
1 Representing Numbers in the Computer

When we enter a number in a file or in a spreadsheet, we don’t have to give
any serious thought to how it will be represented in the computer and that its
meaning is clear when we map it from our application to the computer. We are
fortunate that this has been worked out for us and it is something we can quickly
gloss over and assume will be done correctly. Since we are studying statistical
computing and computational statistics, we ought to at least understand when
things can possibly go wrong and, like all good software, handle the special cases
that might lead to erroneous results. In other words, we should understand the
limits of the computer and when these limits are likely to be encountered.

The main lessons to take out of this section are the following:

• Representing real numbers in a computer always involves an approximation
and a potential loss of significant digits.

• Testing for the equality of two real numbers is not a realistic way to think
when dealing with the numbers in a computer. Two equal values may not
have the same representation in the computer because of the approximate
representation and so we must ask is the difference less than the discernible
amount as measured on the particular computer.

• Performing arithmetic on very small or very large numbers can lead to er-
rors that are not possible in abstract mathematics. We can get underflow
and overflow, and the order in which we do arithmetic can be important.
This is something to be aware of when writing low-level software to to do
computations.

• The more bits we use to represent a number, the greater the precision of
the representation and the more memory we consume. Also, if the natural
representation of the machine does not use that number of bits and repre-
sentation, arithmetic, etc. will be slower as it must be externally specified,
i.e. off the chip.

In order to understand these points properly, we need to first look at how num-
bers are represented on a computer. We will start with the basic type, an integer.
Once we understand integer representation and its limitations, we can move to the
representation of real numbers. To understand integer representation, we review
how information is stored in a computer.

1

1.1 Bits and bytes

Computers are digital devices. The smallest unit of information has two states:
memory cells in RAM are either charged or cleared, magnetic storage devices
have areas that are either magnetized or not, and optical storage devices use two
different levels of light reflectance. These two states can be represented by the
binary digits 1 and 0.

The term “bit” is an abbreviation for binary digit. Bits are the building blocks
for all information processing in computers. Interestingly, it was a statistician
from Bell Labs, John Tukey, who coined the term bit in 1946. While the machine
is made up of bits, we typically work at the level of “bytes”, (computer) words,
and higher level entities. A byte is a unit of information built from bits; one
byte equals 8 bits. Bytes are combined into groups of 1 to 8 bytes called words.
The term byte was first used in 1956 by computer scientist Werner Buchholz.
He described a byte as a group of bits used to encode a character. The eight-bit
byte was created that year and was soon adopted by the computer industry as a
standard.

Computers are often classified by the number of bits they can process at one
time, as well as by the number of bits used to represent addresses in their main
memory (RAM). The number of bits used by a computer’s CPU for addressing
information represents one measure of a computer’s speed and power. Computers
today often use 32 or 64 bits in groups of 4 and 8 bytes, respectively, in their ad-
dressing. A 32-bit processor, for example, has 32-bit registers, 32-bit data busses,
and 32-bit address busses. This means that a 32-bit address bus can potentially
access up to232 = 4, 294, 967, 296 memory cells (or bytes) in RAM. Memory and
data capacity are commonly measured in kilobytes (210 = 1024 bytes), megabytes
(220 = 1, 048, 576 bytes), or gigabytes (230 = 1, 073, 741, 824, about 1 billion
bytes). So, a 32-bit address bus, means that the CPU has the potential to access
about 4 GB of RAM.

2 Integers

When we work with integers or whole numbers, we know that there are infinitely
many of them. However, the computer is a finite state machine and can only hold
a finite amount of information, albeit a very, very large amount. If we wanted
to represent an integer, we could do this by having the computer store each of
the digits in the number along with whether the integer is positive or negative.

2

Now, when we want add two integers, we would have to use an algorithm that
performed the standard decimal addition by traversing the digits from right to left,
adding them and carrying the extra term to the higher values. Representing each
digit would require us to encode 0, 1, ... 9 in some way which we can do in terms
of 4 bits (There are24 = 16 distinct combinations of four 1s and 0s, eg. 0000 maps
to 0, 0001 maps to 1, 0010 maps to 2, etc). Many operations in a typical computer
typically try to work at the level of words, i.e. bringing a word of memory onto a
register or from disk to RAM. With two-byte words, we would be wasting 12 bits
on each of the digits since we are only using 4 bits in the word. And each time we
add two integers, we have to do complicated arithmetic on an arbitrary number of
digits.

Clever people who designed and developed computers realized that it is sig-
nificantly more efficient if we take advantage of the on-off nature of bits, and
represent numbers using base 2 rather than decimal (base 10). And if we use a
fixed number of binary digits, then we can do the computations not in software
but on the chip itself and be much, much faster.

2.1 Binary Representation

The main system of mathematical notation today is the decimal system, which is
a base-10 system. The decimal system uses 10 digits, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
and numbers are represented by the placement of these digits. For example, the
numbers 200, 70, and 8 represent 2 hundreds, 7 tens, and 8 units, respectively.
Together, they make the number, 278. Another way to express this representation
is with exponents:

278 = (2× 102) + (7× 101) + (8× 100). (1)

The binary system, which is the base-2 system, uses two digits, 0 and 1, and
numbers are represented through exponents of 2. For example,

11012 = (1× 23) + (1× 22) + (0× 21) + (1× 20)

= (8) + (4) + (0) + (1) = 13

Note that the subscript2 on the number 1101 lets us know that the number is
being represented in base-2 rather than base-10. This representation shows how
to convert numbers from base-2 into base-10. A picture might also be helpful in
providing a different perspective on this.

3

27 26 25 24 23 22 21 20

0 0 1 1 0 0 0 1
0 0 32 16 0 0 0 1 49

Figure 1: Think of putting 1s and 0s in the different buckets here. To represent a
number, we put a 1 in the bucket when we want to include that term. The number
is then the sum of the values for the buckets with a 1 in them.

This technique works for fractions as well. For example,

1.1012 = (1× 20) + (1× 2−1) + (0× 2−2) + (1× 2−3)

= (1) + (1/2) + (0) + (1/8) = 1.625

To convert a decimal number into base-2, we find the highest power of two that
does not exceed the given number, and place a 1 in the corresponding position
in the binary number. Then we repeat the process with the remainder until the
remainder is 0. For example, consider the number 614. Since29 = 512 is the
largest power of 2 that does not exceed 614, we place a 1 in the tenth position of
the binary number, 1000000000. Continue with the remainder, namely 102. We
see that the highest power of 2 is now 6, as26 = 64. Next we place a 1 in the
seventh position: 1001000000. Continuing in this fashion we see that

614 = 512 + 64 + 32 + 4 + 2 = 10011001102. (2)

Converting fractions in base 10 to base 2 proceeds in a similar fashion. Take
the fraction, 0.1640625. Using the same method we see that since2−3 = 0.125
and2−2 = 0.25, we begin by placing a 1 in the third position to the right of the dec-
imal place: 0.001. The remainder is now0.1640625− 0.125 = 0.0390625, which
holds the power2−5 = 0.03125 with a remainder of0.0078125. This remainder
is 2−7, and we have0.00101012 represents the decimal fraction0.1640625. In
some cases, the binary representation of a fraction may not have a finite number
of digits. Take the simple fraction, 0.1. Using the same method we see that since
2−4 = 0.0625, we begin by placing a 1 in the fourth position to the right of the
decimal place. We see that2−4 + 2−5 = 0.00625. Continuing in this way we find
that we have a repeating decimal representation:0.1 = 0.00011001100110011...,
where0011 repeats forever. To convert a decimal number with a fractional part
into binary, we separately convert to binary the integer part and fractional part.

4

hexadecimal 1 A (10) D (13)
binary 0001 1010 1101

Figure 2: To convert a hexadecimal number to binary, simple go digit by digit
converting each digit into its four-bit binary representation.

2.2 Hexadecimal representation

Hexadecimal notation is also used when working with computers. The represen-
tation uses base 16 rather than base 2. The logic is the same. We need 16 ‘digits’,
so we use 0, 1, 2, ..., 9, A, B, C, D, E, F. The letters A, B, C, D, E, and F represent
the values 10, 11, 12, 13, 14, and 15 respectively. They are also called, ”Able”,
”Baker”, ”Charlie”, ”Dog”, ”Easy”, and ”Fox”. To represent the value 19, we
observe that19 = 16 + 3, so we use1316 because19 = 1 × 161 + 3 × 160. That
is, 13 in base 16 is equivalent to 19 in base 10.

As another example, to represent a decimal value such as 429 in hexadecimal,
we use the simple iterative technique described for converting to binary. Since
162 = 256 and163 = 4096, we start with 256, and notice that 256 divides 429
once, with a remainder of 173. This means that we place a 1 in the third position
of the hexadecimal number. Now, 173 is divisible by the the next lower power,
namely 16, 10 times with 13 as a remainder. So the next term in our hexadecimal
representation is A and it is placed in the second position. Finally, the remainder
13 is the digit D in base 16. Our number in base 16 is1AD16. We now see why
we need to use A, B, C, D, E, and F as digits because otherwise we would not be
able to keep the places straight.

Binary and hexadecimal representations go hand in hand because24 = 16.
This means that we can think of each hexadecimal digit as four bits. From this
viewpoint, we can easily convert hexadecimal represenations to binary and vice
versa. Figure2.2 gives an example of how to do this conversion.

We see that numbers have equivalent representations in base 2, base 10, or
any other base. It is easy to switch between the different bases and there is no loss
of information.

3 Approximate integer representations

Restricting the number of (binary) digits we use to store a number makes the quan-
tity of different possible numbers that we can represent in a computer finite. So

5

we must now go from our symbolic, mathematical world with an infinite number
of integers to a very finite one with only a fixed number of possible integers. This
restriction means that we have to be careful when we encounter an integer that
doesn’t fit into this fixed collection of possible integers that we can represent in
the computer.

With this quite major change in the way we need to think about doing basic
arithmetic on integers, we formalize how to represent an integer on a computer. In
many computers, integers are represented using 4 bytes, or 32 bits. In the 32-bit
binary representation, each integer appears as,

32∑
i=1

xi × 2i−1, (3)

where eachxi is either 1 or 0 to indicate whether we include that term in the sum
or not.

That is a good way to represent an integer in a computer because we are
exploiting the on-off, or binary, nature of the machine and its gates. We see
that the smallest integer is 0, when all of thexi = 0 and the largest integer is
232 − 1 = 4294967295. But of course, as we have written this, we only have non-
negative integers. One simple thing we can do to include negative integers is to
subtract from this value231. Now we have values between−231 = −2147483648
and232 − 1 − 231 = 231 − 1 = 2147483647. You might want to verify that every
integer between these values has a unique representation, i.e. a set of coefficients
{xi : 1 ≤ i ≤ 32} in this scheme. This is sometimes called abiasedrepresentation
or anoffsetrepresentation.

Notice that to add two numbers, we can add the shifted numbers. That is, the
binary integersx andy, are represented as231 +x and231 +y, respectively. When
these two representations are added, we get232 + x + y due to overflow. Which,
when shifted by231 is the representation,231 + (x + y), that we want.

Another popular representation is thetwo’s complement. In 32-bit binary, the
two’s complement representation of a negative integer is the binary number that
when added to its positive counterpart produces232, i.e. a 1 followed by 32 ze-
roes. That is, since the 32-bit binary representation of+1 has 31 leading zeroes
followed by1, i.e. 0 · · · 01, we would represent−1 by 32 ones, i.e.1 · · · 11. The
sum of these two binary numbers will be232. We will see in section 3.1 that be-
cause we only have 32 binary digits, the leftmost digit is dropped, and the number
overflowsto 0. A fast way to find the twos complement of a negative integer is to
take the binary representation of the positive integer, flip all of the bits (0 to 1, 1

6

to 0), and add 1. One of the nice properties of two’s complement is that addition
and subtraction is made very simple. That is, the circuitry on the microproces-
sor for addition and subtraction can be unified, and treated as the same operation.
Can you figure out how to easily convert a two’s complement representation to an
offset representation?

Two other representations are thesign-magnitude, which uses the leftmost bit
to denote the sign, and theone’s complement, which flips the bits to represent a
negative number. In both of these representation there are two ways to represent
0. What are they? Can you use binary addition to add numbers in these represen-
tations?

3.1 Operations and Errors

The computer takes care of arithmetic operations on integers for us. We can think
of addition, subtraction, multiplication and division as being essentially built-in
to the computer. When we add integers, there is a “carry” step with which we are
familiar. Now consider what happens when we add a value to a very large positive
integer such that it exceeds the range of the integer representation, 2147483647.
Without loss of generality (because of the carry operation), let’s just look at adding
1 to the maximum value2147483647. The maximum value is represented by
32 ones, and adding a one to it gives1 followed by 32 zeroes. This is a 33-bit
representation! When we try to map the result into 32-bits, what happens? In
our representation, all the coefficients are 0 except the one in the position for232

which is not in our representation. This means trouble in terms of representing the
result as an integer. If the leading digit is dropped then we are left with 32 zeroes,
which represents -2147483648.

Even when we promote the two integers being added to real values and do
the computations with only the error associated with that class of numbers in the
computer, and this is basically 0, we run into trouble when we map the result
into a 32-bit representation. InR, we promote the result from an integer to a real
value and we get no loss of information. If we try bring it to an integer, we get a
warning and the result is a undefined value, NA. In sum, when working with these
types of numbers, we have to be careful.Rand other packages will take care of
many details. You should be aware of them as not all systems will do this. Try
this in Excel, Matlab. If the system only provides the resolution of number or text
or whatever (e.g. date), it is not an issue but we have lost information as we no
longer validate that the values are integer-valued.

7

4 Floating point representation

Let’s think about how we might represent a real number in the computer. We
can represent the number 2.3 in scientific notation as2.3 × 100, as0.23× 101, as
23× 10−1, or as0.0232, etc. There is not a unique representation, unless we settle
on a convention that the mantissa is less than 10 and its first digit is non-zero. In
our example, that means we settle on2.3 × 100. This unique representation of
a real number has four components: the sign (+1) in this example, the mantissa
(2.3), the base (10), and the exponent (0).

When we work in base 2, how do these components look? Consider the num-
ber110.01012. Following the above convention, it would be uniquely represented
in scientific notation as

(+1)×(1×20+1×2−1+0×2−2+0×2−3+1×2−4+0×2−5+1×2−6)×22 (4)

We see that the sign is+1, the mantissa is1.100101, the base is2, and the exponent
is 2. For consistency, when we convert all four components to base 2, we would
have

(+12)× (1.1001012)× 10102
2 . (5)

That is, the sign is+1, the mantissa is1.100101, the base is10 and the exponent is
10, all in base 2! We typically use the former representation in our mathematical
notation, as it is easier for us to think in terms of22 than10102

2 .
We can represent any real number in base-2 floating point.

(−1)x0{1 +
t∑

i=1

xi2
−i} × 2k, (6)

wherex0 is the sign bit, the{xi} represent the mantissa, andk the exponent. This
representation is ideal for storing real numbers in the computer.

5 Approximate floating point representations

We saw with integers that we could not store arbitrarily large (positive or negative)
integers in the computer. Similarly, with floating point numbers, we can’t store a
number to arbitrary precision in the computer because the computer is a finite-state
machine. Instead, we approximate the number and then store that in the computer.
The IEEE single-precision floating point representation uses 32 bits, with one bit
for the sign (1 for negative and 0 for positive), 23 bits for the mantissa, and eight

8

bits for the exponent. Since the leading digit of the mantissa will always be 1 in
our base-two representation, we need not store it. The leading 1 is a hidden digit.
This gives us an extra digit of precision in our mantissa. (We will see later that for
very small numbers, we may need to make the first digit 0.) We also don’t need to
store the base, as it is always 2. Then most numbers are represented as

(−1)x0{1 +
23∑
i=1

xi2
−i} × 2k, (7)

where the mantissa contains 23 terms or digits in the 32-bit representation.
How large a number can the exponent get? Well, it can have28 = 256 possi-

ble values. Since we need to represent both large and small values, we need both
negative and positive exponents. In order to do this, we can use an integer repre-
sentation for the exponent, and apply a shift or bias, as described in Section 2.1.
Typically, the exponent ranges from−27 + 2 = −126 to 27 − 1 = 127, where we
usually reserve two values,−128 and−127, as flags for special values. We hold
one for representing very, very small numbers that we cannot represent properly.
And we hold the other to indicate that the number really doesn’t make sense, i.e.
is the result of computing a value such as1/0, or to indicate a special case such as
underflow, overflow or “not a number” (NaN).

In double-precision floating point, we typically use 11 bits for the exponent
and 52 bits for the mantissa. So the exponent has211 = 2048 possible values. For
11 bits, the shift is typically 1024, and the possible (integer) values stored in the
exponent are -1022 to 1023. Again, two values for the exponent are reserved for
special cases.

6 Machine Constants: Smallest Values

The restrictions on the size of the mantissa and exponent translate into restrictions
on the accuracy of the representation of the number in the computer.

For example, consider the single precision representation of the decimal value
0.1. Earlier, in Section 2.1, we saw that we need an infinite number of digits to rep-
resent 0.1 in base 2,0.0001100110011001100110011001100110011 We only
have 23 digits available to us (24 with the first digit being hidden), which means
that this number is represented as0.000110011001100110011001100 which has
a decimal value of0.099999994039552246094, and so is accurate only to seven
decimal places. We call the difference between the true value and its approxima-

9

tion the rounding error. The relative size of the error is about0.000000006/0.1 =
6× 10−8.

What happens when we add the values 100,000 and 0.1? Well, the binary
representation of 100,000 is11000011010100000. And the sum in 32-bit floating
point representation is,

11000011010100000.0001100

(notice there are 24 digits here) which has a decimal value of 100000.09375. The
size of the error has grown, but the relative error0.006/100000.1 is still of the
same order, as the error in representing0.1.

To help us make sense of the size of these approximation errors, we might ask,
what is the smallest number that can be added to 1 to get get a result different than
1? The 32-bit floating point representation of 1 is,

(−1)x0{1 +
23∑
i=1

xi2
−i} × 20, (8)

where,x0 = 0, andxi = 0, i = 1, . . . , 23. We see that if we add2−23 we get

1 + 2−23 = (−1)0{1 + (
22∑
i=1

0/2i) + 1/223} × 20, (9)

which is different from 1. Any number smaller than2−23 will result in no change
to the sum. This machine constant, is often called the floating point precision, and
is denoted byεm.

6.1 Relative error

The constantεm provides an upper bound on the relative size of the error in ap-
proximating a real numberx by its finite floating point representation, which we
call f(x). In our example with0.1 we found that|x − f(x)| = 6 × 10−9 and the
relative error in the approximation is|x − f(x)|/|x| = 6 × 10−8, which is less
than2−23 = 1.2× 10−7. Note that for our single precision case,

|x− f(x)|
|x|

≤ 2−232k/|x|

≤ 2−232k2−k

= 2−23.

10

which establishes that the relative error is at mostεm.
The IEEE standard for floating point arithmetic calls for basic arithmetic op-

erations to be performed to higher precision and then rounded to the nearest rep-
resentable floating point number.

6.2 Error accumulation

How do errors change over arithmetic operations? Consider the simple case of
addition of two numbers. For any real numberx, the error in a single-precision
floating-point approximation can be as large as2k−23, wherek is the exponent in
the representation ofx. (Note thatx ≥ 2k since by uniqueness of the representa-
tion, the first digit in the mantissa must be a 1 for large numbers).

When two nearly equal numbers are subtracted from each other then the result-
ing relative error can be very large. To see this, take0.100002288818358375 and
subtract0.1 from it. This first number was chosen because it has a finite binary
representation with a mantissa of fewer than 24 digits,0.000110011001100111.
In other words, in single precision, this real number is exactly represented by a
mantissa of1.100110011001110 · · · 0 and an exponent ofk = −4. We have seen
already that0.1 is approximated by a mantissa of1.10011001100110011001100
and an exponent of−4. (Don’t forget about the hidden digit!) The error in this ap-
proximation is about2−28, and the relative error is2−27. When this representation
of 0.1 is subtracted from the other number, the difference is,

0.000000000000000000100110100

, which is about0.0000022947. The true difference is about0.0000022888. The
error is about6 × 10−9, and the relative error is about3 × 10−3 or about2−8,
which is quite large in comparison to the original relative errors of0 and2−27,
respectively.

This type of cancellation error doesn’t occur when we add numbers of the
same sign. (Subtraction is simply adding numbers of different signs). For ex-
ample, take two positive numbers,x andy, with single precision floating point
representationf(x) andf(y), and denote the relative error byδx = (f(x)− x)/x
andδy. We have shown already that the relative error|δx| is bounded above by
2−23 = εm. Then

f(x) + f(y) = x + y + xδx + yδy

≤ (x + y)(1 + εm)

11

When we addf(x) andf(y), the result must also be represented in single preci-
sion, i.e.f(f(x)+f(y)), and we are interested in the approximation error relative
to the true sumx + y. To find this, note that

f(f(x) + f(y))− (x + y) = f(f(x) + f(y))− (f(x) + f(y))

+ f(x)− x + f(y)− y

≤ f(f(x) + f(y))− (f(x) + f(y)) + xεm + yεm

≤ (f(x) + f(y))εm + xεm + yεm

≤ (x + xεm + y + yεm)εm + xεm + yεm

≤ (x + y)(2εm + ε2
m)

This argument generalizes to sums ofn terms, where it is seen that the errors
may accumulate tonεm (ignoring terms of smaller order). These bounds are just
that, bounds. Consider what might happen when you add one very large number
with many small numbers. The order in which these numbers are summed may
effect the result. That is, adding the small numbers one at a time to the large num-
ber could yield a very different result than when we add all of the small numbers
first and then add the sum to the large number. Why?

7 Higher-level Languages

In reality, we don’t have to worry about all of these things everyday. The high-
level systems we use for working with data insulate us from the representations of
different types of numbers and, with varying degrees of utility, from underflow and
overflow errors. And this is where we want to be - using commands that allow us
to think in terms of the data and the statistical problem on which we are working,
and leaving the mapping of this to the low-level, basic computer facilities. And
this is the general premise motivating programming languages such as Fortran, C,
Java, and much higher-level languages such as S (Rand S-Plus), Matlab, SAS, and
other applications such as Excel.

“One” step above assembler are the C and Fortran. Fortran provides a higher-
level mechanism to express computations involving formulae and the language
translates these formulae to machine instructions programming languages. This
is where the name comes from: formula translator. The Fortran language has
evolved from Fortran 66 to Fortran 2000 now with increasingly modern program-
ming facilities. Because of the simplicity of the language, it is quite fast and some
argue that it is the most efficient language for scientific computing. This requires

12

much greater specificity about what efficiency means and also how to measure
performance appropriately. It is useful, but it is clumsy and is less well suited to
good software engineering than most other common languages. It is very useful
to be able to read and interact with Fortran code because so much of the existing
numerical software was developed in Fortran.

The C language has been a much richer language than Fortran and is used
to implement operating systems such as Unix, Linux, and others. It has been
the language of choice for many, many years and is used widely in numerical
computing. More recently C++ has become fashionable, and offers many benefits
over its close ancestor, C. However, these benefits are not without complexity.

Both Fortran and C are languages that are compiled. In other words, program-
mers author code and then pass it to another application - the compiler - that turns
this into very low-level machine code instructions. The result is an executable that
can be run to execute the instructions. Such executables are invariably machine-
dependent, containing machine-level operations that are specific to that machine
targeted by the compiler. The same source code can recompiled on other ma-
chines, but this compilation step is necessary. And in many cases, one must either
modify the code for the new machine or be conscious of the portability constraints
when authoring the code.

Java and C# are very similar languages that one can categorize as being sim-
plified variations of C++ that promote the object-oriented style of programming
but without the complexity of C++. They are also compiled languages, requiring a
separate compilation step. Unlike C and Fortran compilers, the Java and C# com-
pilers transforms the programmer’s code into higher-level instructions targeted at
what is termed a Virtual Machine (VM). The VM acts much like a computer,
processing the instructions, providing registers, etc. and generally mimicking the
actions of the low-level computer. This is done by creating a version of the virtual
machine for each computer architecture (e.g. Powerbook, Intel *86, Sparc), but
then allowing all code for that virtual machine to run independently of what ma-
chine it is running on. The virtual machine is a layer between the compiled code
and the low-level computer. And this makes the compiled code (byte code) inde-
pendent of the particular architecture and so makes it portable without the need
for recompiling.

Compiled languages, i.e. those requiring a compiler, are very useful. Typi-
cally, the compilation step performs optimization procedures on the programmers
code, making it faster by looking at the collection of computations and removing
redundancies, etc. Additionally, because compiled languages typically require
variable declarations in terms of scope and type information, they can often catch

13

programming errors before the code is run. There are disadvantages, however.
Using compiled languages, one typically has to write an entire program before
compiling it. This means that

• exploration and rapid prototyping of individual chunks is more complex or
impossible. Specifically, it is much more difficult to incrementally create
software by running individual commands.

• one cannot typically alter the programming as it is running to correct errors
or add functionality.

(See also http://www.math.grin.edu/ stone/courses/fundamentals/IEEE-reals.html
and http://icommons.harvard.edu/ hsph-bio248-01/LectureNotes/).

14

