Sampling Triptych

Population	Probability Model	Sample
Unit: Candy Size: 160	Method: SRS Size: 16	Indices: Sample:
Info:		
Parameter: $\pi =$	Statistic: Sample Proportion	Statistic:
	Expected value:	
Population SD:		Sample SD:
	Standard Error:	\widehat{SE} :
		Conf Int:

The Triptych template for a simple random sample from a 0-1 population. Each unit in the population is either a 0 or 1 denoting the presence or absence of a acharacteristic. In this example I know all the population values, but you do not. We can compare your estimate of the population proportion to the truth using a confidence interval.

Notation

- $\pi =$
- $z_i =$
- $E(z_{I_1}$
- $Var(z_{I_1})$
- $\hat{\pi}$
- $SE(\hat{\pi})$
- $\hat{S}E(\hat{\pi})$

Sample	proportion	sample SD	\hat{SE}	Confidence Interval
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
12				
13				
15				
16				
17				
18				
19				
20				

Sample	proportion	sample SD	\hat{SE}	Confidence Interval
21				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

To help you with your calucaltions:

$$\begin{array}{ll} 2/16 = 0.125 & \hat{S}E = 0.08 \\ 3/16 = 0.1875 & \hat{S}E = 0.095 \\ 4/16 = 0.25 & \hat{S}E = 0.106 \\ 5/16 = 0.3125 & \hat{S}E = 0.114 \\ 6/16 = 0.375 & \hat{S}E = 0.119 \\ 7/16 = 0.4375 & \hat{S}E = 0.122 \\ 8/16 = 0.5 & \hat{S}E = 0.122 \\ 9/16 = 0.5615 & \hat{S}E = 0.0122 \end{array}$$