold

there as well. Cambanis (1973, Theorem 6) has shown that a real, separable, measurable Gaussian

process that is not mean square differentiable at any point has with probability one paths that are

almost nowhere differentiable. Since mean square differentiability is generally straightforward to

determine, the more difficult cases involve showing sample path differentiability for processes that

are mean square differentiable. Doob (1953, p. 536) shows that for a separable process, sample

functions of the process are absolutely continuous, and hence the functions have derivatives almost

everywhere. Furthermore, the mean square derivative process is equal to the sample path derivative

process with probability one (Doob 1953, p. 536; Cramér and Leadbetter 1967, p. 85; Yaglom

1987, p. 67). In the Gaussian case, on <P , the derivative processes are also Gaussian processes,

and the joint distributions of all of these processes are Gaussian (Adler 1981, p. 32). For a function

of P variables, if all first-order partial derivatives, Z (1)
p (·), p = 1, . . . , P , exist and are continuous,

the function is continuously differentiable and this is sufficient for the function to be first-order

differentiable (Olmsted 1961, p. 267; Leithold 1968, pp. 795-796). Since the partial derivatives are

themselves functions on <P , higher-order derivatives are defined recursively by differentiating the

lower-order derivative functions. I demonstrateM th-order sample path differentiability by showing

that all M th-order partial derivative processes, Z (M)
p1···pM

(·) for pm ∈ {1, . . . , P} ,m ∈ {1, . . . ,M}
exist and are sample path continuous.

Sample path continuity is difficult to demonstrate in the non-Gaussian case. Adler (1981, p.
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48) gives the condition for a stationary process that for α > 0 and ε > α, if

E|Z(x+ τ ) − Z(x)|α ≤ c‖τ‖2P

| log ‖τ‖|1+ε
,

then Z(·) will be sample path continuous over any compact set in <P . In the Gaussian case, the

conditions are less strict. If Z(·) is a zero-mean Gaussian process with continuous covariance and

for some finite c > 0 and some ε > 0,

E|Z(x) − Z(y)|2 ≤ c

| log ‖x− y‖|1+ε
(2.9)

for x and y in I , then the process has continuous sample paths on I (Adler 1981, p. 60). In the

stationary case, the condition simplifies to

C(0) − C(τ ) ≤ c

| log ‖τ‖|1+ε
. (2.10)

Adler (1981, p. 64) also gives a condition for sample path continuity for stationary, zero-mean

Gaussian processes based on the spectral representation of the covariance. If for some ε > 0,

∫

<P
| log(1 + ‖w‖)|1+εdH(w) <∞,

then the process is sample path continuous. However, I have not been able to use this spectral

condition to demonstrate the continuity of derivative processes.

To summarize, the steps involved in proving sample path differentiability for Gaussian pro-

cesses are as follows. I focus only on correlation functions in the sections that follow, assuming

that the variance function is either constant or has sample paths as smooth as those based on the

correlation function. First I show that M th-order mean square differentiability holds (using ei-

ther the derivative of the correlation or moments of the spectral distribution) and determine the

covariance of the M th-order mean square partial derivative processes (using the derivatives of the

correlation). These mean square derivative processes are probabilistically equivalent to the sample

path derivative processes. Then I show that all the M th-order derivative processes are sample path

continuous based on their covariance functions and either condition (2.9) or (2.10).

Processes that are infinitely mean square differentiable may also be mean square analytic.

Loève (1978, p. 137) and Stein (1999, p. 33) state that processes on <1 are mean square analytic

if the covariance function C(x, y) is analytic at (u, u). Both the squared exponential and rational
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quadratic correlation functions (despite its having a second parameter) are analytic, as I show in

Section 2.5.4.4 by demonstrating complex differentiability of the correlation function. This sug-

gests that the sample paths for processes with these correlation functions will be analytic, although

I have not seen this result proven. Stein (1999) argues that analytic sample paths are unrealistic for

physical processes, since an analytic function is fully determined by its values in a small interval.

2.5.3 Lemmas for proofs

Before venturing into the details of the smoothness properties of Gaussian processes based on

correlation function properties, I provide definitions and lemmas that I will use in the proofs. I

state the lemmas here for xp − yp and ‖x−y‖ but in the stationary setting, I use τp = xp − yp and

‖τ‖ = ‖x− y‖.

First I introduce some notation involving partial derivatives, which will clarify the arguments

involved in the remainder of this chapter. The classes D(m)(·) are defined recursively as follows.

Let

D(1)(·) =

{
∂(·)
∂x1

, . . . ,
∂(·)
∂xP

,
∂(·)
∂y1

, . . . ,
∂(·)
∂yP

}
.

I will use D(1)(·) ∈ D(1)(·) to represent a term taking the form of an element in the class. Then for

m > 1 let D(m)(·) =
{
D(1)(D(m−1)(·))

}
. For m = 2 we have

D(2)(·) =

{
∂2(·)
∂x2

1

,
∂2(·)
∂x1∂x2

, . . . ,
∂2(·)
∂x1∂yP

, . . . ,
∂2(·)
∂y2

P

}
.

To denote partial derivatives with respect to x only, I useD(m)
x and for particular partial derivatives

with respect to a coordinate of x I use D(m)
xi .

Definition 2 I define g(x,y) to beOI(‖x−y‖a), denoted g(x,y) = OI(‖x−y‖a), if there exists

c > 0 such that for all x and y in a region I ,

g(x,y)

‖x− y‖a
≤ c.

Schervish (1995, p. 394) provides an alternate definition, with more extensive notation and related

properties, based on a sequence of numbers, rn, replacing ‖x − y‖ and the region I . Some

properties that will be useful are
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• If g1(x,y) = OI(‖x − y‖a1) and g2(x,y) = OI(‖x − y‖a2) then g1(x,y) · g2(x,y) =

OI(‖x− y‖a1+a2).

• If g(x,y) = OI(‖x− y‖a1) then g(x,y)a2 = OI(‖x− y‖a1a2).

• If g1(x,y) = OI(‖x−y‖a1) and g2(x,y) = OI(‖x−y‖a2), with a1 ≤ a2, then g1(x,y)+

g2(x,y) = OI(‖x− y‖a1).

Next I prove a series of lemmas.

Lemma 3 xp − yp = OI(‖x− y‖)

Proof: First, the claim is equivalent to (xp −yp)
2 = OI(‖x−y‖2) by the properties of OI(·). The

following bound holds:
(xp − yp)

2

‖x− y‖2
=

(xp − yp)
2

∑
q(xq − yq)2

≤ 1.

Q.E.D.

Lemma 4 If D(1)(g(x,y)) exists, then g(x,x) − g(x,y) = OI(‖x− y‖).

Proof: Consider
g(x,y) − g(x,x)

‖x− y‖ . (2.11)

By standard results in advanced calculus texts, such as Buck (1965, p. 243) or Leithold (1968, p.

795), if the function g(·) is a differentiable function of y, then we can express the numerator as

g(x,y)−g(x,x) = D(1)
y1

(g(x, y))(x1−y1)+· · ·+D(1)
yP

(g(x, y))(xP−yP )+R(x1−y1, . . . , xP−yP ),

where

lim
‖x−y‖→0

R(x1 − y1, . . . , xP − yP )

‖x− y‖ = 0.

Therefore the expression (2.11) can be bounded for x and y in a region I based on the above limit

and on lemma 3.

Q.E.D.

Lemma 5 If g(x,y) = OI(‖x− y‖a) for a > 0, then g(x,y)| log ‖x− y‖|1+ε is bounded for x

and y in a region I .
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Proof:

g(x,y)| log ‖x− y‖|1+ε =
g(x,y)

‖x− y‖a
‖x− y‖a| log ‖x− y‖|1+ε

=
g(x,y)

‖x− y‖a

∣∣∣‖x− y‖
a

1+ε | log ‖x− y‖|
∣∣∣
1+ε

.

The fraction is bounded by the assumption that g(x,y) = OI(‖x − y‖a). The term inside the

outer absolute value has limit of 0 as ‖x − y‖ → 0 by Abramowitz and Stegun (1965, p. 68,equ.

4.1.31) and hence is bounded for x and y in a region I , and the constant power, 1 + ε, does not

affect the boundedness.

Q.E.D.

Lemma 6 If the kernel matrix elements are continuous, Qxy = (x − y)T
(

Σx+Σy

2

)−1
(x − y) is

OI(‖x− y‖2). If the kernel matrix elements are once sample path differentiable, then D(1)(Qxy)

is OI(‖x − y‖). If the kernel matrix elements are m times sample path differentiable, then

D(m)(Qxy) = OI(1).

Proof: First consider Qxy and absorb the divisor of 2 in the matrix inverse into the kernel matrices.

By continuity of the kernel matrix elements, the elements of Σx + Σy are bounded for x and y

in a region I . Expressing Qxy =
∑

i

∑
j(xi − yi)(xj − yj)(Σx + Σy)

−1
ij , it is clear that Qxy =

OI(‖x − y‖2). Next, without loss of generality, consider the first partial derivative D(1)
xi (Qxy) =

c1
∑

p(xp −yp)(Σx +Σy)
−1
ip +(x−y)TD

(1)
xi (Σx +Σy)

−1(x−y). The first term is OI(‖x−y‖),
assuming the kernel matrix elements are continuous. For the second term,

∂(Σx + Σy)
−1

∂xi
= (Σx + Σy)

−1∂(Σx + Σy)

∂xi
(Σx + Σy)

−1,

so the second term is OI(‖x − y‖2) provided the kernel matrix elements are once differentiable.

Hence the sum is OI(‖x− y‖). Finally consider

D(m)(Qxy) = c1D
(m−2)

(
(Σx + Σy)

−1
)

+ . . .+ c2(x− y)TD(m)
(
(Σx + Σy)

−1
)

(x− y).

All the terms are bounded for x and y in a region I if the kernel matrix elements are at least m

times sample path differentiable, so the sum is OI(1).

Q.E.D.
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Lemma 7 If ES2M <∞, one can interchange differentiation and integration of

∂

∂Q

∫
S2M−m exp(−Qs)dH(s)

for m ∈ {1, . . . , 2M}.

Proof: Corollary 2.4.1 of Casella and Berger (1990, p. 71) states that to interchange differentiation

and integration, it is sufficient that for some ε > 0, there exists a function g0(Q, s), integrable with

respect to s, such that

∣∣∣∣
∂g(Q, s)

∂Q
|Q=Q0

∣∣∣∣ ≤ g0(Q, s), ∀Q0 s.t. |Q0 −Q| ≤ ε

where the dominating function g0(Q, s) is integrable with respect to s. In this case, we have

∣∣∣∣
∂

∂Q
g(Q, s)|Q=Q0

∣∣∣∣ =

∣∣∣∣
∂

∂Q
s2M−m exp(−Qs)|Q=Q0

∣∣∣∣

= s2M−m+1 exp(−Q0s)

≤ s2M−m+1

= g0(Q, s),

where the function g0 does not involve Q and hence is integrable for all Q for m ∈ {1, . . . , 2M}
with respect to H(s) by the assumption that ES2M < ∞. Note that differentiating with respect

to a function, a(Q) merely introduces the multiplicative factor ∂Q/∂a(Q), which is constant with

respect to s.

Q.E.D.

Lemma 8 Elements of the kernel matrices, Σx, are bounded for x in a region I if and only if the

eigenvalues of the kernel matrices are bounded in I . Furthermore, if the eigenvalues and the eigen-

vector elements are sample path differentiable, the matrix elements are sample path differentiable.

Proof: Consider the spectral decomposition of a kernel matrix Σx = ΓxΛxΓT
x . Element-wise, and

suppressing the dependence on x, this gives us

Σij =
∑

k

ΓikΓjkΛkk.
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Since the eigenvectors are normalized vectors, their elements are bounded. Therefore the ele-

ments of Σx are bounded if the eigenvalues, Λkk, are bounded. Equivalently, Λx = ΓT
xΣxΓx,

so the eigenvalues can be expressed as products involving the kernel matrix elements and must be

bounded if the matrix elements are bounded. Finally, based on the expansion of Σx,ij in terms

of sums and products of the eigenvector elements and eigenvalues, it’s clear that if the eigenvector

elements and eigenvalues are sample path differentiable, the kernel matrix elements will be as well.

Q.E.D.

2.5.4 Smoothness properties of isotropic correlation functions

The stationary correlation functions on which I focus in this work are all positive definite on

<p, p = 1, 2, . . ., and can therefore be expressed using the Schoenberg (1938) representation (2.6)

as a scale mixture of squared exponential correlation functions. In this section I use the representa-

tion to show the differentiability properties of the correlation functions and in Section 2.5.5 I do the

same for the counterpart nonstationary correlation functions. I show that the smoothness properties

of the scale mixture correlation functions are directly related to the existence of moments of the

scale parameter.

In the isotropic case, for mean square differentiability, I use the condition on the spectral repre-

sentation (2.8), to show that if M moments of the scale parameter exist then the M th-order mean

square partial derivatives exist (Section 2.5.4.1). Next, to assess sample path differentiability, I

work with the derivatives of the correlation function, as I have not been able to make progress

using the spectral representation. Unfortunately, using the derivatives of the correlation function,

I am only able to show that the existence of 2M moments of the scale parameter is sufficient for

M th-order sample path differentiability (Section 2.5.4.2). In Table 2.1 I give an overview of the

smoothness properties of the correlation functions I have been discussing.

2.5.4.1 Mean square differentiability and scale mixtures

Theorem 9 A stochastic process, Z(·), with isotropic correlation function that can be expressed

in the Schoenberg (1938) representation (2.6) hasM th-order mean square partial derivatives ifM
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Table 2.1. Smoothness properties of Gaussian processes parameterized by various correlation

functions. The asterisk indicates that the sample path part of this statement is a conjecture. In

Section 2.5.4.2 I prove only that the Matérn is
⌈

ν
2 − 1

⌉
times sample path differentiable

Smoothness Properties

Mean square and sample path Mean square

Correlation form differentiability analyticity

Power exponential, ν < 2 no no

Matérn dν − 1e times∗ no

Squared exponential infinitely yes

Rational quadratic infinitely yes

moments of the scale parameter, S, are finite.

Proof: Adler (1981, p. 31) gives the general relationship between the existence of spectral mo-

ments and mean square differentiability in the stationary setting. The M th-order mean square

partial derivatives exist if

(−1)M ∂2MR(τ )

∂τ2
p1
· · · ∂τ2

pM

∣∣∣∣∣
τ=0

=

∫

<P
w2

p1
· · ·w2

pM
dHW (w) <∞,

where pm ∈ {1, . . . , P} ,m ∈ {1, . . . ,M}. So to show the existence of the M th-order mean

square derivative, we need to consider the 2M th-order moments of the spectral density. Expressed

in terms of the Schoenberg (1938) representation (2.6), these are

∫

<P
w2

p1
· · ·w2

pM
dHW (w) =

∫

<P
w2

p1
· · ·w2

pM
hW (w)dw

=

∫

<P
w2

p1
· · ·w2

pM

∫

<P
exp(−iwTτ )R(τ )dτ

∝
∫

<P
w2

p1
· · ·w2

pM

∫

<P

∫
exp(−iwTτ ) exp(−τ Tτs)dHS(s)dτdw.

First, interchange the order of integration with respect to s and τ by Fubini’s theorem, which is

justified because the exponential functions are bounded. Recognize that the integral with respect
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to τ is in the form of a normal density with τ ∼ NP

(
− iw

2s
, 1

2s
I
)

. This gives us

∫

<P
w2

p1
· · ·w2

pM
dHW (w) ∝

∫

<P

∫
w2

p1
· · ·w2

pM

(
1

2s

)P
2

exp

(
−w

Tw

4s

)
dHS(s)dw.

Once again interchange the order of integration by Fubini’s theorem, which is justified because the

integrand is non-negative, and the next steps will show that it is integrable. We see that the integral

with respect to w takes the form of a product of moments with respect to w ∼ NP (0, 2sI). A

straightforward calculation shows that E
(
W 2

p1
· · ·W 2

pM

)
∝ SM , which gives us

∫

<p
w2

p1
· · ·w2

pM
dHW (w) ∝

∫
sMdHS(s)

= E
(
SM

)
.

So we see that the M th-order mean square partial derivatives exist if the scale parameter, S, has M

moments.

Q.E.D.

2.5.4.2 Sample path differentiability and scale mixtures

I next show that the existence of 2M moments of S is sufficient for M th-order sample path differ-

entiability.

Theorem 10 A Gaussian process, Z(·), with isotropic correlation function that can be expressed

in the Schoenberg (1938) representation (2.6), is M th-order sample path differentiable if 2M mo-

ments of the scale parameter, S, are finite.

Proof: To evaluate the condition (2.10) for x and y in a region I and thereby show continuity of

the derivative processes, we need to calculate the covariance functions of the M th-order derivative

processes, which by Adler (1981, p. 27) are of the form

(−1)M ∂2MR(τ )

∂τ2
p1
· · · ∂τ2

pM

.

IfES2M <∞, we can interchange differentiation and integration when the term inside the integral

is of order Sm,m < 2M by lemma 7. The 2M th partial derivative of a correlation function of the
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form (2.6) is

cM

∫
sM exp

(
−τ Tτs

)
dH(s)

+cM+1


∑

i,j

τpi
τpj



∫
sM+1 exp

(
−τ Tτs

)
dH(s)

+ · · · + c2mτ
2
p1
· · · τ2

pM

∫
s2M exp

(
−τ Tτs

)
dH(s) (2.12)

for i, j ∈ {1, . . . ,M}. To evaluate the condition (2.10) we need to consider the boundedness of

(−1)M ∂2MR(τ )

∂τ2
p1
· · · ∂τ2

pM

∣∣∣∣∣
τ=0

− (−1)M ∂2MR(τ )

∂τ2
p1
· · · ∂τ2

pM

∣∣∣∣∣
τ=τ0

. (2.13)

Consider the difference (2.13) of the terms in (2.12). All but one of the differences are bounded for

x and y in I when multiplied by | log ‖τ‖|1+ε based on the moment condition, boundedness of the

exponential function and by lemma 5 since τpm = OI(‖τ‖). The exception is the difference of the

first term, which is

cM

∫
sM

(
1 − exp

(
−τ Tτs

))
dH(s) = cM

∫
sMs · c1

∑

i,j

τpi
τpj

exp(−cT cs)dH(s)

∝
∑

i,j

τpi
τpj

∫
sM+1 exp(−cT cs)dH(s), (2.14)

where the first equation follows by a multivariate Taylor expansion (Schervish 1995, p. 665), and

the constant c1 is a function of c, which lies on the line segment joining τ and 0. Again by lemma

5, the moment condition (which is applicable sinceM+1 ≤ 2M forM ≥ 1) and the boundedness

of the exponential function, we have that (2.14), when multiplied by | log ‖τ‖|1+ε, is bounded for

x and y in I . This demonstrates that all of the M th-order partial derivative processes are sample

path continuous based on their covariance function; this gives us sample path differentiability as

discussed in Section 2.5.2. Since I was arbitrary, the result holds throughout X .

Q.E.D.

2.5.4.3 Application of results to specific correlation functions

Let’s consider how these results on mean square and sample path differentiability apply to the

correlation functions considered in this work. The exponential correlation is not mean square dif-

ferentiable since its scale parameter has an inverse-gamma
(

1
2 ,

1
4

)
distribution (nor is the general
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power exponential correlation for ν < 2 by seeing that the correlation function is not twice dif-

ferentiable) and hence is not sample path differentiable by Cambanis (1973, Theorem 6). For the

squared exponential and rational quadratic correlation functions, their respective scale parameter

distributions are a point mass at 1 and a gamma distribution, both of which have infinitely many

moments. Hence Gaussian processes with these correlation functions are infinitely sample path dif-

ferentiable. The remaining correlation of interest is the Matérn. I have shown that for ν > M , the

Matérn gives processes that are at least M th-order mean square differentiable, while for ν > 2M

the processes are at least M th-order sample path differentiable.

2.5.4.4 Mean square analyticity

We have seen that both the squared exponential and rational quadratic correlation functions give

Gaussian processes with infinitely many mean square and sample path derivatives. I next show

that both of these correlation functions are also mean square analytic on <1. Loève (1978, p. 137)

gives the result that a process is analytic in mean square if and only if the covariance function is

analytic at every point (x, x), which for stationary functions simplifies to the point 0. By Churchill

(1960, p. 40) a function is analytic at a point if the derivative as a function of a complex argument,

τ = a + bi, exists at that point and every point in a neighborhood of the point. Here I show that

for processes on <1, both the squared exponential and rational quadratic correlation functions are

analytic functions at 0. Without loss of generality, let the scale parameter κ = 1. For the squared

exponential correlation function,

∂

∂τ
exp(−τ2) = −2τ exp(−τ 2)

is finite for all complex τ and hence is differentiable in a neighborhood of 0. For the rational

quadratic correlation function,

∂

∂τ

(
1

1 + τ2

)ν

= 2ντ

(
1

1 + τ2

)ν−1

is finite for τ 6= ±i. Hence in a neighborhood of 0, the derivative exists and so the rational

quadratic function is analytic at 0. Hence processes with squared exponential or rational quadratic

correlation are mean square analytic. While I have not seen proof of the result that processes
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with these correlation functions are sample path analytic, this may well be the case, which would

provide further evidence that they may not be good choices for modelling data (Stein 1999).

2.5.5 Smoothness properties of kernel convolution covariance functions

Here I prove that Gaussian processes with nonstationary correlation of the generalized kernel con-

volution form,

R(x,y) =
2

p

2 |Σx|
1

4 |Σy|
1

4

|Σx + Σy|
1

2

R
(√

Qxy

)

=
2

p

2 |Σx|
1

4 |Σy|
1

4

|Σx + Σy|
1

2

∫ ∞

0
exp (−Qxys) dH(s), (2.15)

where

Qxy = (x− y)T

(
Σx + Σy

2

)−1

(x− y), (2.16)

have smoothness properties similar to those of the isotropic correlation function, R(τ), on which

they are based, provided the underlying kernel matrices vary smoothly. This result makes sense

intuitively because if the kernels are smooth, then in a small neighborhood, the covariance is nearly

stationary, so the smoothness properties should depend on the properties of the underlying isotropic

correlation. The anisotropy in the correlation due to Σx + Σy will not play a role in smoothness

properties, because this merely rotates and scales the space. This does not affect smoothness prop-

erties, which relate to the behavior of a stationary covariance function near the origin.

The nonstationary correlation functions (2.15) are scale mixtures of the HSK nonstationary

correlation (2.3). For these nonstationary scale mixtures, just as I demonstrated for the stationary

scale mixtures, differentiability properties are directly related to existence of moments of the scale

parameter. Here I prove that if ES2M < ∞, then stochastic processes with the generalized kernel

convolution covariance are M th-order mean square differentiable (Section 2.5.5.1), and Gaussian

processes are M th-order sample path differentiable (Section 2.5.5.2).

2.5.5.1 Mean square differentiability

Theorem 11 A nonstationary stochastic process, Z(·), has M th-order mean square derivatives if

it has a correlation function that can be expressed in the form (2.15), the scale parameter, S, has
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2M moments, the elements of the kernel matrices, Σx, areM times sample path differentiable, and

the kernel matrices are not singular.

Proof:

By Adler (1981, p. 27), the finiteness of

∂2MR(x,y)

∂xp1
· · · ∂xpM

∂yp1
· · · ∂ypM

∣∣∣∣∣
x=y=u

for pm ∈ {1, . . . , P} ,m ∈ {1, . . . ,M} is sufficient for the existence of M th-order mean square

partial derivative processes. The 2M th partial derivatives of (2.15) take the form

M∑

m1=0

M∑

m2=0

2M∑

m3=0

2M∑

m4=0

D(m1)
x

(
|Σx|

1

4

)
D(m2)

y

(
|Σy|

1

4

)

×D(m3)
(
|Σx + Σy|−

1

2

)
D(m4)

(∫
exp(−Qxys)dH(s)

)
. (2.17)

First consider D(m1)
x

(
|Σx|

1

4

)
. The highest order derivative involving only terms in x is of the

form D
(M)
x

(
|Σx|

1

4

)
. By assumption, the kernel matrices are not singular, so negative powers after

differentiation do not cause the expression to be infinite. A determinant can be expressed as a

product of the elements in the matrix. By assumption, the elements of Σx areM times sample path

differentiable, so the M th-order derivative of the determinant is finite. The same argument holds

by symmetry for D(m2)
y

(
|Σy|

1

4

)
. Next consider D(m3)

(
|Σx + Σy|

1

4

)
. Once again, since the

matrices are assumed to not be singular, the power does not pose a problem. The determinant can

be considered as the product of the sum of elements of Σx and Σy. By assumption the M th-order

derivatives with respect to x and y exist, so once again, the derivative is finite.

The final term is D(m4) (
∫

exp(−Qxys)dH(s)). By lemma 7, we can interchange differenti-

ation and integration. Since finiteness of the 2M th order derivatives implies finiteness of lower

order derivatives, we need only assess

D(2M)
(∫

exp(−Qxys)dH(s)

)
= c1D

(1)
xp1

(Qxy) · · ·D(1)
ypM

(Qxy)

∫
s2M exp(−Qxys)dH(s)

+ . . .+ c2MD
2MQxy

∫
s exp(−Qxys)dH(s).

First consider the integrals. Using the assumption on the moments of S and the boundedness of the

exponential function, the integrals are bounded. By lemma 6 the derivatives of Qxy are OI(1), so

they are bounded.
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I have shown that all the terms in the 2M th-order partial derivative (2.17) of the correlation

function are finite, and therefore that the 2M th-order mean square derivative exists. Since the ar-

gument applies to arbitrary 2M th-order partial derivatives of the correlation and holds for arbitrary

u, all 2M -th order mean square derivatives exist on X .

Q.E.D.

2.5.5.2 Sample path differentiability

Theorem 12 A nonstationary Gaussian process, Z(·), is M th-order sample path differentiable

if its correlation function can be expressed in the form (2.15), the scale parameter, S, has 2M

moments, the elements of the kernel matrices, Σx, are M + 1 times sample path differentiable, and

the kernel matrices are not singular.

Proof: To assess the condition (2.9) forx and y in a region I , we need to assessE|Z(x)−Z(y)|2 =
(
E(Z(x)2) − E(Z(x)Z(y))

)
+
(
E(Z(y)2 − E(Z(x)Z(y))

)
. By symmetry, we need to consider

only one of the two terms:

E(Z(x)2) − E(Z(x)Z(y)) = C(x,x) − C(x,y)

= D(2M)(R(x,y))|x,x −D(2M)(R(x,y))|x,y. (2.18)

The 2M th-order partial derivatives of the nonstationary correlation (2.15) are of the form

D(2M)R(x, y) =
M∑

m1=0

M∑

m2=0

2M∑

m3=0

2M∑

m4=0

D(m1)
x

(
|Σx|

1

4

)
D(m2)

y

(
|Σy|

1

4

)

×D(m3)
(
|Σx + Σy|−

1

2

)
D(m4)

(∫
exp(−Qxys)dH(s)

)
, (2.19)

with the constraint that m1 +m2 +m3 +m4 = 2M . Next, let

g1(x,y) = D(m1)
x

(
|Σx|

1

4

)

g2(x,y) = D(m2)
y

(
|Σy|

1

4

)

g3(x,y) = D(m3)
(
|Σx + Σy|−

1

2

)

g4(x,y) = D(m4)
(∫

exp(−Qxys)dH(s)

)
,
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and successively apply the identity,

f(x,x)g(x,x) − f(x,y)g(x,y) = (f(x,x) − f(x,y))g(x,x) − (g(x,x) − g(x,y))g(x,y),

(2.20)

to

g1(x,x)g2(x,x)g3(x,x)g4(x,x) − g1(x,y)g2(x,y)g3(x,y)g4(x,y),

i.e., one of the terms in the sum (2.19). This gives us that (2.18) can be expressed as

M∑

m1=0

M∑

m2=0

2M∑

m3=0

2M∑

m4=0

(g1(x,x) − g1(x,y)) g2(x,x)g3(x,x)g4(x,x)

+ (g2(x,x) − g2(x,y)) g1(x,y)g3(x,x)g4(x,x)

+ (g3(x,x) − g3(x,y)) g1(x,y)g2(x,y)g4(x,x)

+ (g4(x,x) − g4(x,y)) g1(x,y)g2(x,y)g3(x,y). (2.21)

To satisfy the condition (2.9) I need only show that for i ∈ {1, 2, 3, 4} (gi(x,x)−gi(x,y))| log ‖x−
y‖|1+ε is bounded for x and y in I . By lemma 5 it is sufficient that (gi(x,x) − gi(x,y)) =

OI(‖x − y‖), which is satisfied by lemma 4 if gi(x,y) is once differentiable. gi(x,y) itself will

involve at most M derivatives with respect to each of x and y, so satisfying lemma 4 will involve

at most the existence of M + 1 derivatives; I focus on the highest order derivatives, as the other

order derivatives are differentiable if the highest order derivatives are differentiable.

For g1(x,y) (equivalently for g2(x,y)) the determinant can be expressed as a product of the

elements of Σx, so g1(x,y) is differentiable by the assumption that the elements of the kernel

matrices are M + 1 times differentiable. Note that raising the determinant to a power has no effect

because the kernel matrices are assumed to not be singular. Similarly, for g3(x,y), the determinant

can be considered as a product of terms of Σx +Σy, so g3(x,y) is differentiable by the assumption

that the elements of the kernel matrices areM+1 times differentiable (since the 2M th-order partial

derivative involves at most M partial derivatives with respect to each of x and y). Next consider

the 2M th-order partial derivative of g4(x,y),

D(2M)
(∫

exp(−Qxys)dH(s)

)
= D(2M)(Qxy)

∫
s exp(−Qxys)dH(s)

+ · · · +D(1)
x1

(Qxy) · · ·D(1)
yM

(Qxy)

×
∫
s2M exp(−Qxys)dH(s), (2.22)
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where I interchange differentiation and integration based on lemma 7. First consider the difference

D(1)
x1

(Qxy) · · ·D(1)
yM

(Qxy)

∫
s2M exp(−Qxys)dH(s)

∣∣∣∣
x,x

−D(1)
x1

(Qxy) · · ·D(1)
yM

(Qxy)

∫
s2M exp(−Qxys)dH(s)

∣∣∣∣
x,y

.

D(1)(Qxy)
∣∣∣
x,x

= 0 and in the second term D(1)(Qxy)
∣∣∣
x,y

= OI(‖x − y‖) by lemma 6, so the

whole expression is OI(‖x−y‖). Note that I make use of the existence of the 2M th moment of S

and the boundedness of the exponential term. Hence this difference satisfies (2.9). Next consider

the remaining terms in (2.22). Let

g5(x,y) = D(m5)(Qxy)

g6(x,y) =

∫
sm6 exp(−Qxys)dH(s),

where m6 ≤ 2M − 1 and D(m5)(Qxy) is a product of terms involving derivatives of various

orders of Qxy with m5 ∈ {1, . . . , 2M}. Applying the identity (2.20) to g5(x,x)g6(x,x) −
g5(x,y)g6(x,y) I need only show that g5(x,y) and g6(x,y) are once differentiable to satisfy

(2.9). First consider differentiating g5(x,y). The derivative D(m1)(Qxy) is at most order 2M and

therefore orderM in either x or y. Since I have assumedM+1 derivatives of the kernel matrix ele-

ments, by lemma 4, g5(x,x)−g5(x,y) = OI(‖x−y‖). Next I show that g6(x,x)−g6(x,y) is at

leastOI(‖x−y‖) using a multivariate Taylor expansion (Schervish 1995, p. 665) of exp(−Qxys)

at y = x with first-order remainder:

1 − exp(−Qxys) ∝
∑

p

sD(1)
yp

(Qxy)|x,c exp(−Qxcs)(xp − yp) = OI(‖x− y‖) · s,

where c lies on the line segment joining x and y. So we have

g6(x,x) − g6(x,y) = OI(‖x− y‖)c1
∫
sm2+1 exp(−Qxcs)dH(s),

and since m2 +1 ≤ 2M , the integral is bounded for x and y on I , and hence the whole expression

is OI(‖x− y‖).
Therefore, all terms in (2.21) are bounded for x and y on I when divided by ‖x− y‖ and the

condition (2.9) is satisfied by lemma 5. Since I was arbitrary, the result holds throughout X .

Q.E.D.
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2.5.5.3 Implications for nonstationary modelling

For the squared exponential and rational quadratic nonstationary correlation functions, which have

infinitely many moments of the scale parameter, Gaussian process sample paths are infinitely mean

square and sample path differentiable given sufficient smoothness in the kernel matrices. For the

Matérn nonstationary correlation function with ν > 2M , M mean square and sample path deriva-

tives are guaranteed.

In constructing models, the elements of the kernels, Σx, will themselves be random fields. It is

sufficient that these elements (or the eigenvalues and eigenvector elements by lemma 8) be sample

path differentiable to the M th or (M + 1)th order to have M th-order mean square or sample path

differentiability, respectively. This suggests that at the highest level in the model hierarchy, one will

need a stationary covariance structure to easily guarantee the desired sample path differentiability.

In the regression modelling of Chapter 4, this stationarity is imposed on the kernel eigenstructure.

Also note that to use a nonstationary covariance model, as opposed to a correlation model, one

introduces a variance function σ2(x). In my applications, I take this to be constant and therefore

it has no effect on differentiability of the resulting processes. However, one could easily take this

to be a random field and if it has M + 1 sample path derivatives, it is easy to show that theorems

11 and 12 continue to hold using arguments analogous to those regarding differentiation of the

determinants of the kernels.

2.6 Discussion

This chapter introduces a class of nonstationary correlation functions based on familiar stationary

correlation functions. By extending the original Higdon et al. (1999) kernel convolution method,

the class provides a much broader set of nonstationary correlation functions than previously avail-

able. Some of these correlation functions may be better able to model particular datasets than the

nonstationary correlation based on the squared exponential form, because they are more flexible in

various respects.

In particular, I have provided nonstationary correlation functions with a range of smoothness

properties, in contrast to the original HSK nonstationary covariance function (Fuentes and Smith
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2001). The HSK approach gives infinitely differentiable sample paths unless a lack of smoothness

is enforced through the kernel structure, which would be a rather ad hoc way to reduce smoothness.

One of the new functions is a nonstationary version of the attractive Matérn correlation function,

which has a parameter that indexes the mean square and sample path differentiability of Gaussian

processes with this correlation function. With the new nonstationary correlation functions, one can

create a smooth underlying kernel structure and yet retain control over sample path smoothness. In

addition, one can create one’s own nonstationary correlation function using any distribution for the

scale parameter, S, involved in the generalization of HSK.

A related advantage of the generalization involves asymptotic behavior. Stein (1999) has shown

that the convergence of kriging methods relies on the behavior of the correlation function near

the origin and the compatibility, in a certain technical sense, of the modelled correlation function

with the true correlation. He recommends the Matérn correlation because of its ability to adapt to

different behavior near the origin, while the power exponential family is restricted to the extremes

of non-differentiability and analytic behavior. Hence the nonstationary Matérn correlation function

introduced in this chapter may be of particular interest.

The results in this chapter give sufficient, but seemingly not necessary conditions for smooth-

ness properties of stochastic processes. In the stationary case, I have proven that the existence of

2M moments of the scale parameter is sufficient for M th-order sample path differentiability. I

suspect the condition can be weakened so that the existence of M moments is equivalent to M th-

order sample path differentiability. In the case of the Matérn, which is a mixture of the squared

exponential correlation with a scale parameter distributed as inverse-gamma
(
ν, 1

4

)
(dν − 1e mo-

ments), this would give exactly M th-order sample path differentiability when M < ν ≤ M + 1,

which is the same condition as for mean square differentiability (Stein 1999, p. 32). Furthermore,

based on Cambanis (1973, Theorem 6), we know that the Matérn has no more than M sample path

derivatives when M < ν ≤ M + 1. For the special case of the Matérn , one may be able to prove

the sample path differentiability result by representing the correlation function as an infinite sum

based on the properties of Bessel functions, for which Stein (1999, p. 32) and references therein

would be a starting point. I do not have any suggestions for the general scale mixture case. For

mean square and sample path differentiability of the nonstationary kernel convolution correlation
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functions, it may be possible to weaken the 2M moment condition to the existence of M moments

of the scale parameter, although I do not have a suggestion for how to proceed. Also, in the case of

sample path differentiability, I have required M + 1 sample path derivatives of the kernel matrix

elements for ease of argument, but more subtle reasoning may allow this condition to be weakened

to M derivatives.

The exact smoothness conditions are an issue only for the results of this chapter with respect to

the Matérn correlation function, since the exponential, rational quadratic, and squared exponential

lie in the extremes of differentiability. However, even for the Matérn, the key fact is that the

differentiability varies with ν, not the exact number of derivatives as a function of ν, so sharpening

the results in this chapter is of limited practical import.
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