
Advanced Topics in R Programming

Batch Jobs
Garbage Collection

Memory Management
Debugging

Duncan Temple Lang
duncan@wald.ucdavis.edu

1

Topics
In the 2 lectures I will present, we’ll try to cover:

General questions (R, ad hoc networks, programming,
etc.)

Batch & Background jobs.

Garbage collection.

Managing memory.

Debugging.

Recursive functions.

Notes at http://eeyore.ucdavis.edu/stat133/

2

2

“Batch” Jobs

Usually run R commands interactively.

But if they take a long time, you want to leave them
and come back when they are finished.

Can lock the screen - BAD

Instead, use a batch or background job using the shell

Important part of Scientific Computing.

3

3

Batch Jobs

Put the R commands into a file, say code.R.

Run R reading commands from that file
put output into another file

R --no-save < code.R >& output.Rout

--no-save just tells R not to bother saving the work
space when it finishes

Other possible options are --vanilla, --save, --no-
environ, etc.
 See documentation for R shell command, ?Startup

4

4

R --no-save < myCode.R >& output.Rout

What does the < mean?

The shell “redirects input” to R using the
contents of the file myCode.R

Very similar to typing the lines one at a
time at the R prompt
Not quite the same as source(”myCode.R”),
but close.

5

5

R --vanilla < myCode.R >& output.Rout

The >& means “redirect both output and errors” to the
file output.Rout

If we just had
 > output.Rout
the errors would go to the console/terminal.

The >& is specific to the C shell (csh/tcsh)
For the Bourne shell, bash/sh use
 R --no-save < myCode.R 2>1 > output.Rout

6

6

Background Jobs

We still had to wait for the
 R --no-save < myCode.R ...
command to finish before we start new
command (in that terminal)

If we logout, the process will terminate!

We want to get a new prompt so we can do
other things, including logging out.

7

7

nohup nice +18 R --no-save < myCode.R >&
output.Rout &

The second & tells the shell to put this process in the
background and return the a new prompt.
No connection to the >&.

nice says “schedule my job when others aren’t using the
computer”.

+18 is the maximum amount of niceness

Prefix command with nohup - no hangup.
 On many machines this is not needed, but it never
hurts and guarantees the job keeps running when you
logout.

8

8

Things to Remember
Can logout and return later to see if the job is
finished.

First, remember which machine you used.
Often people check on the wrong machine

Has the task finished?

If you arrange for your code to generate output at
different points, you can look at the output file and
look for those markers, e.g. print something at the end
of iteration of a loop.

To look at the file,
cat output.Rout or tail -f output.Rout

9

9

General Job Monitoring

Each job or “process” has a unique identifier - a number.

kestrel>/app/bin/R --no-save < long.R >& out &
[1] 19766
The 19766 is the process identifier.

Use the commands top and ps find status of machine,
and job.

Use kill to force a job to finish
 kill -9 19766

10

10

More to remember

When creating plots, explicitly open graphics devices
and close them.

pdf(”myPlot.pdf”)
hist(x)
dev.off()

This avoids them going to one big file, on different
pages.

11

11

And more
If your job stops unexpectedly, you will have
to start again from the beginning.

Sometimes useful to save results as you go
along, i.e. at different stages/parts of the
script.

save(a, b, c, file = “myFile.rda”)

Then you can come back and reload them
and continue on from that point or do
additional computations.

12

12

Debugging
If you get an error in your script, the job
will stop and there will be a message in
output.Rout.

Hopefully the message will make it clear how
to fix the problem.

Often we need to examine the state of the
session to figure out why things failed.

So we need to be able interactively explore
the values of the different variables

13

Post-morten Debugging
First of all, test code on smaller datasets.

But if it does happen in a batch job, we don’t
have interactive access!!
Can’t use options(error = recover)

Do “post-mortem” debugging (see ?debugger)

At start of script (myCode.R), put
 options(error=quote({dump.frames(to.file=TRUE); q()}))

Then, after the error can explore in new R
session
load(“last.dump.rda”)
debugger(last.dump)

14

Debugging

This debugger is basically the same as the one used in
interactive use
 e.g. with options(error = recover)

Jump to different calls, find out what variables are
available, print values, do computations.

Debugging is an art. Get experience.

Think about probable causes and then try to construct
experiments to verify that is the reason.

15

15

What is Garbage Collection?

Notice that in R, when you create data you don’t have to
explicitly declare or allocate it.

And you don’t have to release it.

e.g.
 x = 2*x + 10 + rnorm(length(x))
the rnorm()s are created added to the other
components and then discarded. Same for original x.

Garbage collection is the process of reclaiming the
memory that is associated with objects and
computations that are no longer being used - garbage.

16

16

When R needs memory to do a computation, it asks its
memory manager for space.

The memory manager has already allocated a lot of
space that it doles out, and so it can provide space for
such requests.

If the memory manager doesn’t have enough space for
the request, then it tries to cleanup - garbage collect.

It runs through all the spaces that it has given out in
earlier requests and reclaims it if it is no longer being
used.

If the Mem. Mgr. still needs more space, it can grow its
pool.

17

17

Preallocate Space for the Result

Reiterating what Deb covered last time.

Consider the following code
ans = numeric()
for(i in 1:n)
 ans = cbind(ans, foo(i))

In each step, we combine the new result with the
previous ones via cbind.

18

18

Consider the last iteration, i.e. i == n

The result from the previous iteration is a matrix with
n-1 columns.

We then create a new result with n columns.

So before we assign the new result to ans, we have
approximately 2 copies of the results!

And we have to copy all the data from the original to
the new result.

This is bad news.
Some computations will not be feasible.

19

19

Alternative
We know the result is a matrix of size m x n,
so allocate it first and then assign each iteration’s result
into the corresponding column.

ans = matrix(NA, m, n)
for(i in 1:n)
 ans[, i] = foo(i)

This does the allocation (for the result) just once and
doesn’t create new objects, just modifies the existing
one.

The key thing is that ans[, i] doesn’t create a new copy
of ans, but writes the values into the appropriate
subset.

20

20

Time Comparisons

system.time({ans = numeric() ; for(i in 1:10000) ans =
cbind(ans, rnorm(10))})
[1] 14.57 4.72 19.62 0.00 0.00

 system.time({ans = matrix(NA, 10, 10000) ; for(i in
1:10000) ans[,i] = rnorm(10)})
[1] 0.32 0.01 0.34 0.00 0.00

Of course, need to have multiple measurements.

And the characteristics of the machine, etc. matter, but
still can compare the two meaningfully.

21

21

We could use apply() to make this read more easily and
be more efficient
 sapply(1:n, function(i) rnorm(10))

The apply functions allocate the result space for us.

Note that we can define an “anonymous” function in the
call to sapply().
functions are first class objects in R.

But when we can’t use an apply function, making space
and writing into that existing space is much faster.

22

22

Why do we need to know this?

Because, when you run simulations as for your current
project, you may run into memory problems.
It then helps to be able to reason about them.

It is good to be able to determine approximately how
much memory you will need in a computation. Then you
can determine if it is feasible or not.

And it can also allow you to specify hints to R for how
much space it will need and can reserve.

23

23

Before we discuss how to control garbage collection,
let’s just see when it happens.

 gcinfo(TRUE) tells R to print something on the screen
when it performs the garbage collection.

> gcinfo(TRUE)

Then allocate a big object several times
> for(i in 1:10) m = rnorm(100000)

24

24

Garbage collection 5 = 4+0+1 (level 0) ...
88686 cons cells free (25%)
2.8 Mbytes of heap free (47%)
Garbage collection 6 = 5+0+1 (level 0) ...
88672 cons cells free (25%)
2.1 Mbytes of heap free (34%)
Garbage collection 7 = 6+0+1 (level 0) ...
88658 cons cells free (25%)
1.3 Mbytes of heap free (21%)

So 3 calls to the garbage collector when it needed more
space and was done with the earlier versions of m.

25

25

Size of an object
Find out how big an object is.

Back of the envelope calculations, or

object.size(x)
e.g. object.size(matrix(pi, 100, 100))
 [1] 80120

100 x 100 = 10,000 elements
each element 8 bytes for a number
extra bytes (120) associated with R information
(dimensions, class, etc.)

object.size(letters)
[1] 1068

26

26

> p = cbind(runif(75), runif(75))
> D = as.matrix(dist(p))
> object.size(D)
[1] 51276

This is the number of bytes the distance matrix
occupies.

27

27

object.size() can be used to approximately determine
how much space you might need for a calculation.

Things are more complex than just being the sum of all
the necessary space as R may reuse some of that space
and so need less space.

And R may use a little more for an object.

But it gives us a good estimate of the approximate
requirements.

Also, we can compute this for different sizes of inputs
and extrapolate.

28

28

Suppose we have a computation that works on an n
objects, e.g. 75 nodes in an ad hoc network.

We write a function to determine if the network is fully
connected.

How many nodes can we realistically run this for?

Try it for n = 5, 10, 15, 20,, 100 and compute the
total memory and time used during that computation.

Then extrapolate to get approximate memory and time
as a function of n.

29

29

Find out how much space is being used using gc()
Forces garbage collection, and also reports status.

> gc(reset = TRUE)
 used (Mb) gc trigger (Mb) max used (Mb)
Ncells 171168 4.6 350000 9.4 350000 9.4
Vcells 62857 0.5 786432 6.0 337583 2.6

The Vcells are the interesting ones for us - our
computations and data.

Note that gc() returns a matrix with 2 rows, 6 columns.

We can extract the max used columns and compare
across calls.

30

30

 Call gc(reset = TRUE), run computation and then call
gc(reset = FALSE)
> orig = gc(reset = TRUE)
> sapply(1:10, simulation)
> end = gc()

 end[“Vcells”, 6] - orig[“Vcells”, 6]

31

31

gcinfo()

object.size()

gc(reset = TRUE) followed by gc()

32

32

Start R with a large workspace

R --min-vsize=vl --max-vsize=vu --min-nsize=nl --max-
nsize=nu --max-ppsize=N

mem.limits()

?Memory

33

33

Start R with default settings
 R

gc()
 used (Mb) gc trigger (Mb) max used (Mb)
Ncells 169451 4.6 350000 9.4 350000 9.4
Vcells 62425 0.5 786432 6.0 337539 2.6

Now, let’s create a large matrix - 1000 x 1000

Before we do, ask R to tell us when it does garbage
collection/resizing of the available space.

34

34

gcinfo(TRUE)

m = matrix(rnorm(1000 * 1000), 1000, 1000)

Garbage collection 4 = 1+0+3 (level 2) ...

180323 cons cells free (51%)

9.6 Mbytes of heap free (95%)

Garbage collection 5 = 1+0+4 (level 2) ...

180330 cons cells free (51%)

9.6 Mbytes of heap free (54%)

Garbage collection 6 = 1+0+5 (level 2) ...

180333 cons cells free (51%)

9.6 Mbytes of heap free (37%)

object.size(m)

[1] 8000120

35

35

Now, let’s try that again, but this time start R with 1Gb
of memory.
Don’t do this unless you know you need it!

Start R and tell it to use 2Gb of space for data objects
 R --min-vsize=2G

36

36

Again, turn on reporting of garbage collection
 gcinfo(TRUE)

Now, allocate the same matrix.
m = matrix(rnorm(1000 * 1000), 1000, 1000)

Note, there was no garbage collection.

37

37

Fragmentation

Fragmentation happens when we create numerous
objects and then remove some and leave holes in the
allocated memory.

x1 = rnorm(10000)
x2 = rnorm(10000)
y = 10 * x1 + 20 * x2
rm(x2)

38

38

When we remove x2, we are left with a big hole.

If we go to allocate space for say 10001 elements, we
cannot use this space.

We may have lots of little pieces of space which
cumulatively total more than the desired amount of new
space.

But since they are not contiguous, we cannot use them
and so we cannot satisfy the new request.

We don’t have much control over this in R, but it is good
to know about it.

39

39

Quick Aside

Statistical Computing is an important and very under-
represented area of research in the statistics field.

There are many opportunities to do research in this
area.

We are developing a progam in Davis and there are
several others emerging.

40

40

