
1 Multiple Tables and the Relational Model

While the table is the basic unit in the relational database, a database typi-

cally contains a collection of tables. Up to this point in the chapter the focus

has been on understanding the table. In this section, we broaden our view

to examine information kept in multiple tables and how the relationships

between these tables is modeled. To make this notion concrete, consider a

simple example of a bank database based on an example found in Rolland

[?]. This database contains four tables: a customer table, an account table,

a branch table, and the registration table which links the customers to their

accounts (see Figure 1).

The bank has two branches, and the branch table contains data specific

to each branch, such as its name, location, and manager. Information on

customers, i.e. name and address, is found in the customer table, and the

account table contains account balances and the branch to which the account

belongs. A customer may hold more than one account, and accounts may

be jointly held by two or more customers. The registration table registers

accounts with customers; it contains one tuple for each customer-account

relation. Notice that customer #1 and customer #2 jointly hold account

201, and customer #2 holds an additional account, #202. Customer #3

holds 3 accounts, none of which are shared: #203 at the downtown branch

of the bank and #301 and #302 at the suburban branch.

All of this data could have been included in one larger table (see Fig-

ure 2) rather than four separate tables. However Figure 2 contains a lot of

redundancies: it has one tuple for each customer-account relation, and each

tuple includes the address and manager of the branch to which the account

belongs, as well as the customer’s name and address. There may be times

when all of this information is needed in this format, but typically space

constraints and efficiency considerations make the multiple table database

a better design choice.

1

Customers Table

CustNo Name Address
1 Smith, J 101 Elm
2 Smith, D 101 Elm
3 Brown, D 17 Spruce

Accounts Table
AcctNo Balance Branch
201 $12 Downtown
202 $1000 Downtown
203 $117 Downtown
301 $10 Suburb
302 $170 Suburb

Branches Table
Branch Address Manager
Downtown 101 Main St Reed
Suburb 1800 Long Ave Green

Registration Table
CID AcctNo
1 201
2 201
2 202
3 203
3 301
3 302

Figure 1: The simple example of a bank database is inspired and adapted
from Rolland. It contains four tables with information on customers, ac-
counts, branches, and the customer-account relations.

2

CID Name Address AcctNo Balance Branch BAddr Manager
1 Smith, J 101 Elm 201 $12 Downtown 101 Main St Reed
2 Smith, D 101 Elm 201 $12 Downtown 101 Main St Reed
2 Smith, D 101 Elm 202 $1000 Downtown 101 Main St Reed
3 Brown, D 17 Spruce 203 $117 Downtown 101 Main St Reed
3 Brown, D 17 Spruce 301 $10 Suburb 1800 Long Ave Green
3 Brown, D 17 Spruce 302 $170 Suburb 1800 Long Ave Green

Figure 2: All of the information in the four bank database table could be
combined into one larger table with a lot of redundant information

The registration of accounts to customers is a very important aspect

of this database design. Without it, the customers in the customer table

could not be linked to the accounts in the account table. If we attempt to

place this information in either the account or the customer table, then the

redundancy will reappear, as more than one customer can share an account

and a customer can hold more than one account.

Recall that a key to a table uniquely identifies the tuples in the table.

The customer identification number is the key to the customer table, the

account number is the key to the account table, and the customer-account

relation has a composite key made up of both the account number and the

customer number. These keys allow us to join the information in one table

to that in another via the SELECT statement. We provide three examples.

Example For the first example, we find the total balance of all accounts

held by a customer. To do this, we need to join the Account table, which

contains balances, with the Registration table, which contains customer-

account registrations. The following SELECT statement accomplishes this

task. There are several things to notice about it. The two tables are listed

in the FROM clause to denote that they are to be joined together. The

WHERE clause specifies how these two tables are to be joined, namely

matches are to be made on account number. The GROUP BY clause groups

those accounts belonging to the same customer and the aggregate function

3

SUM reports the total balance of all accounts owned by the customer.

SELECT CID, SUM(Balance) AS Total

FROM Registration, Accounts

WHERE Accounts.AcctNo = Registration.AcctNo GROUP BY CID;

The results table will be as follows:
CID Total
1 $12
2 $1012
3 $297

Since both the Registration and Accounts tables have an attribute called

AcctNo, they need to be distinguished in the SELECT query. We do this

by including the table name when we reference the attribute, e.g.

Accounts.AcctNo

refers to the AcctNo attribute in the Accounts table. Also note that the

aggregate function is renamed as the attribute Total via the AS clause.

Example For the next example, the problem is to find the names and

addresses of all customers with accounts in the downtown branch of the

bank. To do this we need to select those accounts at the downtown branch,

match them to their respective customers, and pick up the customer names

and addresses. This information appears in three different tables, Accounts,

Customers, and Registration, so we need to join these tables to subset and

retrieve the data of interest. These three tables are listed in the FROM

clause of the SELECT statement below. The WHERE clause joins customer

tuples to account tuples according to the pairing of account number and

customer number in the Registration table. It also limits the tuples to those

accounts in the Downtown branch. The GROUP BY clause makes sure that

a customer with more than one account in the branch of interest appears

only once in the results table.

4

SELECT CustNo, Name, Address

FROM Accounts A, Customers C, Registration R

WHERE A.Branch = ’Downtown’ AND A.AcctNo = R.AcctNo AND

C.CustNo = R.CID GROUP BY CustNo;

A couple of comments on the syntax of this statement. Aliases for table

names are provided in the FROM clause. The Registration table has been

given the alias “R”, Accounts has alias “A”, and Customers can be referred

to as “C”. The alias gives us a shorthand name for a table. The A.Acctno

refers to the AcctNo attribute in the A (Accounts) table and R.AcctNo refers

to AcctNo in the Registration table. Since the customer number is labelled

CID in the Registration table and CustNo in the Customers table, we do

not need to include the table prefix in

R.CID = C.CustNo

. We do so for clarity. But we do not need this extra precaution for clar-

ity sake when we list the attributes to be selected from the joined tables,

SELECT CustNo, Name, Address ...

Example For the final example, consider the special case where a table

is joined to itself in order to provide a list of customers sharing an account.

That is, join the Registration table to itself, matching on account number

and pulling out those tuples with the same account number but different

customer numbers.

SELECT First.CustNo, Second.CustNo, First.AcctNo

FROM Registration First, Registration Second

WHERE First.AcctNo = Second.AcctNo

AND First.CustNo < Second.CustNo;

Notice that the join does not join a tuple to itself because of the specification

that the customer number in the First table must be less than the customer

number in Second table.

5

The R language offers the merge function to merge two data frames

by common columns or row names or do other versions of database join

operations. However, database management systems are specially designed

to handle these table operations, and if the data are in a database, for

efficiency reasons, it usually makes sense to use the database facilities to

subset, join, and group records in data tables.

1.1 Sub-queries

Intermediate tables can be created in a query by nesting one SELECT state-

ment within another, which can useful for constructing complex searches and

for optimizing a query.

Example Suppose we wish to find the name and address of those cus-

tomers without accounts. We build the SELECT statement to accomplish

this task by progressively nesting SELECTs. First, we produce a table of

customer numbers in the Registration table,

SELECT CID FROM Registration;

Then we use this results table to find those customers in the Customers

table that do not appear in this table,

SELECT * FROM Customer WHERE CustNo NOT IN

(SELECT CID FROM Registration);

Notice that the SELECT statement used above to pull the disqualifying

customer numbers is nested in the WHERE clause of the outer SELECT

statement.

Subqueries can be further nested, as in the next example, where we

re-visit an earlier example of joining multiple tables to produce a table of

customers with accounts in the downtown branch. To start, first produce a

table of account numbers for those accounts in the downtown branch:

6

SELECT AcctNo FROM Accounts WHERE Branch = ’Downtown’;

With this list of accounts, we pull from the Registration table the customer

numbers of the cusotmers who hold these accounts. The following nested

SELECT statement does just that.

SELECT CID FROM Registration WHERE AcctNO IN

(SELECT AcctNo FROM Accounts WHERE Branch = ’Downtown’);

The final step requires acquisition of the names and addresses for these

customers from the Customer table. A further nesting of SELECT state-

ments accomplishes this goal.

SELECT CustNo, Name, Address

FROM Customers C WHERE CustNo IN

(SELECT CID FROM Registration WHERE AcctNO IN

(SELECT AcctNo FROM Accounts WHERE Branch = ’Downtown’));

This query contains two nested SELECT statements which each create a

temporary table. The decision as to whether to use these nested subqueries

over the join of the three tables shown earlier depends on issues of efficiency

and readability.

1.2 Virtual Tables and Temporary Tables

In addition to base tables in the database and the results table from a query

to the database, we have views, virtual tables that can be used just as

database tables. A view can be thought of as a named subquery expression

that exists in the database for use where-ever one would use a database table.

The view may be a projection or restriction of a single table, or the result

of a more complex join of tables. Views can be used to remove attributes

or tuples that a user is not allowed to see, or to provide a shorthand means

to obtain a commonly used query. The CREATE VIEW statement defines

a view via a select statement.

7

A similar type of table, is the temporary table. Temporary tables allow

users to store intermediate results rather than having to submit the same

query or subquery again and again. Unlike the viw, the temporary table

is a real table in the database which is seen only by the user and which

disappears at the end of the user’s session. This is especially useful if the

query is needed for many other queries and it is time consuming to complete

it. The CREATE TEMPORARY TABLE command is a special case of the

CREATE TABLE query discussed in Section ??.

8

