
Chapter 1

Introduction

1.1 Problem Definition

This thesis treats the general problem of nonparametric regression, also known as smoothing,

curve-fitting, or surface-fitting. Both the statistics and machine learning communities have investi-

gated this problem intensively, with Bayesian methods drawing particular interest recently. Spline-

based methods have been very popular among statisticians, while machine learning researchers

have approached the issue in a wide variety of ways, including Gaussian process (GP) models, ker-

nel regression, and neural networks. The same problem in the specific context of spatial statistics

has been approached via kriging, which is essentially a Gaussian process-based method.

Much recent effort has focused on the problem of inhomogeneous smoothness, namely when

the function of interest has different degrees of smoothness in one region of covariate space than

another region. Many standard smoothing methods are not designed to handle this situation. Meth-

ods that are able to model such functions are described as spatially adaptive. Recent Bayesian

spline-based methods have concentrated on adaptively placing knots to account for inhomoge-

neous smoothness. Spatial statisticians have been aware of this issue for some time now, since

inhomogeneous smoothness can be expected in many spatial problems, and have tried several ap-

proaches to the problem. One approach, which I use as the stepping-off point for my work, is a

Bayesian treatment of kriging in which the covariance model used in the Gaussian process prior

distribution for the spatial field is nonstationary, i.e., the covariance structure varies with spatial
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location. Higdon, Swall, and Kern (1999) pioneered one approach to nonstationarity in the spatial

context, while machine learning researchers have implemented the approach in a limited way for

nonparametric regression problems.

1.2 Gaussian Processes and Covariance Functions

Gaussian process distributions and the covariance functions used to parameterize these distributions

are at the heart of this thesis. Before discussing how Gaussian processes and competing methods

are used to perform spatial smoothing and nonparametric regression, I will introduce Gaussian

processes and covariance functions.

The Gaussian process distribution is a family of distributions over stochastic processes, also

called random fields or random functions (I will generally use ‘function’ in the regression context

and ‘process’ or ‘field’ in the context of geographic space). A stochastic process is a collection of

random variables, Z(x, ω), on some probability space (Ω,F ,P) indexed by a variable, x ∈ X .

For the purpose of this thesis, this indexing variable represents space, either geographic space or

covariate space (feature space in the language of machine learning), and X = <P . In another

common context, the variable represents time. Fixing ω and letting x vary gives sample paths or

sample functions of the process, z(x). The smoothness properties (continuity and differentiability)

of these sample paths is one focus of Chapter 2. More details on stochastic processes can be found

in Billingsley (1995) and Abrahamsen (1997), among others.

The expectation or mean function, µ(·), of a stochastic process is defined by

µ(x) = E(Z(x, ω)) =

∫

Ω
Z(x, ω)dP(ω).

The covariance function, C(·, ·) of a stochastic process is defined for any pair (xi,xj) as

C(xi,xj) = Cov(Z(xi, ω), Z(xj , ω))

= E((Z(xi, ω) − µ(xi))(Z(xj , ω) − µ(xj)))

=

∫

Ω
(Z(xi, ω) − µ(xi))(Z(xj , ω) − µ(xj))dP(ω).

For the rest of this thesis, I will suppress the dependence of Z(·) on ω ∈ Ω. Stochastic processes

are usually described based on their finite dimensional distributions, namely the probability dis-
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tributions of finite sets, {Z(x1), Z(x2), . . . , Z(xn)} , n = 1, 2, . . . , of the random variables in

the collection Z(x),x ∈X . Unfortunately, the finite dimensional distributions do not completely

determine the properties of the process (Billingsley 1995). However, it is possible to establish the

existence of a version of the process whose finite dimensional distributions determine the sample

path properties of the process (Doob 1953, pp. 51-53; Adler 1981, p. 14), as discussed in Section

2.5.2.

A Gaussian process is a stochastic process whose finite dimensional distributions are multivari-

ate normal for every n and every collection {Z(x1), Z(x2), . . . , Z(xn)}. Gaussian processes are

specified by their mean and covariance functions, just as multivariate Gaussian distributions are

specified by their mean vector and covariance matrix. Just as a covariance matrix must be positive

definite, a covariance function must also be positive definite; if the function is positive definite, then

the finite dimensional distributions are consistent (Stein 1999, p. 16). For a covariance function on

<P ⊗<P to be positive definite, it must satisfy

n∑

i=1

n∑

j=1

aiajC(xi,xj) > 0

for every n, every collection {x1,x2, . . . ,xn} , and every vector a. This condition ensures, among

other things, that every linear combination of random variables in the collection will have positive

variance. By Bochner’s theorem (Bochner 1959; Adler 1981, Theorem 2.1.2), the class of weakly

stationary, continuous non-negative definite complex-valued functions is equivalent to the class

of bounded non-negative real-valued measures. In particular, a stationary, continuous correlation

function is the characteristic function, or Fourier transform, of a distribution function and the in-

verse Fourier transform of a such a correlation function is a distribution function. See Abrahamsen

(1997) or Stein (1999) for more details.

Gaussian processes are widely used in modeling spatial data (Diggle, Tawn, and Moyeed 1998;

Holland, Oliveira, Cox, and Smith 2000; Lockwood, Schervish, Gurian, and Small 2001). In

particular, the geostatistical method of kriging assumes a Gaussian process structure for the un-

known spatial field and focuses on calculating the optimal linear predictor of the field. In most

applications, stationary (also known as homogeneous) covariance functions are used for simplicity.
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Stationarity in the wide sense (weak stationarity) is defined as

(i) E |Z(x)|2 <∞

(ii) EZ(x) = µ

(iii) C(xi,xj) = C(xi − xj), (1.1)

where µ is a constant mean. The condition (1.1) requires that the covariance be solely a function

of the separation vector. In addition, if the covariance is also solely a function of a distance metric,

the process is said to be isotropic. In <P , an isotropic process is a function only of Euclidean

distance, τ = ‖xi − xj‖. Recent research has focused on modelling nonstationary covariance, as

summarized in Section 1.3.

Ensuring positive definiteness involves ensuring the positive definiteness of the correlation

function, R(·, ·), defined by

R(xi,xj) =
C(xi,xj)

σ(xi)σ(xj)
,

where σ2(xi) = C(xi,xi) is the variance function. The only restriction on the variance function

is that it be positive. Many stationary, isotropic correlation functions have been proposed (Yaglom

1987; Abrahamsen 1997; MacKay 1997). Here I introduce several common stationary, isotropic

correlation functions for which I produce nonstationary versions in Section 2.3. The following

correlation functions are all positive definite on <p, p = 1, 2, . . ..

1. Power exponential:

R(τ) = exp

(
−
(
τ

κ

)ν)
, κ > 0, 0 < ν ≤ 2 (1.2)

2. Rational quadratic (Cauchy):

R(τ) =
1(

1 +
(

τ
κ

)2)ν , κ > 0, ν > 0 (1.3)

3. Matérn:

R(τ) =
1

Γ(ν)2ν−1

(
2
√
ντ

κ

)ν

Kν

(
2
√
ντ

κ

)
, κ > 0, ν > 0 (1.4)
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κ and ν are parameters, τ is distance, and Kν is the modified Bessel function of the second kind of

order ν (Abramowitz and Stegun 1965, sec. 9.6). The power exponential form (1.2) includes two

commonly used correlation functions as special cases: the exponential (ν = 1) and the squared

exponential (ν = 2), also called the Gaussian correlation function. These two correlation functions

are also related to the Matérn correlation (1.4). As ν → ∞, the Matérn approaches the squared

exponential correlation. The use of 2
√

ντ
κ

rather than simply τ
κ

ensures that the Matérn correlation

approaches the squared exponential correlation function of the form

R(τ) = exp

(
−
(
τ

κ

)2
)

(1.5)

and that the interpretation of κ is minimally affected by the value of ν (Stein 1999, p. 50). For

ν = 0.5, the Matérn correlation (1.4) is equivalent to a scaled version of the usual exponential

correlation function

R(τ) = exp

(
−
√

2τ

κ

)
.

In general, κ controls how fast the correlation decays with distance, which determines the low-

frequency, or coarse-scale, behavior of sample paths generated from stochastic processes with the

given correlation function. ν controls the high-frequency, or fine-scale, smoothness properties of

the sample paths, namely their continuity and differentiability. An exception is that the smooth-

ness does not change with ν for the rational quadratic function. In Section 2.5.4, I discuss the

smoothness characteristics of sample paths based on the correlation functions above.

1.3 Spatial Smoothing Methods

The prototypical spatial smoothing problem involves estimating a smooth field based on noisy data

collected at a set of spatial locations. Statisticians have been interested in constructing smoothed

maps and in doing prediction at locations for which no data were collected. The standard approach

to the problem has been that of kriging, which involves using the data to estimate the spatial co-

variance structure in an ad hoc way and then calculating the mean and variance of the spatial field

at each point conditional on both the data and the estimated spatial covariance structure (Cressie

1993). This approach implicitly uses the conditional posterior mean and variance from a Bayesian

model with constant variance Gaussian errors and a Gaussian process prior for the spatial field.
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In particular, when performing kriging, researchers have generally assumed a stationary, often

isotropic, covariance function, with the covariance of the responses at any two locations assumed

to be a function of the separation vector or of the distance between locations, but not a function of

the actual locations. Researchers often estimate the parameters of an isotropic covariance function

from the semivariogram,

γ(xi − xj) =
Var (Z(xi) − Z(xj))

2
,

which is estimated based on the squared differences between the responses as a function of the

distance between the locations.

Next I develop the basic Gaussian process prior model underlying kriging. (See Cressie (1993,

Chapter 3) for the traditional description of kriging.) The model is

Yi ∼ N(f(xi), η
2),

f(·) ∼ GP (µf , Cf (·, ·;θf )) ,

where each xi ∈ <2, i = 1, . . . , n, is a spatial location. f(·) has a Gaussian process prior distribu-

tion with covariance function, Cf (·, ·;θf ), which is a function of hyperparameters, θf . I will refer

to the entire function as f(·) and to a vector of values found by evaluating the function at a finite

set of points as f = (f(x1, . . . , f(xn))T , while f(x) will refer to the function evaluated at the

single point x. If x takes infinitely many different values, then Cf (·, ·) is the covariance function,

and if a finite set of locations is under consideration, then Cf is the covariance matrix calculated by

applying the covariance function to all pairs of the locations. Taking CY = η2In and suppressing

the dependence of Cf on θf , the conditional posterior distribution for f , Π(f |Y , η, µf ,θf ), is

normal with

E (f |Y , η, µf ,θf ) = Cf (Cf + CY )−1
Y + CY (Cf + CY )−1 µf (1.6)

= µf + Cf (Cf + CY )−1 (Y − µf ) (1.7)

Cov (f |Y , η, µf ,θf ) =
(
C−1

f + C−1
Y

)−1
(1.8)

= Cf (Cf + CY )−1CY . (1.9)

The posterior mean (1.6) is a linear combination of the prior mean, µf , and the observations, Y ,

weighted based on the covariance terms. The second form of the posterior mean (1.7) can be seen
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to be a linear smoother (Section 1.4.3) of the data offset by the function mean. Here and elsewhere

in this thesis, as necessary, I take µ = µ1, when a vector-valued object is required. The posterior

variance (1.8) is the inverse of the sum of the precision matrices.

Prediction at unobserved locations is simply the usual form for a conditional Gaussian distri-

bution. If we take

f =



f1

f2




and

Cf =



C11 C12

C21 C22


 ,

where 1 indicates the set of locations at which data have been observed and 2 the set at which one

wishes to make predictions, then the conditional posterior for f2, Π(f2|f1,Y , η, µf ,θf ) is normal

with

E (f2|f1,Y , η, µf ,θf ) = µf + C21C
−1
11

(f1 − µf ) (1.10)

Cov (f2|f1,Y , η, µf ,θf ) = C22 − C21C
−1
11
C12, (1.11)

and the marginal (with respect to f1) posterior for f2, Π(f2|Y, η, µf ,θf ) is normal with

E (f2|Y , η, µf ,θf ) = µf + C21 (C11 + CY )−1 (Y − µf ) (1.12)

Cov (f2|Y , η, µf ,θf ) = C22 − C21 (C11 + CY )−1C12. (1.13)

While the Gaussian process model is defined over an infinite dimensional space, the calculations

are performed in the finite dimensional space at the locations of interest. One important drawback

of Gaussian process models, discussed further in Chapters 3 and 6, is that the computational burden

is O(n3) because of the need to invert matrices of order n (i.e., to solve systems of equations of the

form Cb = y). Unlike some competitors, such as splines, for which there is a simple expression

for the function once the parameters are known, for Gaussian process models, prediction involves

the matrix operations given above.

The standard kriging approach allows one to flexibly estimate a smooth spatial field, with no

pre-specified parametric form, but has several drawbacks. The first is that the true covariance struc-

ture may not be stationary. For example, if one is modelling an environmental variable across the
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United States, the field is likely to be much more smooth in the topographically-challenged Great

Plains than in the Rocky Mountains. This is manifested as different covariance structures in those

two regions; the covariance structure changes with location. Assuming a stationary covariance

structure will result in oversmoothing the field in the mountains and undersmoothing the field in

the Great Plains. A second drawback is that the usual kriging analysis does not account for the

uncertainty in the spatial covariance structure, since fixed hyperparameters are often used. A final

drawback is that an ad hoc approach to estimating the covariance structure may not give as reliable

estimates as a more principled approach.

These issues have been addressed in various ways. Smith (2001, p. 66) suggests using likelihood-

based methods for estimating the covariance structure as an alternative to ad hoc estimation. Hand-

cock and Stein (1993) present a Bayesian version of kriging that accounts for uncertainty in the

spatial covariance structure. Higdon (1998), Higdon et al. (1999), and Swall (1999) have used

Bayesian Gaussian process analogues to kriging that account for uncertainty in the covariance

structure, although they have encountered some difficulty in implementing models in which all

the covariance hyperparameters are allowed to vary, and they have been forced to fix some hy-

perparameters in advance. Recently, a number of approaches have been proposed for modelling

nonstationarity. (For a review, see Sampson, Damian, and Guttorp (2001).) I will first describe in

detail the method of Higdon et al. (1999), since it is their approach that I use as the foundation for

my own work, and then I will outline other approaches to the problem.

The approach of Higdon et al. (1999) is to define a nonstationary covariance function based

on the convolution of kernels centered at the locations of interest. They propose a nonstationary

spatial covariance function, C(·, ·), defined by

C(xi,xj) =

∫

<2

Kxi
(u)Kxj

(u)du, (1.14)

where xi, xj , and u are locations in <2 and Kx is a kernel function (not necessarily non-negative)

centered at x. This covariance function is positive definite for spatially-varying kernels of any

functional form, as I show in Chapter 2. They motivate this construction as the covariance function

of a process, Z(·), constructed by convolving a white noise process, ψ(·), with a spatially-varying

kernel, Kx:

Z(x) =

∫

<2

Kx(u)ψ(u)du.
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The evolution of the kernels in space produces nonstationary covariance, and the kernels are usually

parameterized so that they vary smoothly in space, under the assumption that nearby locations will

share a similar local covariance structure. Higdon et al. (1999) use Gaussian kernels, which give a

closed form for C(xi,xj), the convolution (1.14), as shown in Section 2.2.

Fuentes and Smith (2001) and Fuentes (2001) have an alternate kernel approach in which the

process is taken to be the convolution of a fixed kernel over independent stationary processes,

Zθ(u)(·),

Z(x) =

∫
K(x− u)Zθ(u)(x)du.

The resulting covariance, C(·, ·) is expressed as

C(xi,xj) =

∫
K(xi − u)K(xj − u)Cθ(u)(xi − xj)du.

For each u, Cθ(u)(·, ·) is a covariance function with parameters θ(u), where θ(u) is a (multi-

variate) spatial process that induces nonstationarity in Z(·). This method has the advantage of

avoiding the need to parameterize smoothly varying positive-definite matrices, as required in Hig-

don et al. (1999)’s Gaussian kernel approach. One drawback to the approach is the lack of a general

closed form for C(xi,xj) and the need to compute covariances by Monte Carlo integration; this

is of particular concern because of the numerical sensitivity of covariance matrices (Section 3.3).

In addition to Bayesian methods, Fuentes and Smith (2001) and Fuentes (2001) describe spectral

methods for fitting models when the data are (nearly) on a grid; these may be much faster than

likelihood methods.

In a completely different approach, Sampson and Guttorp (1992) have used spatial deformation

to model nonstationarity. (See Meiring, Monestiez, Sampson, and Guttorp (1997) for a discussion

of computational details.) They map the original Euclidean space to a new Euclidean space in

which approximate stationarity is assumed to hold and then use a stationary covariance function to

model the covariance in this new space. Schmidt and O’Hagan (2000) and Damian, Sampson, and

Guttorp (2001) have presented Bayesian versions of the deformation approach in which the map-

ping is taken to be a thin-plate spline and a stationary Gaussian process, respectively. Das (2000)

has extended the deformation approach to the sphere, modelling nonstationary data collected on the

surface of the globe. In the remainder of this thesis, I focus on the Higdon et al. (1999) approach
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because I find it more easily adaptable to the problems at hand and potentially less computationally

burdensome through the closed-form expression for the covariance terms (Section 2.3).

While most attention in the spatial statistics literature has focused on smoothing fields based a

single set of spatial observations, in many cases, replicates of the field are available, for example

with environmental data collected over time. This sort of data is becoming even more common

with the growing availability of remotely-sensed data. In this situation, one has multiple replicates

for estimating the spatial covariance structure. The methods that I describe in this thesis allow one

to model such replicated data, albeit with certain restrictions, such as modelling only non-negative

covariances. Nychka, Wikle, and Royle (2001) have proposed a method for smoothing the em-

pirical covariance structure of replicated data by thresholding the decomposition of the empirical

covariance matrix in a wavelet basis. This approach has the advantages of allowing for very gen-

eral types of covariance structure and of being very fast by virtue of use of the discrete wavelet

transform. One potential drawback to the approach is that it is not clear how much or what type

of thresholding to do, since there is no explicit model for the data. Given the difficulties involved

in modelling high-dimensional covariance structures, it is also not clear how well the resulting

smoothed covariance approximates the true covariance in a multivariate sense, although Nychka

et al. (2001) have shown in simulations that individual elements of the smoothed covariance matrix

can closely approximate the elements of stationary covariance matrices. In modelling storm activ-

ity data in Chapter 5, I compare a nonstationary covariance model based on the methods of Higdon

et al. (1999) to smoothing the empirical covariance as proposed by Nychka et al. (2001). Both

methods may encounter difficulties that reside in their attempt to model or approximate the full co-

variance structure of many locations, which involves the intricacies of high-dimensional covariance

structures.

One advantage of the nonstationary covariance model based on Higdon et al. (1999) is that

it fully defines the covariance at unobserved as well as observed locations and does not require a

regular grid of locations. This stands in contrast to the approach of Nychka et al. (2001), although

they have briefly suggested an iterative approach to deal irregularly-spaced locations. Nott and

Dunsmuir (2002) present a method for extending a given covariance at observed locations to unob-

served locations in a locally-stationary fashion; this might be used in conjunction with the Nychka
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et al. (2001) method.

1.4 Nonparametric Regression Methods

1.4.1 Gaussian process methods

Performing Bayesian nonparametric regression using Gaussian process priors for functions is es-

sentially the same as a Bayesian approach to the kriging methodology given above. Much of the

work in this area has been done by machine learning researchers, although the general approach

was first introduced by O’Hagan (1978), who has subsequently used the methods to analyze com-

puter experiments via surface fitting (Kennedy and O’Hagan 2001). The basic approach is to define

the same model as given for the spatial smoothing problem,

Yi ∼ N
(
f (xi) , η

2
)

f(·) ∼ GP (µf , Cf (·, ·;θf )) ,

where each xi ∈ <P , i = 1, . . . , n, is a P -dimensional vector of covariates (features in machine

learning jargon). If we condition on the hyperparameters, the expressions for the posterior of f are

the same as given for the spatial model (1.6-1.13).

Since work by Neal (1996) showing that a certain form of neural network model converges,

in the limit of infinite hidden units, to a Gaussian process regression model, Gaussian process

approaches have seen an explosion of interest in the machine learning community, with much

recent attention focusing on methods for efficient computation (Section 3.7). Machine learning

researchers have used many of the covariance functions used in the spatial statistics literature, with

the most used seemingly the multivariate squared exponential,

C(xi,xj) = σ2 exp




P∑

p=1

(xi,p − xj,p)
2

κ2
p


 , (1.15)

which allows the smoothness of the function to vary with covariate, based on the covariate-specific

scale parameter, κp (Rasmussen 1996; Neal 1997). One appealing feature of a GP model with this

covariance structure is that the number of parameters in the model is the same as the number of
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covariates and hence grows slowly as the dimensionality increases, in contrast to many multivari-

ate regression models. In a tutorial, MacKay (1997) mentions several covariance functions well-

known amongst spatial statisticians, including the power exponential form, while also discussing

the notion of ‘warping’ or ‘embedding’, which is the deformation approach of Sampson and Gut-

torp (1992). Vivarelli and Williams (1999) discuss the use of a more general squared exponential

covariance of the form

R(xi,xj) = exp

(
−1

2
(xi − xj)

T Σ (xi − xj)

)
,

where Σ is an arbitrary positive definite matrix, rather than the diagonal matrix implicit in (1.15).

In the spatial statistics literature, this approach is commonly used to model anisotropy, the situation

in which the spatial correlation decays at different rates in different spatial directions.

While stationarity is generally recognized in the spatial statistics literature as an assumption

likely to be violated, and research in this area is ongoing and diverse, there has been relatively

little work on nonstationarity in the regression context. In this context, nonstationarity exhibits

itself as the smoothness of the regression function varying in the covariate space. MacKay (1997)

proposed the use of nonstationary covariance functions as a way of dealing with inhomogeneous

smoothness. Gibbs (1997) modelled a one-dimensional situation with a mapping approach similar

to that of Sampson and Guttorp (1992) as well as a Gaussian process model with a nonstationary

covariance function that is equivalent to the nonstationary covariance used by Higdon et al. (1999).

Gibbs (1997) showed that dealing with the inhomogeneity gave a qualitatively better estimate of

the regression function than using a stationary covariance function.

In this thesis, I extend the nonstationary covariance methods of Gibbs (1997) and Higdon et al.

(1999) and describe an implementation in the nonparametric regression setting. My work provides

one approach by which the one- (Gibbs) and two-dimensional (Higdon) nonstationary models can

be extended to higher dimensions, although in practice, the computational demands of the mod-

els limit the dimensionality that can be entertained. I assess the models in one, two, and three

dimensions, but do not know how they would perform in higher dimensions.
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1.4.2 Other methods

The nonstationary GP regression model that I propose has a number of competitors. In the statistics

literature, many researchers have focused on spline-based models with others advocating wavelet

bases, while machine learning researchers have investigated many modelling approaches, including

neural networks, kernel regression, and regression versions of support vector machines. Various

tree methods that divide the covariate space and fit local models in the regions are also popular. In

this section, I will describe some of the competing methods and outline connections between the

GP model and other models. The methods can be roughly divided into three categories with varying

approaches to the bias-variance tradeoff: a) penalized or regularized fitting, which includes some of

the spline-based methods and wavelet thresholding, b) model selection approaches that use a small

number of parameters to prevent overfitting, which include fixed-knot spline techniques and basis

function regression, and c) model averaging approaches such as free-knot splines and the Gaussian

process models described above.

Splines are flexible models that take the form of piecewise polynomials joined at locations

called knots. Continuity constraints are generally imposed at the knots so that the function is

smooth. Once the knots are fixed, estimating a regression function is the same as fitting a linear

regression model,

E(Yi|xi) = f(xi) =
K+2∑

k=1

bk(xi)βk,

since the function f(·) is linear in the basis functions, bk(·), determined by the knots, with co-

efficients βk. This fitting approach is termed regression splines. Cubic polynomials are most

commonly used for the piecewise functions; this makes f(·) a cubic spline. A natural cubic spline

forces the function to be linear outside a bounded interval. Splines and natural splines can be repre-

sented by many different bases. Among these are the truncated power basis and the B-spline basis;

the B-spline basis is generally preferred because it is computationally stable (DiMatteo, Genovese,

and Kass 2002).

To address the bias-variance tradeoff at the heart of nonparametric regression, spline researchers

have taken several general approaches. A number of researchers have attempted to adaptively place

knots based on the observed data; Zhou and Shen (2001) do this in a non-Bayesian iterative fash-
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ion, searching for the optimal knot locations. The Bayesian adaptive regression splines (BARS)

method of DiMatteo et al. (2002) builds on previous work (Denison, Mallick, and Smith 1998a) to

adaptively sample the number and locations of knots in a Bayesian fashion using reversible-jump

Markov chain Monte Carlo (RJMCMC). These free-knot spline approaches allow the estimated

function to adapt to the characteristics of the data, in particular to variable smoothness of the func-

tion over the space X . These approaches allow movement between different basis representations

of the data, thereby performing model averaging.

Spline models can also be approached from the smoothing spline perspective, which involves

minimizing the penalized sum of squares,

n∑

i=1

(yi − f(xi))
2 + λ

∫ (
f (m)(s)

)2
ds, (1.16)

where (m) denotes the mth derivative of f(·) and λ is a smoothing parameter that penalizes lack

of smoothness, as measured by the integrated squared derivative. The solution to this optimization

problem turns out to be a natural spline of degree 2m − 1 with knots at each data point (the cubic

spline is of degree 3 and corresponds to m = 2) (Wahba 1990). By changing the value of λ one

changes the smoothness of the estimated function. A compromise between the smoothing and

regression splines approaches is that of penalized splines (Wand 2003), in which an intermediate

number of knots is chosen in advance, often based on the distribution of the covariates, and the

minimization of (1.16) is done. This approach tries to choose the underlying basis functions more

carefully than the smoothing splines approach, which relies heavily on the penalty term, so as

to reduce the computational cost involved in placing knots at each data point. The smoothing and

penalized spline models are typically fit via classical methods with the smoothing parameter chosen

by cross-validation. Approaching the curve-fitting problem from the smoothing spline perspective

gives spatially homogeneous functions, since λ acts on the whole space, while nonstationarity

can be obtained manually through the placement of knots in the penalized splines approach. For

spatially heterogeneous functions, Ruppert and Carroll (2000) suggest a penalized splines approach

in which the penalty function varies spatially and is modelled itself as penalized spline with a single

penalty parameter.

DiMatteo (2001) shows how both the regression and smoothing/penalized splines approaches
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can be seen as estimates from Bayesian models with particular prior structures. In particular she

focuses on the following Bayesian model,

Y | β, B, σ2,K, ξ, η ∼ Nn(Bβ, η2I)

β | σ2, δ,K, ξ, η ∼ NK+2(0, η
2D(δ)),

with additional priors specified for K, the number of knots, and ξ, a vector of knot locations.

The matrix B is the basis matrix and β is a vector of coefficients. D(δ) is a covariance matrix

whose structure varies depending on the type of spline model. D(δ) = n(BTB)−1 for regression

splines, while for smoothing and penalized splines, D(δ) = (λΩ)−1, where Ω is a matrix whose

elements depend on integrated derivatives of the underlying basis functions. Based on this model,

we can see that, conditional on the knots, the spline model is a Gaussian process prior model, with

f = Bβ, so that we have f ∼ N(0, η2BD(δ)BT ). The prior covariance matrix for f is a particular

function of the error variance, the basis functions, and the covariance matrix D. For the regression

spline approach, if the number and locations of the knots change, the prior covariance changes as

well, so the free-knot spline model can be thought of as adaptively choosing a nonstationary prior

covariance structure. The relationship of smoothing splines to Gaussian process priors can also be

seen directly from the formulation of minimizing the penalized sum of squares loss function, L(f),

L(f) =
n∑

i=1

(yi − f(xi))
2 + λ

∫
(f (2)(x))2dx

∝ −
∑n

i=1(yi − f(xi))
2

2η2
− 1

2
λ′fT Ωf

= log g(Y |f , η) + log Π(f |λ′,Ω)

∝ log Π(f |Y , η, λ′,Ω),

where g is the likelihood function and the last term is the log posterior density for f . Hence the

natural cubic spline that is the solution to minimizing the penalized sum of squares is the posterior

mean from a GP model with a particular prior covariance. The prior for f , N(0, (λ′Ω)−1), is

partially improper because Ω is positive semi-definite, having two zero eigenvalues, corresponding

to improper priors for constant and linear functions (Green and Silverman 1994, p. 55).
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Thin-plate splines are the generalization of smoothing splines to higher dimensions (Green and

Silverman 1994, Ch. 7). Natural thin-plate splines are the solution to minimizing a generalization

of (1.16) to higher order partial derivatives of the function (Green and Silverman 1994, p. 142),

and hence can be viewed as a GP-based model in the same way that smoothing splines can be. The

implicit underlying covariance, which is fixed in advance and not fit to the data, is a generalized

covariance (Cressie 1993, p. 303; O’Connell and Wolfinger 1997). A single parameter controls the

degree of smoothing, so the thin-plate spline approach yields a spatially homogeneous smoother.

Moving from one-dimensional curve-fitting to surface-fitting in higher dimensions, such as

with thin-plate splines, is an important challenge that poses many difficulties, including those of

defining an appropriate model, avoiding overfitting, finding structure in spaces with sparse data

(the curse of dimensionality), and interpretability. Many authors take the approach of using addi-

tive models (Hastie and Tibshirani 1990), including the work of DiMatteo et al. (2002) in extending

BARS to higher dimensions; these approaches retain interpretability and attempt to find structure of

a particular form by constraining the model. However, in many cases, the underlying function may

not be additive in nature and may contain interactions of various sorts. The team of researchers who

first worked on reversible-jump MCMC methods for spline-based regression (Denison et al. 1998a)

have taken several approaches to nonparametric regression modelling in multivariate spaces (Deni-

son, Holmes, Mallick, and Smith 2002). One approach is a Bayesian version (Denison, Mallick,

and Smith 1998b) of the MARS algorithm (Friedman 1991). MARS uses basis functions that are

tensor products of univariate splines in the truncated power basis. In the Bayesian formulation,

knots are allowed at the data points and their number and locations are sampled via RJMCMC.

Holmes and Mallick (2001) use multivariate linear splines, also fit in a Bayesian fashion using

RJMCMC. The basis functions are truncated linear planes, which give a surface that is continuous

but not differentiable where the planes meet. One reason for the use of the truncated power basis

and linear splines in dimensions higher than one is the difficulty in generalizing the B-spline basis

to higher dimensions (Bakin, Hegland, and Osborne 2000).

A number of researchers have worked on models in which the covariate space is partitioned

and then a separate model is fit in each of the regions. Tree models such as CART divide the space

in a recursive fashion and fit local functions at the branches of the tree, with the simplest imple-



1.4. NONPARAMETRIC REGRESSION METHODS 17

mentation involving locally constant functions. (See Chipman, George, and McCulloch (1998) for

a Bayesian version of CART.) Other partitioning methods use more general approaches to divid-

ing the space. Hansen and Kooperberg (2002) divide two-dimensional spaces into triangles and

fit piecewise, continuous linear two-dimensional splines. Denison et al. (2002, Chapter 7) discuss

partitioning models based on a Voronoi tessellation. Rasmussen and Ghahramani (2002) use a

mixture of Gaussian processes in which each index point belongs to a single Gaussian process and

the mixture is modelled as a Dirichlet process prior, but the individual GPs are not tied to disjoint

regions from a partition of the space. A generalization of partitioning models allows for overlap

between regions, with the regression function at a location being a weighted average of a set of

functions. This gives a mixture-of-experts model, i.e., a mixture model in which the weights for

the mixture vary with the covariates. Wood, Jiang, and Tanner (2002) take such an approach, us-

ing a mixture of smoothing splines, each with its own smoothing parameter, and weights that are

multinomial probit functions of the covariates. The number of smoothing splines is chosen based

on BIC, but the rest of the model is fit via MCMC. Note that the nonstationary covariance model

of Fuentes (2001) and Fuentes and Smith (2001) shares the flavor of these partitioning and mixture

models, as it performs locally-weighted averaging of stationary covariance models.

Of late, statisticians have intensively investigated the use of wavelet bases for regression func-

tions, with the original classical approach to coefficient thresholding presented by Donoho and

Johnstone (1995). Wavelet basis functions are localized functions, which, combined with nonlin-

ear shrinkage of the coefficients, can model spatially inhomogeneous functions, including sharp

jumps. Bayesian estimation of wavelet basis models involves placing priors on the coefficients,

thereby incorporating the degree and nature of the thresholding into the Bayesian model (Vidakovic

1999). This has the same flavor as a formulation of the penalized splines model in which the basis

function coefficients are shrunk by taking the coefficients to be a random effect (Wand 2003).

Neural networks have received much attention from machine learning researchers, with some

work by statisticians as well (Lee 1998; Paige and Butler 2001). In particular, machine learning

work on GPs intensified after Neal (1996) showed that a Bayesian formulation of neural network

regression, based on a multilayer perceptron with a single hidden layer and particular choice of

standard priors, converged to a Gaussian process prior on regression functions in the limit of in-
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finitely many hidden units. A common form of the neural network model specifies the regression

function to be

f(x) = β0 +
K∑

k=1

βkgk

(
uT

kx
)
,

where the gk(·) functions are commonly chosen to be logistic (sigmoid) functions and the uk pa-

rameters determine the position and orientation of the basis functions. This is very similar to the

multivariate linear splines model, except that Holmes and Mallick (2001) take gk(·) to be the iden-

tity function. One drawback to fitting neural network models is the multimodality of the likelihood

(Lee 1998).

Gaussian process models are closely related to a Bayesian formulation of regression using fixed

basis functions. Consider the following Bayesian regression model,

f(x) =
K∑

k=1

bk(x)βk

β ∼ N (0, Cβ) .

This is equivalent to a Gaussian process prior model in function space with a prior covariance ma-

trix, Cf = BCβB
T where B is the basis matrix composed of the bk(·) functions. In other words,

the basis chosen and the prior over the coefficients implies a Gaussian process prior for the function

with a particular prior covariance. Changing the basis will of course change the prior covariance.

Gibbs and MacKay (1997) show that basis function regression using an infinite number of ra-

dial basis functions (functions proportional to Gaussian densities) is equivalent to GP regression

with a form of the squared exponential covariance (1.15). A Gaussian process regression model

is equivalent to a Bayesian regression model with an infinite number of basis functions (Williams

1997). This can be seen by using the Karhunen-Loève expansion (Mercer’s theorem) to expand the

covariance function as a weighted sum of infinitely many eigenfunctions,

C(xi,xj) =
∞∑

k=1

λkgk(xi)gk(xj),

and taking the eigenfunctions to be the basis and the eigenvalues, λk, to be the variances of the coef-

ficients. One can approximate the GP model by truncating the summation; using the eigenfunctions

instead of another basis minimizes the MSE when approximating random functions with the trun-

cation. (See Cohen and Jones (1969) for more details.) Machine learning researchers have called
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the basis function viewpoint the ‘weight-space view’ to contrast with the ‘function-space view’

of considering directly the Gaussian process (or other distribution) prior over functions (Williams

1997). Depending on the question, one of the approaches may be more instructive and/or compu-

tationally efficient. When the number of basis functions exceeds the number of observations, the

GP approach is more computationally efficient, with the basis function approach more efficient in

the opposite situation.

As we have seen, many methods can be seen as GP methods in which the covariance structure

is implicit in the form of the model. The direct GP-based regression model takes the approach of

explicitly modelling the covariance structure. Which approach is preferable will depend on com-

putational convenience, the ease of using explicit covariance models as opposed to other parame-

terizations in which the covariance is implicit, and the extent to which different parameterizations

fit data observed in practice. One of the goals of this thesis is to explore nonstationary covariance

functions that may allow GP methods to better compete with nonparametric regression models with

an implicit nonstationary covariance structure.

1.4.3 Smoothing as local linear averaging

Smoothing usually involves estimating the regression function as a local average of the observed

data. The key issues determining the performance of a method are how the level of smoothing is

chosen and whether the degree of smoothing is the same throughout the space. Smoothing involves

the usual bias-variance tradeoff: more smoothing results in lower variance but higher bias, while

less smoothing results in lower bias but higher variance. Many nonparametric regression methods

can be seen as linear smoothers of the data where the estimate of the function at a finite set of

values is

f̂ = Sy

for some smoothing matrix S (also known as the hat matrix in the standard regression context). See

Hastie, Tibshirani, and Friedman (2001) for an overview of various methods. The simplest linear

smoothing method is nearest-neighbor averaging. Smoother estimates are produced by having

the weights die off smoothly as a function of distance from the focal point, which gives kernel
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smoothing (local constant fitting), such as the original Nadaraya-Watson estimator,

f̂(xi) =

∑n
i=1Kλ(x, xi)yi∑n
i=1Kλ(x, xi)

.

Locally-weighted linear (e.g., loess) and polynomial regression reduce bias in various respects, but

increase the variance of the estimator. For all these methods, the choice of the smoothing parameter

is crucial.

The spline and Gaussian process methods can be seen to take the form of a linear smoother

when conditioning on the knots or hyperparameters, respectively. For the Bayesian formulation of

the regression spline model in DiMatteo (2001), conditional on the knots, the smoothing matrix

is S = nη2B(BTB)−1BT . Changing the knots changes the basis and therefore the smoothing

matrix. For smoothing splines the smoothing matrix, which in the DiMatteo (2001) model is S =

η2B(BTB+λΩ)−1BT , is in the form of ridge regression or Bayesian regression with a prior over

coefficients. Similarly, for the Gaussian process model, since f̂ = µf +Cf (Cf +CY )−1(y−µf ),

we see that if µf = 0, we have

S = Cf (Cf + CY )−1. (1.17)

Note that we can always incorporate µf as a additive constant in Cf by integrating it out of the

model. So, conditional on the covariance and noise variance parameters, the GP model is a linear

smoother, and changing the covariance changes the smoothing matrix, in the same way that chang-

ing the knots changes the spline smoothing matrix. Green and Silverman (1994, p. 47) discuss in

detail how spline smoothing can be seen as locally-weighted averaging of the observations. We

can recover the implicit weights used in calculating the estimate for a given location from the rows

of the smoothing matrix; this is a discrete representation of the smoothing kernel at the location.

Nonstationary GP models will have smoothing kernels that change with location, much like adap-

tive kernel regression techniques (Brockmann, Gasser, and Herrmann 1993; Schucany 1995). The

nonstationary GP models defined in this thesis have the advantage of being defined when there is

more than one covariate, while work on adaptive kernel regression appears to have concentrated on

the single covariate setting.
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1.4.4 Modelling non-Gaussian data

Modelling non-Gaussian responses can, in principle, be done in similar fashion to the Gaussian

regression problems discussed above. The model is

Yi ∼ D (g (f (xi)))

f(·) ∼ GP (µf , Cf (·, ·;θf )) ,

where D is an appropriate distribution function, such as the Poisson for count data or the binomial

for binary data, and g(·) is an appropriate link function. This is a nonparametric version of the

generalized linear models described in McCullagh and Nelder (1989) and is of essentially the

same structure as generalized additive models (Hastie and Tibshirani 1990), except that the hidden

function is a Gaussian process and the relationship of this function to the covariates is not additive.

Diggle et al. (1998) define this model in the spatial context, while Christensen and Waagepetersen

(2002) suggest MCMC sampling via the Langevin approach to speed mixing of the chain. Neal

(1996), MacKay (1997), and Williams and Barber (1998), among others, have used such GP-based

models to perform classification based on the binomial likelihood, while Neal (1997) used a t

distribution likelihood to create a robust regression method. In Section 3.6.2, I discuss methods for

improving the MCMC algorithm in cases such as this in which the function cannot be integrated

out of the model, and in Section 4.6.4, I give an example of fitting non-Gaussian data. Biller

(2000) and DiMatteo et al. (2002) use RJMCMC to fit generalized regression spline models for

one-dimensional covariates.

1.5 Thesis Outline

This thesis is organized in the following fashion. I start by developing a general class of nonsta-

tionary correlation functions in Chapter 2 and presenting results on the smoothness of functions

drawn from Gaussian process priors with these nonstationary correlation functions. In Chapter 3, I

present the general methodology that takes advantage of these nonstationary correlation functions

to perform smoothing, both in a spatial context and a regression context. This chapter goes into
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the details of model parameterization and fitting via Markov chain Monte Carlo (MCMC). In par-

ticular, I describe previous approaches to parameterization and fitting and provide a new MCMC

sampling scheme, which I term posterior mean centering (PMC), that allows for faster mixing

when the function cannot be integrated out of the model. I also discuss the numerical and com-

putational issues involved in fitting the model. Chapter 4 presents the nonparametric regression

model in more detail and assesses the performance of the nonstationary Gaussian process approach

in comparison with spline-based methods on simulated and real datasets. Chapter 5 discusses the

use of nonstationary covariance models to account for spatial correlation in analyzing time trends

in a spatial dataset replicated in time. Finally, Chapter 6 gives an overview of the results of the

thesis, discusses the contributions of the thesis, and presents areas for future work.

1.6 Contributions

This thesis makes the following original contributions:

• A class of closed-form nonstationary correlation functions, of which a special case is a non-

stationary form of the Matérn correlation.

• Proof that the new nonstationary correlation functions, when embedded in a Gaussian pro-

cess distribution, specify sample paths whose smoothness reflects the properties of the under-

lying stationary correlation function upon which the nonstationary correlation is constructed.

• A method, which I call posterior mean centering, for improving mixing of Markov chain

Monte Carlo fitting of Gaussian process models when the unknown function cannot be inte-

grated out of the model.

• A parameterization for a nonstationary Gaussian process nonparametric regression model

and demonstration that the model can be used successfully in low-dimensional covariate

spaces, albeit using a more computationally-intensive fitting process than competing meth-

ods.

• A hierarchical model, based on a nonstationary spatial covariance structure for the residuals,

for making inference about linear trends at multiple spatial locations.
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• A comparison of methods for, and demonstration of the difficulty involved in, fitting the

covariance structure of replicated spatial data.
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