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Abstract

Semiparametric Statistical Methods for Causal Inference
with Stochastic Treatment Regimes

by

Nima S. Hejazi

Doctor of Philosophy in Biostatistics
Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Mark J. van der Laan, Co-chair

Professor Alan E. Hubbard, Co-chair

Nearly a century ago, the foundations of modern statistics laid the groundwork for a science
of causality. Today, causal inference is central to the study of the most impactful questions at the
intersection of science and policy: By what mechanisms do novel therapeutics mitigate relapse in
addiction disorders? How do immunobiological markers mediate action mechanisms of vaccines?
While randomization provides “gold standard” tools for quantifying causal effects, such trials are
costly and limit the scope of scientific inquiry. Thus, techniques for statistical causal inference
with complex, observational data are critical to today’s, and tomorrow’s, scientific endeavors.

Observational studies obviate many of the shortcomings of randomized trials but bring their
own challenges and promises. Without randomization, causal inference is plagued by confound-
ing: vaccinees may be more likely to engage in risky behaviors and patients assigned a candidate
therapeutic are not uniformly “treated” due to clinician heterogeneity. Adjusting for potential
confounders is a daunting challenge in an era where studies routinely measure numerous high-
dimensional characteristics. While observational studies empower scientists to assess mechanistic,
path-specific causal effects that cannot be learned with randomized data, tools from non/semi-
parametric statistical theory and machine learning are needed to avoid imposing unrealistic as-
sumptions and novel causal effect estimands are required to better address mechanistic questions.

Causal inference methodology is critical to answering real-world scientific questions, but tradi-
tional approaches make too many simplifying assumptions. By ignoring biased sampling designs,
continuous-valued treatments, and confounding of path-specific effects, standard techniques fall
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short of empowering mechanistic discovery. Such techniques often require a priori modeling as-
sumptions unsupported by domain knowledge, limiting their utility for real-world data analysis.

This dissertation, divided into six chapters, extends theory and methods for non/semi-parametric
causal inference in settings with continuous treatments, with particular attention paid to issues
emerging from biased sampling designs and path-specific causal effects. Throughout, stochastic
treatment regimes, or stochastic interventions, are leveraged to provide a single, unifying frame-
work for formalizing such causal inference problems.

Chapter 1 considers estimation of the generalized propensity score, a quantity critical to es-
timating the causal effects of stochastic interventions. We formulate algorithms for flexibly esti-
mating it using the highly adaptive lasso, a nonparametric regression estimator. We then develop
a novel inverse probability weighted estimator of these types of causal effects and demonstrate its
ability to achieve the non/semi-parametric efficiency bound in numerical experiments.

Chapter 2 focuses on the application of the causal effects of stochastic interventions in real-
world studies that rely upon outcome-dependent two-phase sampling (e.g., case-cohort designs).
The work includes a methodological advance that unites techniques for estimating the causal ef-
fects of stochastic interventions with corrections for biased sampling, allowing for these complex
causal parameters to be efficiently estimated under such designs. Motivated by the aims of an
HIV vaccine efficacy trial, this contribution allows researchers to probe how vaccination-induced
immunogenicity of candidate immune correlates of protection may best be modulated by future
vaccines, and the proposed methodology is demonstrated through a re-analysis of this trial’s data.

The COVID-19 pandemic took the world by storm during the final year of this work. Chapter 3
generalizes the methodology proposed in Chapter 2 to help maximize what can be learned from the
critical scientific questions posed by vaccine trials to combat COVID-19. These developments have
served as part of the immune correlates analyses of the COVID-19 Vaccine Prevention Network, a
large-scale collaboration organized by the National Institute of Allergy and Infectious Diseases.

Chapter 4 examines path-specific causal effects formulated via stochastic interventions and
broadens the scope of the general framework of causal mediation analysis. In particular, this work
introduces a new class of direct and indirect effect parameters robust to intermediate confound-
ing. Developing non/semi-parametric efficient techniques for the flexible estimation of these path-
specific effects facilitates their use in quantifying mechanistic knowledge and extracting actionable
insights from modern, large-scale studies.

Chapter 5 discusses the role of open source software and reproducible research in statistics
and allied computational sciences. Three software packages for statistical causal inference, each
implementing elements of the statistical methodology discussed prior, are introduced.

Chapter 6 concludes with a discussion of interesting avenues that may motivate future research.
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Chapter 1

Generalizing the Propensity Score

Continuous treatment variables have posed a significant challenge for causal inference, both in the
formulation and identification of scientifically meaningful effects and in their robust estimation.
Traditionally, focus has been placed on techniques applicable to binary or categorical treatments
with few levels, allowing for the application of propensity score-based methodology with rela-
tive ease. Efforts to accommodate continuous treatments introduced the generalized propensity
score, yet estimators of this nuisance parameter commonly utilize parametric regression strategies
that sharply limit the flexibility and robustness of classical inverse probability weighted estimators
of causal effect parameters. We present and investigate novel, flexible estimators of the general-
ized propensity score, based on a recently developed nonparametric regression function that con-
verges at a fast rate to the target functional. Using our proposed estimator, we demonstrate the
construction of nonparametric inverse probability weighted estimators of a class of causal effect
estimands tailored to continuous treatments. We outline non-restrictive conditions and selection
procedures for applying undersmoothing to our generalized propensity score estimators to develop
inverse probability weighted estimators capable of achieving the nonparametric efficiency bound,
demonstrating the attainability of these properties in numerical experiments. Open source soft-
ware implementing our proposed estimation techniques, the haldensify R package, is briefly
introduced.

1.1 Introduction

From the biomedical and health sciences to the social and economic sciences, research efforts
often aim to quantify the causal impacts of intervening on continuous-valued treatments. Evalu-
ating the causal effects of such treatments opens the door to addressing myriad complex scientific
questions; examples include evaluating the impacts of increased physical exercise on aging in the
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elderly [39], reductions in surgical operating time on post-surgical health outcomes [71], changes
in vaccination-induced immunologic response activity on disease risk [81], and how total nurse
hours per patient affects the risk of hosptial readmission [112]. The evaluation of the causal effects
of continuous treatments leads most naturally to scientific parameters that capture dose-response
phenomena, such as the well-studied causal dose-response curve [e.g., 92, 42, 96].

Unfortunately, the definition of counterfactual parameters for continuous treatments requires
significant care. While counterfactual random variables provide a formalism to describe the values
an outcome measurement would have taken if, possibly counter-to-fact, a specific level of the treat-
ment had been assigned (instead of that observed), for continuous treatments, the set of enumerable
counterfactuals grows quickly intractable. A prominent simplification is coarsening, or discretiza-
tion into countably few categories. The adoption of such a strategy narrows the set of relevant
counterfactual values of the outcome variable, allowing for the subsequent straightforward appli-
cation of standard, well-studied parameters (e.g., the average treatment effect) and corresponding
well-established estimators. Despite their convenience, such coarsening strategies come at the cost
of ignoring fundamental scientific knowledge about the system under study and lead to significant
bias when certain implicit assumptions are unsatisfied [158].

The consideration of continuous treatment variables leads to a host of complications for the
formulation, identification, and estimation of causal effects, usually necessitating non-standard
techniques for their resolution. While the analysis of the causal dose-response curve and related
estimands brings with it many statistical challenges (e.g., a lack of asymptotic linearity), several
recent efforts have borne fruit: Díaz and van der Laan [42] proposed a doubly robust substitution
estimator of the dose-response curve’s risk, Kennedy et al. [96] developed an estimation strategy
based on locally linear smoothing, van der Laan, Bibaut, and Luedtke [173] considered cross-
validated targeted minimum loss estimation of a general class of non-standard parameters (includ-
ing the dose-response curve as an example), and Westling, Gilbert, and Carone [195] contributed
a monotone nonparametric estimator of the dose-response curve. These methodological advances
notwithstanding, deploying such approaches may yet require the consideration of scientifically
unrealistic counterfactual variables and infeasible intervention schedules for generating them. Ac-
cordingly, alternative frameworks for working with continuous treatments have been pursued.

One such framework is based on the causal effects of stochastic interventions [159, 39, 71,
190, 202], which consider setting the post-intervention treatment level to a random draw from a
user-specified distribution. This approach makes for a highly flexible means of defining coun-
terfactual random variables — indeed, even static interventions are a special case in which the
post-intervention treatment value is drawn from a degenerate distribution with all mass placed on a
single treatment level. To ensure scientifically meaningful counterfactuals, careful attention must
be paid to defining the particular distribution from which the post-intervention treatment value is
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drawn. A popular strategy draws post-intervention treatment values from a modification of the
natural treatment distribution. Counterfactuals defined in this way may be better aligned with
plausible future interventions that may be scientifically engineered. Recent efforts have provided
several candidate approaches [39, 71, 202, 95] for identifying and estimating the causal effects of
stochastic interventions. The framework of stochastic interventions is further distinguished by its
generalizability, which has allowed for recent extensions to complex settings involving mediating
variables [37, 43, 82].

While stochastic interventions appear a promising avenue, estimation strategies formulated
within this framework run aground of a familiar issue: evaluation of the generalized propen-
sity score [2] (i.e., conditional treatment density given covariates), analogous to the propensity
score [148], is required. The generalized propensity score has been a common ingredient for eval-
uating the causal effects of continuous treatments, both within and without the stochastic interven-
tion framework. For example, Robins, Hernán, and Brumback [142] posited a marginal structural
model of the outcome process and used inverse probability weighted estimation of its parameters,
which include the generalized propensity score. Avoiding direct modeling of the outcome, Hirano
and Imbens [84] formulated an adjustment procedure, based on covariate-balancing, for estimation
of the generalized propensity score. Along similar lines, Imai and Van Dyk [91] considered direct
extensions of the propensity score to multi-level treatments, while Galvao and Wang [58] proposed
a two-step semiparametric-efficient estimator utilizing inverse weighting based on the generalized
propensiy score. Despite its prevalence, most proposals rely upon restrictive parametric modeling
assumptions to facilitate estimation of the generalized propensity score, though, more recently,
flexible estimators leveraging advances in machine learning have received relatively meager atten-
tion [41, 205].

In the present work, we discuss several flexible semiparametric strategies for estimation of the
generalized propensity score, all presented within the context of evaluating the causal effects of
stochastic interventions on continuous treatments. From among these proposals, we highlight a
nonparametric estimator of the conditional treatment density based on pooled hazard regression.
Building upon our proposed generalized propensity score estimator, we develop and evaluate a
unique inverse probability weighted estimator capable of achieving levels of efficiency usually
attainable only with doubly robust estimation frameworks. We additionally discuss open source
software packages, haldensify [77] and sl3 [33], for the R statistical programming envi-
ronment [137], that facilitate implementation of our generalized propensity score estimators and
efficient inverse probability weighted estimators.
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1.2 Preliminaries

Problem Formulation and Notation

Let W ∈ W denote a vector of baseline covariates, A ∈ A a real-valued continuous treatment,
and Y ∈ Y an outcome of interest. To formalize the causal question of interest, we introduce a
nonparametric structural equation model (NPSEM) to describe the data-generating process [121].
Specifically, we assume the following system of structural equations generates the observed data:

W = fW (UW );A = fA(W,UA);Y = fY (A,W,UY ),

where {fW , fA, fY } are deterministic functions, and {UW , UA, UY } are exogenous random vari-
ables. Importantly, the NPSEM implies a model for the distribution of counterfactual random
variables, which are generated by specific interventions on the data-generating process. Within
the framework of potential outcomes [116, 150, 152, 151], the full (unobserved) data unit may be
expressed X = (W,Ya : a ∈ A), where the counterfactuals Ya represent outcomes correspond-
ing to each possible value in the support of the treatment A. Our focus will be the estimation of
counterfactual treatment parameters that are themselves functionals of X .

Consider the observed data as having been generated by typical cohort sampling, where the data
on a single observational unit O is denoted O = (W,A, Y ). We use P0 to denote the distribution
of O, and, assuming access to n independent copies of O, Pn for the empirical distribution of the
n copies O1, . . . , On. Assuming only that P0 is an element of the nonparametric statistical model
M, i.e., P0 ∈ M, we avoid placing any restrictions on the form of P0. We use p0 to denote the
density of O, which evaluated on a typical observation o, is

p0(o) = q0,Y (y | A = a,W = w)g0,A(a | W = w)q0,W (w) ,

where q0,Y denotes the conditional density of Y given {A,W} with respect to some dominating
measure, g0,A the conditional density of A given W with respect to dominating measure µ, and
q0,W the density of W with respect to dominating measure ν.

Counterfactual quantities of interest may be defined by specific interventions that alter the
structural equation fA and insert post-intervention treatment values of interest in place of the val-
ues that would be naturally generated by fA. A familiar example comes in the form of static
interventions, which are defined by replacing fA with a specific value, selected a priori, a ∈ A.
When the cardinality of A is small — that is, there are few treatment values — contrasts of the
counterfactual means of static interventions under each a ∈ A can prove useful. On the other hand,
when the cardinality of A is large, or when A is continuous-valued, the evaluation of many such
counterfactual means is of questionable scientific relevance and, besides, statistically challenging.
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A stochastic intervention modifies the value A would naturally assume, fA(W,UA), by re-
placing it with a draw from a post-intervention distribution g̃0,A(· | W ) (n.b., the zero subscript
emphasizes that this distribution may depend on the true, but unknown, data-generating distribu-
tion P0). Of course, a stochastic intervention may be designed to collapse into a static intervention
simply by selecting the post-intervention distribution g̃0,A(· | W ) to be degenerate, so as to place
all mass on a single point a ∈ A.

Díaz and van der Laan [39] described a stochastic intervention that draws A from a distribution
such that g̃0,A(a | W ) = g0,A(d−1(a, w) | W ), indexed by a user-supplied shifting function, and a
given a ∈ A. Shortly thereafter, Haneuse and Rotnitzky [71] showed that estimation of the causal
effect of this shifting intervention is equivalent to that of an intervention modifying the value A
would naturally assume according to a regime d(A,W ) under the assumption of piecewise smooth
invertibility:

A1 (Piecewise smooth invertibility). For eachw ∈ W , assume that the interval I(w) = (l(w, ), u(w))
may be partitioned into subintervals Iδ,j(w) : j = 1, . . . , J(w) such that d(a, w) is equal to some
dj(a, w) in Iδ,j(w) and dj(·, w) has inverse function hj(·, w) with derivative h′

j(·, w).

Assumption A1 can be used to show that the intervention may be interpreted on the individual
level [202]. Importantly, the regime d(A,W ) may depend on both covariates W and the treatment
A that would be assigned in the absence of the regime; consequently, this has been termed a
modified treatment policy (MTP). Both Haneuse and Rotnitzky [71] and Díaz and van der Laan [40]
were motivated by counterfactual questions of modifying an intervention, the former seeking to
evaluate the effect on patient health of reducing surgical operating time and the latter by the effect
of adjusting prescribed exercise regimens based on the athletic habits of patients. Conveniently,
both sets of authors considered an MTP of the form

d(a, w) =

a+ δ(w) if a+ γ ≤ u(w)
a if a+ γ > u(w)

,where δ(w) = γ ∈ R (1.1)

and u(w) is the maximum value in the conditional support of g0,A(· | W = w). This intervention
generates a counterfactual random variable Yd(A,W ) := fY (d(A,W ),W, UY ) whose distribution we
denote P δ

0 . The goal, then, is to estimate ψ0,δ := EP δ
0
{Yd(A,W )}, the mean of this counterfactual

outcome.

Identifying the Population Intervention Effect

Díaz and van der Laan [39] introduced the population intervention effect (PIE) θ0,δ := ψ0,δ − EY .
As EY is trivially estimable from the observed data, their efforts focused on identification and
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estimation of ψ0,δ. In particular, these authors showed that ψ0,δ is identified by

ψ0,δ =
∫

W

∫
A
Q0,Y (a, w)g0,A(d−1(a, w) | W = w)q0,W (w)dµ(a)dν(w)

=
∫

W

∫
A
Q0,Y (d(a, w), w)g0,A(a | W = w)q0,W (w)dµ(a)dν(w) (1.2)

where Q0,Y (a, w) := EP0 [Y | A = a,W = w], the conditional mean of Y given A = a and
W = w, as implied by P0, and g0,A(a | W = w) is the conditional density of the treatment. For
the statistical functional given in equation (1.2) to correspond to the causal estimand of interest,
several untestable assumptions are required, including

A2 (Lack of interference). Assume Y d(ai,wi)
i ⊥⊥d(aj, wj) for i ̸= j.

A3 (Consistency). Assume Y d(a,w) = Y in the event A = d(a, w).

A4 (No unmeasured confounding). Assume A⊥⊥Y d(a,w) | W = w.

A5 (Positivity). Assume a ∈ A =⇒ d(a, w) ∈ A | W = w for all w ∈ W .

Together, assumptions A2 and A3 are often referred to as the stable unit treatment value as-
sumption (SUTVA) [150, 152]. The positivity assumption A5, required to establish equation (1.2),
is unlike its analog for simpler (i.e., static or dynamic) intervention schedules. Instead of requiring
positive mass to be placed across all treatment levels for all covariate strata w ∈ W , this posi-
tivity assumption requires only that the post-intervention treatment mechanism be bounded, i.e.,
PP0{g0,A(d−1(A,W ) | W )/g0,A(A | W ) > 0} = 1, which may generally be satisfied by a suitable
choice of the parameter δ(W ) in the treatment modification function d(A,W ).

Beyond their careful study of the identification of this causal effect, Díaz and van der Laan [39,
40] derived the efficient influence function (EIF), a quantity central to semiparametric efficiency
theory, of ψ0,δ with respect to the nonparametric statistical model M. Using the EIF, these authors
proposed efficient estimators constructed based on the form of the EIF. When evaluated on a typical
observation o, a suitable expression for the EIF is

D⋆(P0)(o) = H(a, w){y −Q0,Y (a, w)} +Q0,Y (d(a, w), w) − ψ0,δ, (1.3)

where the auxiliary covariate H(a, w) takes the form H(a, w) = g0,A(d−1(a, w) | w)/g0,A(a | w).
The EIF characterizes the best possible asymptotic variance, or efficiency bound, of all regular
asymptotically linear estimators of ψ0,δ and may thus be used in the development of efficient esti-
mation strategies.
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Estimating the Population Intervention Effect

To facilitate estimation of ψ0,δ, Díaz and van der Laan [40] defined a direct (or, substitution)
estimator based on the G-computation formula. This classical estimator is of the form

ψSUB
n,δ :=

∫
Qn,Y (d(a, w), w)dQn,AW (a, w)

= 1
n

n∑
i=1

Qn,Y (d(Ai,Wi),Wi) , (1.4)

where Qn,AW (a, w) is an estimate of the joint distribution of (A,W ) based on the empirical distri-
bution. An inverse probability weighted (IPW) estimator of ψ0,δ takes the form

ψIPW
n,δ = 1

n

n∑
i=1

gn,A(d−1(Ai,Wi) | Wi)
gn,A(Ai | Wi)

Yi . (1.5)

In both equations (1.4) and (1.5), as well as in the sequel, the subscript n denotes the use of es-
timated quantities in lieu of their true counterparts — that is, gn,A is simply an estimate of the
conditional treatment density g0,A, while Qn,Y is an estimate of the outcome mechanism Q0,Y .
Both the direct estimator ψSUB

n,δ and the IPW estimator ψIPW
n,δ require estimation of only a single

nuisance parameter (the outcome mechanism and the conditional treatment density, respectively)
but are well-known to be irregular, fail to be asymptotically consistent, or fail to achieve the semi-
parametric efficiency bound. What’s more, neither estimator is asymptotically linear for ψ0,δ when
flexible regression strategies are used for nuisance parameter estimation, significantly limiting the
scenarios in which these approaches may be successfully applied.

Two popular frameworks for efficient estimation, both taking advantage of the EIF, include
one-step estimation [131, 16] and targeted minimum loss-based (TML) estimation [184, 183, 182].
Importantly, both the one-step and TML estimators are doubly robust, a property which affords two
important conveniences. Firstly, both estimators are consistent for ψ0,δ when either of the initial
estimates of gn,A and Qn,Y are consistent for their respective targets; however, these estimators
only achieve asymptotic efficiency when both initial estimates are consistent. Secondly, as a con-
sequence of their explicit construction based on the EIF, both readily accommodate the use of
flexible, data-adaptive estimation strategies for the initial estimation of nuisance parameters. This
latter property provides these estimators with a distinct advantage over their substitution and IPW
estimator counterparts: two opportunities to avoid model misspecification from restrictive (e.g.,
parametric) modeling strategies.

Invoking either estimation strategy proceeds first by constructing initial estimates, gn,A and
Qn,Y , of the conditional treatment density g0,A and the outcome mechanism Q0,Y . The two ap-
proaches diverge at their second stage, which focuses on bias correction. In the one-step frame-
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work, this amounts to updating the initial substitution-based estimate ψn,δ by adding to it the em-
pirical mean of the estimated EIF. In the TML estimation framework, a univariate (often, logistic)
parametric tilting model is used to update the initial estimate Qn,Y of the outcome mechanism in
such a way that the EIF estimating equation is solved to a desirable degree. Plugging this updated
initial estimate into the substitution formula given in equation (1.4) results in a targeted estimator
of ψ0,δ.

As both the one-step and TML estimation procedures require the EIF, we recall that an estimate
of the EIF may be constructed from equation (1.3) by plugging in initial estimates of nuisance
parameters. The estimated EIF, evaluated on observation i, is

D⋆
n,i := Hn(Ai,Wi){Yi −Qn,Y (Ai,Wi)} +Qn,Y (d(Ai,Wi),Wi) − ψn,δ

with auxiliary term Hn(a, w) := gn,A(d−1(a, w) | w)/gn,A(a | w). Using the estimated EIF D⋆
n,i,

the one-step estimator may then be defined

ψ+
n,δ := ψn,δ + 1

n

n∑
i=1

D⋆
n,i . (1.6)

Similarly, an asymptotically linear TML estimator may be constructed by updating the initial es-
timator Qn,Y to a tilted variant Q⋆

n,Y , through a logistic tilting model of the form logitQ⋆

n,Y =
logitQn,Y + ϵHn, in which the initial estimate Qn,Y is taken as an offset and only the parameter ϵ
need be estimated. The targeted plug-in estimator is then

ψ⋆n,δ :=
∫
Q
⋆
n,Y (d(a, w), w)dQn,AW (a, w) . (1.7)

Both of these efficient estimators depend on initial estimates of the nuisance functions (Qn,Y , gn,A).
Throughout, we focus on developing improved estimators gn,A of the generalized propensity score
g0,A, ultimately towards the goal of facilitating the construction of enhanced efficient estimators of
ψ0,δ.

The Highly Adaptive Lasso Estimator

In our subsequent developments, we make use of a recently developed nonparametric regression
function, the highly adaptive lasso (HAL) [171, 174]. The HAL estimator approximates a func-
tional parameter of interest using a linear combination of basis functions, with the requirement that
the target functional parameter belong to the set of càdlàg (i.e., right-hand continuous with left-
hand limits) functions with sectional variation norm bounded by a finite (but unknown) constant,
a global smoothness restriction that limits the degree of variability that the target functional may
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exhibit. Similarly positioned approaches in nonparametric estimation generally require more re-
strictive local smoothness assumptions. For example, minimax convergence rates achieved under
the assumption that the target functional belongs to a smoothness class characterized by Hölder
balls [e.g., 139, 146] are compromised by the failure of resultant function classes to exclude from
admissibility highly erratic functions (e.g., the Weierstrass function, which falls in the class of
Hölder-α functions for α < 1 and d = 1).

For any function f ∈ D[0, τ ], the Banach space of d-variate real-valued càdlàg functions on a
cube [0, τ ] ∈ Rd, the sectional variation norm of f may be expressed

∥f∥⋆ν := |f(0)| +
∑

s⊂{1,...,d}

∫ τs

0s

|dfs(us)|,

where s are subsets of {0, 1, . . . , d}, defined by partitioning [0, τ ] in {0}{∪s(0s, τs]}, and the sum
is taken over all subsets of the coordinates {0, 1, . . . , d}. For a given subset s ⊂ {0, 1, . . . , d},
define us = (uj : j ∈ s) and u−s as the complement of us; then, fs : [0s, τs] → R, defined as
fs(us) = f(us, 0−s). Thus, fs(us) is a section of f that sets the components in the complement of
s to zero, that is, allowing variation only along components in us.

van der Laan [170, 171] proved that the HAL estimator converges to the target functional
at a rate faster than n−1/4, without any contribution from the dimensionality d of the problem
at hand, so long as d remains fixed. Subsequent theoretical investigations improved this rate of
convergence to n−1/3 log(n)d/2 [15], with ongoing work yielding promising further improvements
still. The HAL estimator can be thought of as proceeding in two general steps. Firstly, a rich
set of indicator (or higher-order, i.e., spline) basis functions are generated to represent the target
functional; this step is a mapping of the covariate space in terms of the HAL basis. Subsequently,
lasso regression [167] is applied to a linear combination of these basis functions, minimizing the
expected value of an appropriately chosen loss function while constraining the L1-norm of the
vector of coefficients to be bounded by a finite constant matching the sectional variation norm of the
HAL representation of the target functional. Benkeser and van der Laan [13] first demonstrated the
utility of the HAL estimator in an extensive series of numerical experiments. The HAL estimator
is implemented in the free and open source hal9001 package [32, 78] for the R language and
environment for statistical computing [137].

When a nuisance parameter of interest is taken as the target functional, the HAL estimator may
be applied to generate initial estimates, under the assumption that the true nuisance parameter func-
tional (e.g., the generalized propensity score) be of finite sectional variation. When the nuisance
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parameter η, with arbitrary input Z, is real-valued, its HAL representation may be expressed

η(z) = η(0) +
∑

s⊂{1,...,d}

∫ zs

0s

dηs(us)

= η(0) +
∑

s⊂{1,...,d}

∫ τs

0s

I(us ≤ zs)dηs(us), (1.8)

which can be approximated by the use of a discrete measure placing mass on each observed Zs,i.
When the range of η is the unit interval, an analogous approach, using instead logit η, may be
pursued based on a representation of Gill, van der Laan, and Wellner [65]; Ertefaie, Hejazi, and
van der Laan [50] work with this representation in using HAL regression for estimation of the
propensity score for binary treatments. Now, take zs,i to be support points of ηs and let ϕs,i(cs) :=
I(zs,i ≤ cs), then

ηβ = β0 +
∑

s⊂{1,...,d}

n∑
i=1

βs,iϕs,i,

where |β0| + ∑
s⊂{1,...,d}

∑n
i=1|βs,i| is an approximation of the sectional variation norm of η. The

loss-based HAL estimator βn may then be defined

βn,λ = argmin
β:|β0|+

∑
s⊂{1,...,d}

∑n

i=1|βs,i|<λ
PnL(ηβ),

where Pnf = n−1∑n
i=1 f(Oi) and L(·) is an appropriately chosen loss function; see Dudoit and

van der Laan [47] for an illuminating discussion of appropriate choices of loss function for a range
of loss-based estimation problems. Salient to our goal of estimating the generalized propensity
score, the negative log-likelihood loss, L(η) = − log(pη), is a suitable loss function for density
estimation. Finally, the HAL estimate of η may be denoted ηn,λ ≡ ηβn,λ

. Each choice of the
regularization term λ corresponds to a unique HAL estimator, though, generally speaking, methods
for the selection of λ must be tailored to the estimation goal in order to yield suitable candidate
estimators.

1.3 Estimating the Generalized Propensity Score

We now turn to procedures for estimation of the generalized propensity score g0,A, from which
we may be able to subsequently develop efficient, nonparametric estimators of ψ0,δ. As will be
demonstrated in the sequel, both conditional density estimators are flexible, allowing for the use
of arbitrary, data-adaptive regression methods to be leveraged. For compatibility with our subse-
quent theoretical results, we present our conditional density estimation procedures using the HAL
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estimator discussed in Section 1.2; this is chiefly for three reasons. Firstly, formal theory guar-
antees a suitable convergence rate, for estimator construction, when the HAL estimator is used to
approximate a nuisance functionals. Secondly, contemporaneous efforts have made headway in
developing efficient direct and IPW estimators of low-dimensional parameters in causal inference
settings [172, 50]. Thirdly, the algorithm is readily available in the free and open source hal9001
R package [32, 78].

In considering estimation of g0,A, a straightforward strategy involves assuming a parametric
working model for relevant moments of the density function, allowing the use of standard re-
gression techniques to generate suitable estimates [142, 84, 91]. For example, one could operate
under the working assumption that the density of A given W follows a Gaussian distribution with
homoscedastic variance and mean

∑p
j=1 βjϕj(W ), where ϕ = (ϕj : j) are user-specified basis

functions and β = (βj : j) are unknown regression parameters. Under such a regime, a density es-
timate could be generated by fitting a linear regression of A on ϕ(W ) to estimate E[A | W ], paired
with maximum likelihood estimation of the variance of A. In this case, the estimated conditional
density would be given by the density of a Gaussian distribution evaluated at these estimates. While
a reasonable approach, such a strategy makes strong parametric assumptions about the form of the
conditional density function and may, on this account, be more prone to model misspecification
than alternative strategies that make fewer such assumptions.

Constructing a flexible density estimator is a more challenging problem, as the set of available
tools is considerably limited. These limitations motivated our investigations of novel conditional
density estimators capable of incorporating arbitrary regression functions. We describe two such
classes of estimators in the sequel, with implementations of these proposals provided in the free
and open source sl3 and haldensify R packages [33, 77], respectively.

Semiparametric Location-Scale Estimators

A recently developed family of flexible semiparametric conditional density estimators takes the
general form ρ(A − µ(W )/σ(W )), where ρ is a given marginal density function. Conditional
density estimation procedures falling within this framework may be characterized as belonging to
a conditional location-scale family, i.e., where gn,A(A | W ) = ρ((A−µn(W ))/σn(W )); where we
stress that the marginal density mapping ρ is selected a priori, leaving only the relevant moments
µ and σ to be estimated.

Though the restriction to (conditional) location-scale families imposes some limitations on the
form of the target functional, the strategy is made particularly flexible by its ability to incorporate
arbitrary, data-adaptive regression strategies for the estimation of µ(W ) = E[A | W ] and, option-
ally, of the conditional variance σ(W ) = E[(A − µ(W ))2 | W ]. In particular, in settings with
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limited data, the additional structure imposed by the assumption of form of the target density func-
tional (i.e., in the specified kernel function ρ) can prove beneficial, when the true density function
admits such a representation. While we stress that this procedure is surely not a novel contribution
of the present work, we have been otherwise unable to ascertain a formal description of it; thus,
we provide such a formalization in Algorithm 1, which sketches the construction of conditional
density estimators of this family.

Algorithm 1: Location-scale conditional density estimation
Result: Estimates of the conditional density of A, given W .
Input :

An observed data vector of the continuous treatment for n units: A

An observed data vector (or matrix) of the baseline covariates for n units: W

A kernel function specification to be used to construct the density estimate: ρ

A candidate regression procedure to estimate the conditional mean µ(W ): fµ

A candidate regression procedure to estimate the conditional variance σ(W ): fσ

1. Estimate E[A | W ], the conditional mean of A given W , by applying the regression
estimator fµ, yielding µ̂(W ).

2. Estimate V[A | W ], the conditional variance of A given W , by applying the regression
estimator fσ, yielding σ̂2(W ). Note that this step involves only estimation of the
conditional mean E[(A− µ̂(W ))2 | W ].

3. Estimate the one-dimensional density of (A− µ̂(W ))2/σ̂2(W ), using kernel smoothing to
obtain ρ̂(A).

4. Construct the estimated conditional density gn,A(A | W ) = ρ̂((A− µ̂(W ))/σ̂(W )).

Output: gn,A, an estimate of the generalized propensity score.

The sketch of the algorithm for constructing estimators gn,A(a | w) of the generalized propen-
sity score may take two forms, which diverge at the second step above. Firstly, one may elect to
estimate only the conditional mean µ(W ) via a regression technique, leaving the variance to be
taken as constant (estimated simply as the marginal mean of E[(A − µ̂(W ))2]). Estimators of this
form may be described as having homoscedastic error, based on the variance assumption made.
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Alternatively, one may additionally estimate the conditional variance σ2(W ) via the residuals of the
estimated conditional mean, that is, estimating instead the conditional mean E[(A− µ̂(W ))2 | W ].

While the regression procedures fµ and fσ used to estimate the conditional mean µ(W ) and
the conditional variance σ2(W ), respectively, may be arbitrary, with candidates including, for ex-
ample, random forests [18], spline regression [161, 57], or regression ensembles [197, 19, 180],
we recommend the use of HAL regression [13, 171], as its use will ensure an enhanced rate of
convergence [15] of the estimator gn,A to its target g0,A. The data-adaptive nature of HAL regres-
sion affords a degree of flexibility that ought to limit opportunities for model misspecification to
compromise estimation of g0,A; morever, their improved convergence rate will help to facilitate the
construction of asymptotically linear, and possibly efficient, estimators of ψ0,δ.

Nonparametric Hazard Regression Estimator

Estimators that eschew any assumptions on the form of the conditional density are a rarity. No-
tably, Díaz and van der Laan [41] gave a proposal for constructing semiparametric estimators of
this target quantity based on exploitation of the relationship between the (conditional) hazard and
density functions. Our proposal builds upon theirs, replacing the original recommendation of an
arbitrary classification model with the HAL regression function. This contribution requires the key
change of adjusting the penalization aspect of HAL regression to respect the use of a loss function
appropriate for prediction on the hazard scale, i.e., − log gn,A [47]. As a consequence of this ad-
justment, the resultant conditional density estimator is made capable of incorporating sample-level
weights.

To build an estimator of a conditional density, Díaz and van der Laan [41] considered dis-
cretizing the observed A ∈ A based on a number of bins T and a binning procedure (e.g.,
equally distributing observed mass across each of the T bins or forcing each of the T bins to
be of the same length). The choice of the tuning parameter T corresponds conceptually to the
choice of bandwidth in classical kernel density estimation. To take an example, an instantia-
tion of this procedure would divide the observed support of A into, say, T = 7, bins of equal
length. Such a partitioning would require T + 1 cutpoints along the support of A, yielding T

bins: [α1, α2), [α2, α3), . . . , [α6, α7), [α7, α8]. Next, relevant components of the observed data
{Ai,Wi}ni=1 would be reformatted such that each observational unit {Ai,Wi} would be represented
by a set of up to T records, with the number of records for a given unit matching the position of the
bin into which the observedAi falls. For clarity, consider an individual unit {Ai,Wi} for which the
valueAi falls in the fifth bin of the seven into which the support has been partitioned (i.e., [α5, α6)).
Five distinct records would be used to represent the data on this single unit: {Aij,Wij}5

j=1, where
{{Aij = 0}4

j=1, Ai5 = 1} and five exact copies of Wi, {Wij}5
j=1. This representation as multiple
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records allows for the hazard probability of Ai belonging to a particular bin along the discretized
support to be evaluated via standard classification techniques. In fact, this proposal reformulates
the classification problem into a corresponding set of hazard regressions:

P(A ∈ [αt−1, αt) | W ) =P(A ∈ [αt−1, αt) | A ≥ αt−1,W )

×
t−1∏
j=1

{1 − P(A ∈ [αj−1, αj) | A ≥ αj−1,W )},

where the probability of A ∈ A falling in a bin [αt−1, αt) may be directly estimated from any
arbitrary binary regression model, since the likelihood of this model may be re-expressed in terms
of the likelihood of a binary variable in a data set expressed through a repeated measures structure.

Specifically, this data-reformatting procedure is carried out by creating a data set in which any
given observation Ai appears (repeatedly) for as many intervals [αt−1, αt) as there are prior to the
interval to which the observed a belongs. A new binary outcome variable, indicating membership
in the support set, is generated and recorded as part of this new data structure. With the reformat-
ted data, a pooled hazard regression, spanning the support of A is then performed. Finally, the
conditional density estimate may be constructed as

gn,α(A | W ) = P(A ∈ [αt−1, αt) | W )
|αt − αt−1|

.

As part of this procedure, the hazard estimates are mapped to density estimates through re-scaling
of the estimates by the bin size |αt − αt−1|. We formalize this procedure in Algorithm 2.
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Algorithm 2: Pooled hazard conditional density estimation
Result: Estimates of the conditional density of A, given W .
Input :

An observed data vector of the continuous treatment for n units: A

An observed data vector (or matrix) of the baseline covariates for n units: W

A scalar indicating the number of bins into which the support of A is to be divided: T

A procedure for discretizing the support of A into the selected number of bins T : ω

1. Apply the procedure ω(A, T ) to divide the observed support of A into T bins:
[α1, α2), . . . , [αT−1, αT ), [αT , αT+1].

2. Expand the observed data in a repeated measures data structure, expressing each individual
observation as a set of up to T records, recording the observation ID alongside each such
record. For a single unit i, the set of records takes the form {Aij,Wij}Ti

j=1, where Wij are
constant in the index j, Aij is a binary counting process that jumps from 0 to 1 at the final
index, and Ti ≤ T indicates the bin along its support into which Ai falls.

3. Estimate the hazard probability, conditional on W , of bin membership
P(Ai ∈ [αt−1, αt) | W ) using HAL regression, using cross-validation to choose the
regularization parameter based on a loss function for density estimation, e.g., the negative
logarithm of the estimated density [47].

4. Rescale the conditional hazard probability estimates to the conditional density scale by
dividing the cumulative hazard by the width of the bin into which Ai falls, for each
observation i = 1, . . . , n.

Output: gn,A, an estimate of the generalized propensity score.

In its original proposal, a key element of this procedure was the use of any arbitrary binary
regression procedure to estimate P(A ∈ [αt−1, αt) | W ), facilitating the incorporation of flexible,
data adaptive estimators [41]. We alter this proposal, replacing the arbitrary estimator of P(A ∈
[αt−1, αt) | W ) with HAL regression, making it possible for the resultant conditional density
estimator to achieve a convergence rate with respect to a loss-based dissimilarity of n−1/3 under
only mild assumptions [171, 174]. We stress that this is an important advance that is needed for
the asymptotic analysis of estimators of ψ0,δ.
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Nonparametric Inverse Probability Weighted Estimation

We now turn our attention to considering estimators of ψ0,δ that can be constructed solely from
nuisance estimation of the generalized propensity score g0,A. It is well-known that data adaptive
estimators of nuisance functionals are generally incompatible with the direct (i.e., G-computation)
and IPW estimators, as necessary conditions for achieving asymptotic desiderata (e.g., consis-
tency, efficiency) are unattainable without the imposition of strong smoothness assumptions on
the functional form of the nuisance parameter estimator. This theoretical impasse has, in part,
fueled the now-considerable popularity enjoyed by doubly robust estimation procedures, such as
those constructed within the one-step estimation [16] or targeted minimum loss-based estimation
frameworks [184, 183, 182]. As noted previously, we recall that doubly robust estimators require
estimation of both the outcome mechanism Q0,Y and the propensity score g0,A; moreover, such
estimators are consistent for ψ0,δ when either of the two nuisance parameter estimators converge to
their targets but asymptotically efficient only when both nuisance estimators converge. In settings
wherein consistent estimation of the outcome mechanism Q0,Y can prove challenging, asymptotic
efficiency may yet be attained by focusing on a unique class of IPW estimators capable of incor-
porating data adaptive estimation of g0,A while achieving asymptotic efficiency. The construction
of such IPW estimators requires considerable care and has been considered previously by Hirano,
Imbens, and Ridder [85], who proposed a logistic series estimator of the propensity score, requir-
ing strong smoothness assumptions, and, more recently, by Ertefaie, Hejazi, and van der Laan [50],
who propose the use of HAL regression.

To construct nonparametric-efficient IPW estimators, we utilize the generalized propensity
score estimator described in Algorithm 2, which makes use of HAL regression for estimation
of the conditional hazard, and build upon the recent theoretical developments of Ertefaie, Hejazi,
and van der Laan [50], who demonstrated that the application of an undersmoothing procedure
to select a HAL estimator of the propensity score could yield an IPW estimator that achieves the
nonparametric efficiency bound. Notably, the developments of these authors were restricted to
IPW estimation of the causal effects of static interventions on binary (or categorical) treatments
(e.g., average treatment effects), requiring only consistent estimation of the standard propensity
score [148] g0,A = P(A = 1 | W ), that is, the conditional probability of receiving treatment given
covariates. Ertefaie, Hejazi, and van der Laan [50] provide general conditions under which HAL
regression may be used to obtain a data adaptive estimator gn,A that converges to g0,A at a suitably
fast rate. Further, these authors showed that their nonparametric IPW estimators could be asymp-
totically efficient when the HAL estimator gn,A is undersmoothed (relative to the estimator selected
by V -fold cross-validation) so as to include a larger number of basis functions than is required for
optimal estimation of g0,A.
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We propose two classes of selection procedures for undersmoothing HAL estimators of the
generalized propensity score, both beginning with a common first step: construction of a family of
HAL-based conditional density estimators indexed by the regularization parameter λ. For this step,
we recommend merely an application of Algorithm 2, altering the procedure so as to omit the use
of cross-validation to choose the regularization parameter λ; thus, rather than a single estimator
gn,A, the algorithm is made to return a family of estimators {gn,A,λ : λ1, . . . , λK}. We recommend
the family of nonparametric estimators described by Algorithm 2 for the very high degree of flex-
ibility offered; however, the semiparametric location-scale conditional density estimators outlined
in Algorithm 1 can just as easily be adapted for this purpose, with similarly minor adjustments.
We assume access to a grid of generalized propensity score estimators {gn,A,λ : λ1, . . . , λK}, for
λ1 > . . . > λK , facilitating the construction of a grid of IPW estimators {ψn,δ,λ : λ1, . . . , λK},
similarly indexed by {λ1, . . . λK}. What remains then is to select a single IPW estimator that
exhibits desirable asymptotic properties from this set of candidates.

In considering the same goal, Ertefaie, Hejazi, and van der Laan [50] propose two types of
undersmoothing criteria: (1) minimization of the mean of the efficient influence function up to
a desirable degree, and (2) minimization of a score term arising from the treatment mechanism
(A− gn,A). Their first selector makes explicit use of the form of the EIF and must thus be derived
anew for any given intervention regime. As a minor contribution, we provide the first explicit re-
characterization of the EIF of equation (1.3) in a form suitable for IPW estimator selection. The
second selection procedure is incompatible with stochastic interventions, as there is no explicit
score for the treatment mechanism in this setting. Intuitively, this is attributable to the fact that
the stochastic intervention d(A,W ) defined by equation (1.1) depends on the natural value of the
treatment A, not the case in static or dynamic treatment regimes. Alternatively, we develop a novel
class of selection procedures based on changes in the IPW estimators {ψn,δ,λ : λ1, . . . , λK} as the
regularization parameter λ is weakened. Importantly, we note that, as an integral aspect of both of
these contributions, we provide, to or knowledge, the first demonstration of the undersmoothing of
conditional density estimators.

Targeted Undersmoothing, Exploiting the Influence Function

In order to select an IPW estimator from the grid {ψn,δ,λ : λ1, . . . , λK} based on the EIF, it is
necessary to re-express the EIF in a form incorporating the IPW estimating function, which can
be done via projection of this latter object onto the space of all functions of A that are mean-zero
conditional on W [145, 181]. In this direction, our developments follow closely those of Ertefaie,
Hejazi, and van der Laan [50]. To proceed, we note that the stabilized IPW estimator, a minor
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adaptation of the estimator of equation (1.5), is

ψIPW
n,δ = 1

n

n∑
i=1

{gn,A(d−1(Ai,Wi) | Wi)/gn,A(Ai | Wi)}
1
n

∑n
i=1{gn,A(d−1(Ai,Wi) | Wi)/gn,A(Ai | Wi)}

Yi. (1.9)

The inverse probability weighted mapping defining the estimating function of this estimator takes
the form:

UgA
(O; Ψ)(P ) = gn,A(d−1(A,W ) | W )

gn,A(A | W )
(Y − Ψ(P )). (1.10)

Note that the IPW estimator appearing in equation (1.9) is simply a solution to the estimating
function given in equation (1.10). We now present Lemma 1, which explicitly characterizes the
required form of the EIF.

Lemma 1 (IPW representation of the EIF). Let D⋆(P ) denote the EIF (equation (1.3)) and let
UgA

(Ψ) denote the IPW estimating function (equation (1.10)). Then, the projection of UgA
(Ψ)

onto TCAR, the tangent space of all functions of A that are mean-zero, conditional on W , yields
D⋆(P ) = UgA

(Ψ)(P ) −DCAR(P ), where the latter term is of the form

DCAR(P0) =

Q0,Y (d(A,W ),W ) −
(
g0,A(d−1(A,W ) | W )

g0,A(A | W )

)
Q0,Y (A,W )


− Ψ(P0) ·

(
g0,A(A | W ) − g0,A(d−1(A,W ) | W )

g0,A(A | W )

)
.

Given a family of IPW estimators {ψn,δ,λ : λ1, . . . , λK}, an optimal IPW estimator may be selected
based on minimization (up to a tolerance τ ) of |PnDCAR|, the empirical mean of the estimate,
evaluated at the nuisance parameter estimates {gn,A, Qn,Y }. The selected estimator ψn,δ,λ is an
approximate solution to the estimated EIF.

As noted in Lemma 1, the term DCAR arises by projection of the estimating function UgA
(Ψ)

onto the tangent space TCAR = {ζ(A,W ) : EP0{ζ(A,W ) | W} = 0} [145, 181]. Intuitively, since
IPW estimators are constructed as explicit solutions to the empirical mean of UgA

(O; Ψ), the first
term of the EIF representation in the lemma is trivially solved; thus, selection of an IPW estimator
need only consider the second term. Our selector is then

λn = argmin
λ

|PnDCAR(gn,A,λ, Qn,Y )|.

Agnostic Undersmoothing, Eschewing the Influence Function

As demonstrated in the preceding section, explicit characterization of the form of the EIF in a
manner amenable to the selection of an IPW estimator can prove a challenging endeavor, requiring
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specialized and often-tedious mathematical manipulations. In many cases, it may serve to select
an IPW estimator in a manner that eschews such complications. A procedure that does not make
use of the EIF has the additional advantage of remaining applicable across a wide range of in-
tervention regimes, allowing for its use in a possibly vast array of settings, without the need for
either re-derivation or re-implementation. Towards this end, we formulate two selection proce-
dures that do not make use of the form of the EIF at all, instead considering properties of the IPW
estimators {ψn,δ,λ : λ1, . . . , λK} along the trajectory that emerges with respect to the regulariza-
tion grid λ1, . . . , λK . In the larger context of general nonparametric estimation and sieve methods,
such ideas were popularized in seminal work by Lepskii [105, 104], with extensions appearing
sporadically in the literature [e.g., 106, 17].

The formulation of such EIF-agnostic selection procedures for undersmoothing aims to pro-
duce selections similar to those given by the targeted procedures — that is, while the agnostic
selectors do not explicitly use the form of the EIF, their selections must still solve the EIF in order
to asymptotically attain the nonparametric efficiency bound. Our first proposal in this class bal-
ances changes along the regularization sequence {λ1, . . . , λK}, in the IPW estimator ψn,δ,λ against
changes in its estimated variance σn,λ. This selection λn is merely the first element of λ1, . . . , λK
for which the condition

|ψn,δ,λj+1 − ψn,δ,λj
|K−1
j=1 ≤ Z(1−α/2)[σn,λj+1 − σn,λj

]K−1
j=1 (1.11)

is met. Note that Z(1−α/2) is the (1 − α/2)th quantile of the standard normal distribution, used for
the construction of Wald-style confidence intervals. While we recommend the use of the stabi-
lized IPW estimator of equation (1.9) in the criterion, there are several choice of the standard error
estimate σn,λ. For ease of computation, we recommend a well-known, conservative variance esti-
mator, the empirical variance of the estimated IPW estimating equation V{Ugn,A

(ψn,δ,λ)}/n. When
computational limitations are not of concern, one might instead consider the bootstrap estimate of
the variance, which has been shown to be compatible with HAL-based nuisance estimation [24].
Upon examination of its form, it is revealed that the proposed selector identifies λn as the first point
in λ1, . . . , λK that changes in the IPW point estimates are less than changes in the corresponding
variance estimates, with the latter scaled by the scalar Z(1−α/2). Intuitively, satisfaction of this
criterion conincides with relaxing of the regularization parameter impacting the variance estimate
moreso than it does the IPW point estimate, thus indicating that a desirable bias-variance tradeoff
has been achieved for the IPW estimator.

A potential pitfall of the immediately preceding proposal is its requirement of variance estima-
tion, which can be computationally challenging (e.g., requiring the bootstrap), result in unstable
estimates, or require nuisance estimation beyond g0,A. It is possible to eschew variance estimation
altogether, relying instead entirely on the trajectory of {ψn,δ,λ : λ1, . . . , λK} alone. The selection
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λn is simply the first in λ1, . . . , λK where the following is satisfied |ψn,δ,λj+1 − ψn,δ,λj
|

maxj|ψn,δ,λj+1 − ψn,δ,λj
|

K−1

j=1

≤ τ (1.12)

for an arbitrary tolerance level τ . Intuitively, this selection procedure considers the sharpness of
changes in the point estimates ψn,δ,λ sequentially in the indices {λ1, . . . , λK}, as the degree of
regularization is relaxed. The selector aims to identify a value λn at which changes in the point
estimate ψn,δ,λn are dwarfed by the relative size of changes encountered thus far in the index λ.
Equivalently, this selector can be thought of as identifying plateaus in the solution path of ψn,δ,λ
in λ. We conjecture that an IPW estimator identified by this criterion will suitably solve the EIF
estimating equation and thus achieve desirable asymptotic properties.

1.4 Numerical Studies

To examine numerically the performance of our proposed IPW estimators, we considered a set of
simulation studies across three distinct data-generating processes (DGPs). Each of the DGPs was
constructed to tease apart how differences in the form of the treatment mechanism g0,A may impact
the relative performance of our proposed IPW estimators. The goal of our numerical experiments
was to reveal scenarios, based on characteristics of g0,A, in which one of our proposed IPW esti-
mators ought to be preferred over another — consequently, we do not compare our proposed IPW
estimators to the doubly robust estimators of ψ0,δ previously described in Section 1.2. Throughout
the experiments, we illustrate that undersmoothing of our proposed IPW estimators can result in
unbiased and efficient estimators of ψ0,δ, when g0,A is estimated using the conditional density es-
timator of Algorithm 2. Both the estimator of Algorithm 2 and our nonparametric IPW estimators
of ψ0,δ are implemented in the haldensify R package [77].

Throughout our experiments, we compare several variants of our IPW estimators ψn,δ,λn , each
differing in the manner in which the regularization parameter λn is selected. We consider a total
of six variants: one in which cross-validation dictates the choice of λn (as per Algorithm 2); two
based on the targeted undersmoothing criterion described in Lemma 1, choosing λn as the mini-
mizer of |PnDCAR| or through a relaxed condition under which |PnDCAR| is required to only fall
below a rescaling of a standard error estimate based on the EIF

√
V(D⋆

n)/n/ log(n); one based
on the agnostic undersmoothing criterion of equation (1.11); and two based on the agnostic un-
dersmoothing criterion of equation (1.12), where the cutoff τ is taken to be extreme τ = 0.01 or
relaxed τ = 0.2.
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Across each of three DGPs, we consider a collection of observed data units O = (W1,W2,W3,

A, Y ), where W1 ∼ Bernoulli(p = 0.6), W2 ∼ Uniform(min = 0.5,max = 1.5), and W3 ∼
Poisson(λ = 2); the generating functions for A and Y vary across the three scenarios. For each
simulation experiment in a given scenario, we sample n ∈ {100, 200, 500} units and apply the
variants of our proposed IPW estimators to estimate ψ0,δ at δ = 1, repeating each experiment 300
times. We approximate ψ0,δ in each scenario by applying the direct estimator of equation (1.4),
using the known outcome mechanism, in a single, very large sample of n = 10, 000, 000. As eval-
uation criteria, we consider the scaled asymptotic bias (i.e.,

√
n(ψ0,δ −ψn,δ,λn)), which is expected

to decrease with increasing sample size for consistent estimators; the scaled mean squared error
(MSE) (i.e., n{(ψ0,δ − ψn,δ,λn)2 + σ2

n,λn
}), relative to the efficiency bound of the model, which

should converge to one for efficient estimators; and the coverage of oracle confidence intervals
(with the variance of ψn,δ,λn computed across simulation experiments rather than estimated di-
rectly), which should reach the nominal rate irrespective of issues of variance estimation, which
are not our focus here. All numerical experiments were performed using version 4.0.3 of the R
language and environment for statistical computing [137].

Simulation #1: Treatment Mechanism with Constant Variance

The first DGP in our experiments uses the following generating functions for the treatment and
outcome mechanism. While the form of the outcome mechanism is a function of the treatment
A and baseline covariates {W1,W2,W3}, we recall that it does not impact the construction of
our IPW estimators, only, in two cases (when the criterion of Lemma 1 is used), their selec-
tion. In this scenario, the form of the treatment mechanism is chosen as a normal distribu-
tion with mean being a function of the baseline covariates {W1,W2,W3}, and constant vari-
ance; thus, accurate estimation of the location parameter is all that is necessary for the condi-
tional density to be well-estimated. Here, the form of the treatment mechanism is A | W ∼
Normal

(
µ = 2W1 +W2 − 2 · (1 −W1) ·W2, σ

2 = 2
)
, while that of the outcome mechanism is

Y | A,W ∼ Bernoulli
(
p = expit(3 · (A− 1) +W1 + 1.5W 2

2 −W3 − 3 · (1 −W1) ·W2)
)
.

The results of applying our proposed IPW estimators to the estimation of ψ0,δ are summarized
across the 300 simulation experiments in Figure 1.
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Figure 1: Numerical comparisons of nonparametric IPW estimator variants of ψ0,δ for A ∼
Normal(µ = f(W ), σ2 = k).

Inspection of Figure 1 reveals generally acceptable performance of all of our IPW estimators,
with bias of 0.06 and 0.04 in the worst and best cases, respectively, at n = 100; this performance
improves to a bias of 0.018 in the worst case and of 0.013 in the best case at n = 500. In terms of
bias, our IPW estimators using targeted undersmoothing outperform the other variants uniformly
across sample sizes, though the difference is not great between the best and worst case biases. Con-
sidering the scaled MSE, the IPW estimators using targeted undersmoothing once again dominate
the others uniformly across sample sizes. Notably, in terms of this performance measure, the IPW
estimator utilizing the cross-validation selector outperforms those using agnostic undersmoothing.
This is a surprising finding since cross-validation chooses the optimal estimator of g0,A, not neces-
sarily that of ψ0,δ; moreover, this relatively good performance suggests that even cross-validation
may make for a reasonably reliable strategy in constructing nonparametric IPW estimators of ψ0,δ.
With respect to the empirical coverage of oracle confidence intervals, none of the candidate IPW
estimators succeed in attaining the nominal rate, though this is consistent with the prior observation
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that none of the estimators are perfectly unbiased at any of the sample sizes. Altogether, the results
of this experiment suggest that targeted undersmoothing of the HAL generalized propensity score
estimator can be used to construct nonparametric IPW estimators with reasonably good, though
not excellent, asymptotic consistency and efficiency.

Simulation #2: Treatment Mechanism with Unequal Mean and Variance
Dependent on Baseline

The next scenario is a modification of the previous, in which the form of the treatment mech-
anism is kept fixed to a normal distribution, though the mean and variance are now modified
to both be functions of a subset of the baseline covariates {W1,W2}; W3 has no impact on the
treatment mechanism but does appear in the outcome mechanism, whose forms is a function
of the treatment A and all baseline covariates. Perhaps significantly, the form of the treatment
mechanism in this scenario demands accurate estimation of both the location and scale param-
eters of the normal distribution; moreover, the heteroscedasticity with respect to the baseline
covariates complicates accurate estimation of the conditional density g0,A relative to the form
of the treatment mechanism in the prior scenario. While the form of the outcome mechanism
differs from that in the previous scenario, we again do not expect its form to affect the con-
struction of our IPW estimators much. The treatment mechanism takes the form A | W ∼
Normal

(
µ = W1 + 2W2 − 2 · (1 −W1) ·W2, σ

2 = 2W1 + 0.5(1 −W1) +W2
)
, while the outcome

mechanism is Y | A,W ∼ Bernoulli
(
p = expit(5(A− 2) +W1 + 3W 4

2 − 2W3 − 4(1 −W1)W2)
)
.

We summarize the performance of our proposed IPW estimators in terms estimation of ψ0,δ

across the 300 simulation experiments in Figure 2.
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Figure 2: Numerical comparisons of nonparametric IPW estimator variants of ψ0,δ for A ∼
Normal(µ = f1(W ), σ2 = f2(W )).

Upon examination, Figure 2 reveals relative performance measures of the IPW estimators very
similar to that observed in the prior scenario. In particular, the IPW estimators constructed based on
targeted undersmoothing outperform all of the other candidates in terms of both bias and efficiency.
In terms of bias, all estimators again achieve acceptable levels of performance: at n = 100, bias is
0.052 in the worst case and 0.03 in the best case, while at n = 500, the same metrics are 0.018 and
0.013, respectively. Turning now to efficiency, none of the estimators achieve the efficiency bound
of the model at the examined sample sizes, though the decreasing trajectory of their scaled MSEs
suggests promising performance at larger sample sizes. In this scenario, the IPW estimator based
on the cross-validation selector performs similarly to those based on agnostic undersmoothing.
As none of our proposed IPW estimators is perfectly unbiased, the constructed oracle confidence
intervals fail to attain the nominal coverage rate, consistent with expectations. The results of
this experiment echo those of the first — our IPW estimators utilizing targeted undersmoothing
outperform the others, though not considerably in any metric.
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Simulation #3: Treatment Mechanism with Equal Mean and Variance
Dependent on Baseline

We next consider our final experimental scenario, which breaks from the preceding two examples
by basing the form of the treatment mechanism on a Poisson distribution, so that the mean and vari-
ance are both equally impacted by the relevant baseline covariates. As with the example immedi-
ately prior, the treatment mechanism is a function of a subset of the baseline covariates {W1,W2},
with W3 only impacting the outcome mechanism. As with our prior experiments, the form of the
outcome mechanism is not expected to impact our proposed IPW estimators, since estimation of
the outcome mechanism only plays a role in our targeted undersmoothing selection procedures.
We note that the form of the treatment mechanism results in A taking on discrete values in a fairly
large range, unlike the continuous-valued observations that result from the normal distribution ap-
pearing in the prior examples; this treatment mechanism’s form is possibly more compatible with
the generalized propensity score estimator of Algorithm 2, which utilize discretization of A for
estimation of the conditional density. For this scenario, the treatment mechanism takes the form
A | W ∼ Poisson

(
λ = (1 −W1) + 0.25W 3

2 + 2W1W2 + 4
)

and outcome mechanism is of the
form Y | A,W ∼ Bernoulli

(
p = expit(A+ 2(1 −W1) + 0.5W2 + 0.5W3 + 2W1W2 − 7)

)
.

Numerical evaluation of the performance of our proposed IPW estimators of ψ0,δ across the
300 simulation experiments is summarized in Figure 3.
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Figure 3: Numerical comparisons of nonparametric IPW estimator variants of ψ0,δ for A ∼
Poisson(λ = f(W )).

Figure 3 reveals the best performance of our proposed IPW estimators encountered thus far.
In this setting, the IPW estimator variants using targeted undersmoothing outperform the others
only at the smallest sample size — that is, at n = 100, the IPW estimator based on minimization
of the EIF term arising from Lemma 1 achieves the lowest bias and best efficiency. By n =
500, most estimator variants are nearly unbiased, with the best performing being IPW estimators
minimizing |PnDDCAR| via targeted undersmoothing and the less restrictive (τ = 0.2) agnostic
undersmoothing selector based on equation (1.12). In terms of efficiency, all candidates but the
IPW estimators constructed from agnostic undersmoothing based on equation (1.12) succeed in
achieving the efficiency bound, an excellent level of performance. Notably, even the IPW estimator
based on the cross-validation selector succeeds in this challenging endeavor, suggesting that it
exhibits variance relatively improved beyond that of the other candidates, on account of the fact
that it is not similarly unbiased. Unlike the prior scenarios, the oracle confidence intervals of all
candidate IPW estimators attain the nominal coverage rate by n = 200, with similar performance
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at n = 500. Importantly, the excellent performance of all of the estimator candidates with respect
to this metric suggests that all are capable of providing reliably good performance and that relative
performance differences across the candidates may be better ascribed to variance estimation than
to point estimation, the latter of which is our principal focus. Though the previously considered
scenarios were not discouraging, the results of this set of experiments are quite positive, suggesting
that at least a few variants of our proposed IPW estimators may successfully applied to reliably
and efficiently estimate ψ0,δ.

1.5 Discussion

The generalized propensity score is a central object in evaluating the causal effects of continu-
ous treatments. While stochastic interventions provide a framework for identifying causal effects
of realistic interventions, their formulation too depends on the generalized propensity score. Ac-
cordingly, flexible estimators of this key nuisance quantity, relying on recent developments in
nonparametric regression, are poised to play important roles in developing consistent and efficient
estimators of the causal effects of stochastic interventions. We have provided an initial examination
of the role of a flexible regression algorithm, the recently developed highly adaptive lasso estima-
tor, in developing conditional density estimators with favorable theoretical properties. Building on
these contributions, we formulated nonparametric IPW estimators of the causal effects of stochastic
interventions, previously absent from the causal inference literature. To further improve our IPW
estimators, we outlined several selection procedures, to be used in tandem with undersmoothing of
our proposed HAL-based conditional density estimators, to allow these novel IPW estimators to
achieve the nonparametric efficiency bound, a property previously attainable only within doubly
robust estimation frameworks. In numerical experiments, we examined the relative performance
our nonparametric IPW estimators, demonstrating their capability to achieve low bias and attain
the efficiency bound in some examples. Several avenues for future investigation remain, including
potential improvements to doubly robust estimators by incorporating undersmoothing of the gen-
eralized propensity score, which may yield higher-order efficiency or accommodate doubly robust
inference [e.g., 14]; the extension of our nonparametric IPW estimators to more complex settings in
which stochastic interventions have proven useful, including causal mediation analysis [e.g., 37];
and practical improvements to our IPW estimators, such as improving their stability via strategies
for truncating the estimated inverse weights [e.g., 10, 94].
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Chapter 2

Correcting for Biased Sampling

The advent and subsequent widespread availability of preventive vaccines has altered the course of
public health over the past century. Despite this success, effective vaccines to prevent many high-
burden diseases, including HIV, have been slow to develop. Vaccine development can be aided by
the identification of immune response markers that serve as effective surrogates for clinically sig-
nificant infection or disease endpoints. However, measuring immune response marker activity is
often costly, which has motivated the usage of two-phase sampling for immune response evaluation
in clinical trials of preventive vaccines. In such trials, the measurement of immunological markers
is performed on a subset of trial participants, where enrollment in this second phase is potentially
contingent on the observed study outcome and other participant-level information. We propose
nonparametric methodology for efficiently estimating a counterfactual parameter that quantifies
the impact of a given immune response marker on the subsequent probability of infection. Along
the way, we fill in theoretical gaps pertaining to the asymptotic behavior of nonparametric effi-
cient estimators in the context of two-phase sampling, including a multiple robustness property
enjoyed by our estimators. Techniques for constructing confidence intervals and hypothesis tests
are presented, and an open source software implementation of the methodology, the txshift R
package, is introduced. We illustrate the proposed techniques using data from a recent preventive
HIV vaccine efficacy trial.

2.1 Introduction

Ascertaining the population-level causal effects of exposures is a common goal in scientific re-
search. Such effects can be formulated via summaries of the distribution of counterfactual random
variables, which describe the values a measurement would have taken if a particular level of expo-
sure were assigned to the unit. Often, the exposure of interest is continuous-valued — for example,
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the dose of a drug or level of an immune response marker induced by a vaccine. We consider the
latter in the context of a phase IIb trial of a vaccine to prevent infection by human immunode-
ficiency virus (HIV), the HIV Vaccine Trials Network’s (HVTN) 505 efficacy trial [70]. A key
secondary objective of the trial was to evaluate the role of vaccine-induced immune responses in
generating protective efficacy against HIV infection [93]. Identification of immune response mark-
ers causally related to protection is critical both for understanding of the biological mechanisms of
a vaccine and for guiding the development of future vaccines.

To study such relationships, it is natural to consider a dose-response curve that summarizes vac-
cinated participants’ risk of HIV infection as a function of a particular immune response marker.
A causal formulation of such a dose-response analysis would consider a (possibly infinite) collec-
tion of counterfactual outcomes, each representing the HIV infection risk that would have been
observed if all individuals’ immune responses had been set to a particular level. Studying how the
proportion of infected individuals varies as a function of the level of an immune response marker
could provide insights into causal mechanisms underlying the vaccine’s effects. Unfortunately,
several difficulties arise when considering such a dose-response approach. Nonparametric esti-
mation and inference on the causal dose-response curve is challenging and requires non-standard
techniques (e.g., Kennedy et al. [96]). More importantly, this approach may require considera-
tion of counterfactual variables that are scientifically unrealistic. Namely, it may be impossible to
imagine a world where every vaccinated participant exhibits high immune responses, simply due
to phenotypic variability of participants’ immune systems. This calls into question the validity
of counterfactual dose-response analysis strategies that evaluate the effects of immune response
markers.

An alternative framework for assessing effects of continuous-valued exposures involves coun-
terfactual outcomes resulting from stochastic interventions [39, 71]. Whereas static interventions
set the same level of an exposure to all units, stochastic interventions instead set exposure level
equal to a random draw from a particular distribution. This provides a more flexible approach for
defining counterfactual random variables. Indeed, static interventions are a special case of stochas-
tic interventions in which the intervention mechanism is drawn from a degenerate distribution with
point mass on a single value. To define meaningful counterfactuals, care must be taken in defining
the distribution from which the exposure is drawn. One strategy is to draw from a modified ver-
sion of the true exposure distribution — the natural distribution of exposure under no intervention.
For example, one may consider drawing immune response markers from a distribution similar to
the naturally observed post-vaccination distribution of immune response markers but that has been
shifted upwards (or downwards) for some or all participants. Counterfactuals defined by such in-
terventions may be better aligned with plausible future interventions, such as refinements of the
current vaccine that provide improved immune responses. Evaluating the population-level risk of
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HIV infection under such interventions is useful for several reasons. Firstly, this measure of risk
provides a relevant mechanism by which to rank-order immune response markers by their impor-
tance for HIV infection risk. Such information could be used in a future phase 2a trial of a refined
candidate HIV vaccine to define go/no-go criteria based on immune response marker endpoints for
advancing the vaccine to an efficacy trial. Relatedly, the risk measure may be useful for “transport
formulas” that predict vaccine efficacy in new settings different from that in the original efficacy
trial [125].

The above highlights the need for methodology to identify and estimate population-level causal
effects of stochastic interventions; recent work has provided several candidate approaches [39, 71].
These works show conditions for the identification and detail several estimators of parameters of
distributions of counterfactuals defined by stochastic interventions. However, these approaches
are not directly applicable to studies like HVTN 505 trial, where a two-phase, case-cohort sam-
pling design was used to measure participants’ immune responses. Under this design, all vaccine
recipients diagnosed with HIV-1 infection (i.e., “cases”) had their post-vaccination immune re-
sponses measured, while only a random sample of HIV-uninfected vaccine recipients had immune
responses measured [93]. This sampling design complicates the estimation of causal effects, as the
cohort definition depends on post-randomization data, namely whether a participant was infected.
Rose and van der Laan [147], among others, discuss strategies for efficient estimation under two-
phase sampling designs, emphasizing an inverse probability of censoring weighted modification
that may be coupled with targeted minimum loss estimation to account for study design. Their
approach yields an asymptotically linear estimator so long as the probability of inclusion in the
second-phase sample is known by design or estimable via maximum likelihood. This latter re-
quirement precludes usage of their proposed estimators in situations where, for example, sampling
probabilities are unknown and may depend on continuous-valued covariates. While the term “two-
phase sampling” has traditionally been used to refer to outcome-dependent Bernoulli or without-
replacement sampling based on discrete covariates, recent efforts have extended the concept to
the usage of continuous-valued covariates in constructing second-phase samples [e.g., 62]. Rose
and van der Laan [147] suggested a more complicated procedure that could be appropriate in such
settings, but it has neither been evaluated in simulation nor data analysis.

In the present work, we develop estimators of the mean counterfactual outcome under a stochas-
tic intervention when the exposure is measured via two-phase sampling. We provide several con-
tributions to literatures on two-phase sampling and stochastic interventions. To the former, we (i)
formalize assumptions needed for efficient nonparametric inference under two-phase sampling; (ii)
characterize a multiple robustness of the estimators; and (iii) provide the first comparison of the
practical performance of these estimators. Our contributions to the literature on stochastic inter-
ventions are (i) a novel estimator of a conditional density that is valid under two-phase sampling,
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while achieving a fast convergence rate, a crucial development for generating efficient estimators of
the mean counterfactual; and (ii) an extension of nonparametric inference on mean counterfactuals
under stochastic interventions using projections onto nonparametric working marginal structural
models. Finally, we provide open source R packages, txshift [75, 76] and haldensify [77]
that implement of our proposed estimators.

2.2 Preliminaries and Background

Notation, Data, and Target Parameter

Consider data generated by typical cohort sampling represented by the random variable X =
(W,A, Y ), where W ∈ W is a vector of baseline covariates, A ∈ A a real-valued exposure, and
Y ∈ Y an outcome of interest. Initially, we assume access to n independent copies of X , using
PX

0 to denote the distribution of X . We assume a nonparametric statistical model MX for PX
0 .

We denote by q0,Y the conditional density of Y given {A,W} with respect to some dominating
measure, q0,A the conditional density of A given W with respect to dominating measure µ, and
q0,W the density of W with respect to dominating measure ν. We use pX0 to denote the density of
X with respect to the product measure. This density evaluated on a typical observation x may be
expressed pX0 (x) = q0,Y (y | A = a,W = w)q0,A(a | W = w)q0,W (w).

To define a counterfactual quantity of interest, we introduce a nonparametric structural equa-
tion model (NPSEM) [121], which assumes X is generated by the following system of structural
equations: W = fW (UW );A = fA(W,UA);Y = fY (A,W,UY ). Here, f are deterministic func-
tions and {UW , UA, UY } are exogenous random variables such that UA ⊥ UY and either UW ⊥ UY
or UW ⊥ UA, which establishes that conditioning on W is sufficient to control confounding of A
and Y .

The NPSEM parameterizes pX0 in terms of the distribution of the random variables (X,U) and
implies a model for the distribution of counterfactual random variables generated by interventions
on the data-generating process. For example, a static intervention replaces fA with a real number
a. A stochastic intervention replaces the value A would naturally assume with a draw from a post-
intervention distribution q̃0,A(· | W ), where the zero subscript is included to emphasize that q̃0,A

may depend on PX
0 . A static intervention may be viewed as a stochastic intervention where q̃0,A(· |

W ) places all mass on a single point. Díaz and van der Laan [39] described a stochastic intervention
that draws A from a distribution such that for a real number a q̃0,A(a | W ) = q0,A(a− δ(W ) | W )
for a user-supplied shifting function δ(W ). Haneuse and Rotnitzky [71] showed that estimating the
effect of this intervention is equivalent with that of an intervention that modifies the value A would
naturally assume according to a regime d(A,W ). Importantly, the regime d(A,W ) may depend
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on both the covariates W and the exposure level A that would be assigned in the absence of the
regime; consequently, this has been termed a modified treatment policy (MTP). Both Haneuse and
Rotnitzky [71] and Díaz and van der Laan [40] considered an MTP of the form d(a, w) = a+δ(w)
for δ(w) = γ ∈ R if a+ γ ≤ u(w) and d(a, w) = a if a+ γ > u(w), where u(w) is the maximum
value in the support of q0,A(· | W = w). This intervention generates a counterfactual random
variable YA+δ(W ) := fY (A+ δ(W ),W, UY ) whose distribution we denote P δ

0 ; we seek to estimate
ψ0,δ := EP δ

0
{YA+δ(W )}, the mean of this counterfactual outcome.

In the context of HVTN 505, this parameter corresponds to the counterfactual one-year risk of
HIV-1 infection had immune response markers of vaccinated participants been increased by γ units
relative to the level induced by the current vaccine. This quantity may reflect risk of infection under
a next-generation HIV vaccine with improved immunogenicity relative to the vaccine evaluated in
HVTN 505. While the magnitude of shifting could generally be allowed to vary with W , we
focus on an intervention that uniformly shifts all participants’ immune responses by γ, that is,
d(a, w) = a+γ for all a. Note that for HVTN 505, the parameter of interest is defined only for the
vaccine group, making A a post-vaccination marker measuring an HIV-specific immune response.
Importantly, it is not conceivable to define the target parameter for placebo recipients since only
HIV-negative participants are enrolled in the trial and A is only defined if measured prior to HIV
infection; consequently, all relevant placebo recipients have value zero for the marker A, and it is
not meaningful to apply d(a, w) to shift the distribution of A.

Analysis of HVTN 505 is complicated by its two-phase design, a technique commonly used
for sampling in vaccine efficacy trials. In this sampling scheme, X is not observed all partici-
pants. Instead, we observe O = (W,C,CA, Y ) ∼ P0, where C is an indicator that an obser-
vation is included in the second-phase sample; Ci = 1 if A is measured on the ith observation
and Ci = 0 otherwise. By convention, CA denotes that unobserved values of A are set to zero;
this arbitrary labeling has no impact on subsequent developments. For each w and y we define
g0,C(y, w) := P(C = 1 | Y = y,W = w), allowing that the probability of inclusion in the
second-phase sample can depend on W and Y . Consequently, the model for P0 can be expressed
as M = {PPX ,gC

: PX ∈ MX , gC}, that is, P0 is implied by the pair {PX
0 , g0,C}. For example,

in HVTN 505 all infected participants with samples available for marker measurement at week 28
had immune responses measured, i.e., g0,C(1, w) = 1 for all w; however, only a subset of non-
infected participants had immune responses measured. We will assume access to an i.i.d. sample
O1, . . . , On, denoting its empirical distribution by Pn. We develop efficient nonparametric estima-
tors of ψ0,δ based on these data.
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Identifying the Counterfactual Mean of a Stochastic Intervention

Díaz and van der Laan [39] established that ψ0,δ is identified by

ψ0,δ =
∫

W

∫
A
Q0,Y (a+ δ(w), w)q0,A(a | W = w)q0,W (w)dµ(a)dν(w) , (2.1)

where Q0,Y (a, w) := EPX
0

[Y | A = a,W = w], the conditional mean of Y given A = a and
W = w, as implied by PX

0 . Let Yai+δ(wi) denote the outcome that would have been observed
had the observed exposure been, possibly counter-to-fact, set to ai + δ(wi); identification of the
causal estimand of interest by equation (2.1) is established under several assumptions: consis-
tency (Ya+δ(w) = Y in the event A = a + δ(w)); no interference (Yi,ai+δ(wi) does not depend
on aj + δ(wj) for i ̸= j); no unmeasured confounding (A⊥⊥Ya+δ(w) | W = w); and positivity
(a ∈ A =⇒ a + δ(w) ∈ A | W = w for all w ∈ W). Importantly, even when these untestable
assumptions go unsatisfied, the statistical parameter appearing in equation (2.1) has a straight-
forward interpretation: it is the adjusted mean of the outcome Y under the contrast A + δ(W ),
marginalizing over strata of potential baseline confounders W [39, 183].

The positivity assumption required to establish equation (2.1) is unlike that required for static or
dynamic interventions. In particular, it does not require that the post-intervention exposure density
place mass across all strata defined by W . Instead, for Q0,Y to be well-defined, we require that the
density of the exposure mechanism be bounded when the post-intervention exposure mechanism
is nonzero, i.e., 0 < q0,A(A | W ) when q0,A(A− δ(W ) | W ) ̸= 0, which is satisfied by our choice
of δ(W ).

Díaz and van der Laan [39] further provided the efficient influence function (EIF) of ψ0,δ with
respect to a nonparametric model. The EIF evaluated on a typical full-data observation x can be
written

DF (PX
0 )(x) = H(a, w){y −Q0,Y (a, w)} +Q0,Y (a+ δ(w), w) − ψ0,δ, (2.2)

where H(a, w) = 1(a < u(w))q0,A(a− δ(w) | w)/q0,A(a | w) + 1(a+ δ(w) ≥ u(w)).

Correcting for Two-Phase Sampling

The subject of two-phase sampling has long been discussed in the statistical literature [116, 109,
196]. Recent estimation strategies include, among others, methods based on parametric models
of the sampling mechanism [20], weighted semiparametric estimators [145], nonparametric maxi-
mum likelihood [21], and re-calibration [53].

Rose and van der Laan [147] study of nonparametric efficiency theory in two-phase sampling
designs and provide a representation of the EIF of a target parameter of the full data distribution
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when the observed data are generated via two-phase sampling. Based on these results, the EIF in
the present problem is

D(G0, g0,C , D
F (PX

0 ))(o) = c

g0,C(y, w)
DF (PX

0 )(o) −
(

c

g0,C(y, w)
− 1

)
G0(y, w) , (2.3)

where DF (PX
0 ) is the EIF in equation (2.2), and G0(y, w) := EP0 [DF (PX

0 )(O) | C = 1, Y =
y,W = w].

Rose and van der Laan [147] proposed two estimation strategies. The first — which we call
the reweighted estimator — incorporates inverse probability weights based on known or estimated
values of the second-phase sampling probability g0,C to a targeted minimum loss (TML) estimator.
The estimator is shown to be asymptotically linear and efficient when g0,C is known or can be
estimated using maximum likelihood. On the other hand, their second estimator can be applied
in settings where the sampling design is unknown and must be estimated using nonparametric re-
gression. However, the authors did not provide a formal study of the theoretical properties of this
estimator nor numerical evaluations. Owing to its complexity, examples of this approach are lim-
ited [e.g., 22]. We aim to fill in these gaps by providing formal theory establishing conditions under
which this estimator achieves asymptotic efficiency as well as numerical studies demonstrating its
performance in the stochastic intervention context.

2.3 Methodology

We utilize two frameworks for estimation: the one-step framework [131] and TML estimation [184].
Both develop in two stages. In the first stage, we construct initial estimators of key nuisance quan-
tities, while in the second stage we perform a bias-correction based on the estimated EIF. The
one-step bias correction updates an initial substitution estimator by adding the empirical mean of
the estimated EIF, while the TML estimation framework uses a univariate logistic tilting model to
build a targeted estimator of Q0,Y that is subsequently used to construct a plug-in estimator.

Estimating Nuisance Parameters

Our general strategy for estimating nuisance parameters relies on first using the entire observed
data set to estimate the second-phase sampling probabilities, g0,C . Subsequently, inverse probabil-
ity of sampling weights based on these estimates are used to generate estimates of relevant full data
quantities using data available only on observations in the second-phase sample. These quantities
include the outcome regressionQ0,Y , the exposure density q0,A, and the joint distribution of covari-
ates and exposure, which we denote by Q0,AW . Finally, estimates of full data quantities are used
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to estimate G0, the conditional mean of the full data EIF given Y and W amongst observations
included in the second-phase sample.

Excepting Q0,AW , which we estimate using an inverse probability of sampling weighted em-
pirical distribution, we describe both parametric and flexible, data adaptive estimators. The data
adaptive estimators are more parsimonious with our theoretical developments, which pertain to
nonparametric-efficient estimation; nevertheless, our developments hold equally well for paramet-
ric working models. In Theorem 1, we detail assumptions on the stochastic behavior of estimators
of these nuisance functions and relate these to the behavior of the resultant estimator of the target
parameter.

An estimator of the sampling mechanism g0,C could be derived from any classification method
(e.g., logistic regression), in which PP0(C = 1 | Y,W ) is estimated using the full sample; however,
nonparametric or semiparametric estimation may be preferable depending on the availability of
information about the two-phase sampling design.

To generate an estimate Qn,AW of the full data joint distribution of (A,W ), we use a sta-
bilized inverse probability weighted empirical distribution. For a given (a, w), Qn,AW (a, w) :=∑n
i=1 Ci/gn,C(Yi,Wi)1(Ai ≤ a,Wi ≤ w)/∑n

i=1 Ci/gn,C(Yi,Wi). To estimate Q0,Y , one may
again use any classification or regression model, where Y is the outcome and functions of A
and W are included as predictors. In fitting this model, inverse probability of sampling weights
Ci/gn,C(Yi,Wi) for i = 1, . . . , n, are included to account for the two-phase sampling design. Any
valid regression estimator may be leveraged for this purpose, so long as the implementation of the
estimator respects the inclusion of sample-level weights; in practice, we recommend the use of a
semiparametric or nonparametric estimator. We denote by Qn,Y (a, w) the estimate evaluated on a
data unit with A = a,W = w.

The simplest strategy for estimating the generalized propensity score q0,A is to assume a para-
metric working model and use parametric regression to generate suitable density estimates. Unfor-
tunately, most such approaches do not allow for flexible modeling of q0,A. The relative dearth of
available estimators of a conditional density motivated our development of a novel estimator that
accounts for two-phase sampling designs. We detail this approach in Algorithm 2 of Chapter 1
and provide an implementation of this proposal in the haldensify R package [77], described
in Section 5.4 of Chapter 5. Going forward, we denote by qn,A(a | w) the estimated conditional
density of A given W = w, evaluated at a ∈ A.

The final nuisance parameter that must be estimated is G0, the conditional mean of the ran-
dom variable DF (PX

0 )(O) given (Y,W ) amongst those included in the second-phase sample. To
estimate this quantity, we generate a pseudo-outcome as follows. First, define the substitution es-
timator ψn,δ :=

∫
Qn,Y (a + δ(w), w)dQn,AW (a, w), and the auxiliary term Hn(a, w) := 1(a <

u(w))qn,A(a− δ(w) | w)/qn,A(a | w) +1(a+ δ(w) ≥ u(w)). Using these quantities, for all i such
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that Ci = 1, we compute DF
n,i := Hn(Ai,Wi){Yi−Qn,Y (Ai,Wi)}+Qn,Y (Ai+δ(Wi),Wi)−ψn,δ.

A simple estimation strategy for G0 is to adopt a parametric working model and fit, for example,
a linear regression of the pseudo-outcome DF

n,i on basis functions of Y and W . Importantly, since
G0 is defined as a conditional expectation with respect to the observed data distribution, we need
not include inverse probability of sampling weights in this regression estimate. While a parametric
working model for G0 is permissible, given the complexity of the object, correct specification of
this model is likely challenging and we recommend more flexible approaches. We let Gn(Yi,Wi)
denote the value of the chosen regression estimator evaluated on the ith observation i = 1, . . . , n.

Efficient Estimation

One-Step Estimator

Based on the estimated nuisance functions detailed above, efficient estimators may be constructed
using either of the one-step or targeted minimum loss estimation frameworks. The one-step es-
timator adds the empirical mean of the estimated EIF to the initial plug-in estimator, ψ+

n,δ :=

ψn,δ + n−1∑n
i=1

[
Ci/gn,C(Yi,Wi)DF

n,i −
{
Ci/gn,C(Yi,Wi) − 1

}
Gn(Yi,Wi)

]
. The resultant aug-

mented one-step estimator ψ+
n,δ relies on the nuisance functions estimators (Qn,Y , gn,A, Gn, gn,C).

Theorem 1 details sufficient assumptions on these estimators for ensuring that the one-step is
asymptotically efficient.

Targeted Minimum Loss Estimator

An asymptotically linear TML estimator of ψ0,δ may be constructed by using inverse probability
of sampling weights to update the initial estimator Qn,Y to an estimator Q⋆

n,Y . An updated plug-in
estimator is then constructed, ψ⋆n,δ :=

∫
Q
⋆
n,Y (a + δ(w), w)dQn,AW (a, w). This updated estimator

Q
⋆

n,Y is constructed in a single iteration as follows.

1. Define a working logistic regression model for the conditional mean of C given {Y,W},
using the logit of the initial estimate of the censoring mechanism, logit(gn,C), as an offset
and with covariate (Gn/gn,C). The parameter ξ ∈ R corresponding to the covariate may be
estimated by maximum likelihood, producing an estimate ξn. Following estimation of ξn,
this working model yields g⋆n,C , an updated estimate of the censoring mechanism.

2. Next, define a working logistic regression model for the conditional mean of Y given {A,W},
taking the initial estimate of the outcome mechanism logit(Qn,Y ) as an offset and with co-
variate Hn. The parameter ϵ ∈ R can be estimated via weighted logistic regression (with
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weights Ci/g⋆n,C(Yi,Wi)) to yield an estimate ϵn of ϵ. Using ϵn and this working model, we
may update the outcome mechanism to Q⋆

n,Y .

The targeting steps are carried out based on local least favorable parametric submodels, gen-
erally requiring only a single iteration for convergence. When the first step of this procedure is
omitted, the resultant TML estimator is equivalent to the reweighted estimator of Rose and van
der Laan [147]. The additional step allows our estimator to attain asymptotic linearity in a broader
set of circumstances. That is, while the reweighted estimator requires that the sampling weights
be known or be estimable at a parametric rate, our approach allows for the use of more flexible
estimators of sampling weights. Algorithm 3, presented in Section 2.7, formalizes the proposed
procedure.

Asymptotic Analysis of Efficient Estimators

We establish the asymptotic efficiency of our estimators in Theorem 1. The theorem depends on a
several regularity conditions, which are discussed in Section 2.7. The theorem is provided in the
context of the TML estimator, but, with a similar set of assumptions, the same result holds for the
one-step estimator; for brevity, we omit this analogous result. In the sequel, DF (Q0,Y , q0,A) and
DF (PX

0 ) are used interchangeably since DF depends on PX
0 only through Q0,Y and q0,A.

Theorem 1 (Asymptotic linearity and efficiency of the TML estimator ψ⋆n,δ). Under conditions 1-
6, n1/2

(
ψ⋆n,δ − ψ0,δ

)
= n−1/2∑n

i=1 D(G0, g0,C , D
F (Q0,Y , g0,A))(Oi) + op(1).

An immediate corollary of Theorem 1 is that ψ⋆n,δ is asymptotically efficient, since it is an
asymptotically linear estimator with influence function equal to the efficient influence function.
Moreover, the central limit theorem implies that the scaled, centered estimator converges in dis-
tribution to a mean-zero Gaussian random variable with variance matching that of the EIF (i.e.,
EP0{D2(G0, g0,C , D

F (Q0,Y , g0,A))(O)}).
The proof of Theorem 1 is given in Section 2.7. The conditions of the theorem are standard in

semiparametric inference problems, essentially requiring a sub-parametric rate of convergence of
each of the nuisance estimators to their true counterparts in terms of an L2(P0) norm, a Donsker
class condition on the EIF evaluated at the estimated nuisance parameters, and L2(P0)-consistency
of this same object.

In particular, condition 1 requires that the EIF equation be solved and is satisfied by our pro-
posed estimators, while condition 6 requires that the estimated EIF fall in a Donsker class. This
latter requirement may be satisfied by using highly adaptive lasso (HAL) regression for all nui-
sance parameters or avoided entirely by a particular variant of cross-validation [98, 203, 27]. Such
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an estimator enjoys the same asymptotic properties as our non-sample-splitting estimator while
eschewing the Donsker class condition.

Conditions 3–5 address the behavior of nuisance parameter estimators. Specifically, condi-
tion 3 requires that gn,C and Gn converge in L2(P0) norm to their true counterparts while condi-
tion 4 necessitates neglibility of a second-order remainder term arising from convergence of qn,A
andQ⋆

n,Y to their true counterparts. In the same vein, condition 5 is satisfied by the EIF evaluated at
nuisance parameter estimates converging to the EIF evaluated at the true nuisance functions. With
respect to these conditions, we note that the HAL regression estimator has been shown to achieve
a sufficiently fast rate of convergence so as to satisfy these convergence requirements [171, 15]
under the assumption that the true regression function is right-hand continuous with left-hand lim-
its and bounded sectional variation norm. This provided further motivation for our development
of a HAL-based conditional density estimator. To increase the applicability of our theorem, our
simulation studies and analysis of the HVTN 505 data utilize HAL.

Condition 2 requires that the true sampling mechanism g0,C be bounded away from zero by a
(small) positive constant. It is required to ensure that the two-phase sampling procedure does not
systematically censor particular strata; the same bound holding for the estimate g⋆n,C is required
for consistency of the estimator in L2(P0) norm. While many of the conditions of the theorem
stipulate that the nuisance parameters converge to their true counterparts in large samples, in finite
samples, it may be beneficial to avoid small values of the sampling probability gn,C . This can be
achieved in an ad-hoc way by truncation or more formally via collaborative targeted minimum loss
estimation [177].

Multiple Robustness of Efficient Estimators

The EIF of our estimators enjoys a multiple robustness property, which allows our estimators
to achieve consistency even in situations where certain combinations of nuisance parameters are
inconsistently estimated.

Lemma 2 (Multiple robustness of the EIF). Let (G, gC , QY , qA) denote the limits of the nuisance
estimators (Gn, g

⋆
n,C , Q

⋆
n,Y , qn,A) in probability. Suppose either of the following two conditions

hold (i) G = G0 and either QY = Q0,Y or qA = q0,A; (ii) gC = g0,C and either QY = Q0,Y or
qA = q0,A. Then ψ⋆n,δ −→

p
ψ0,δ.

In the case of the one-step estimator, the initial nuisance function estimates gn,C and Qn,Y are
used instead. The lemma implies that our efficient estimators will be asymptotically consistent if
at least one of (G0, g0,C) and one of (Q0,Y , q0,A) are consistently estimated.
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Confidence Intervals and Hypothesis Tests

Theorem 1 established the limiting distribution of our efficient estimators. From the limit distribu-
tion, inference for either estimator may be attained in the form of Wald-type confidence intervals
and corresponding hypothesis tests.

Consider the null and alternative hypotheses H0 : ψ0,δ = 0 and H1 : ψ0,δ ̸= 0, and denote
by ψn,δ either the TML estimator ψ⋆n,δ or the one-step estimator ψ+

n,δ. An asymptotic (1 − α)
Wald-type confidence intervals is ψn,δ ±z(1−α/2)σn/n

1/2, while a p-value for a hypothesis test that

ψ0,δ = 0 can be computed as 2
{

1 − Φ
(
n1/2 | ψn,δ | /σn

)}
, where σ2

n is the empirical variance of

the estimated EIF, Φ(·) is the CDF of the standard normal distribution, and z(1−α/2) is the 1 −α/2
standard normal quantile.

These procedures are asymptotically justified under the conditions of Theorem 1. Importantly,
while multiple robustness implies that consistent estimation of ψ0,d is possible under inconsistent
estimation of some nuisance parameters, the validity of confidence intervals and hypothesis tests
requires consistent estimation of all nuisance parameters.

2.4 Simulation Studies

The proposed estimators were evaluated using two simulation experiments. In the first, we com-
pare our proposed estimators to alternative estimators proposed in the literature. To highlight the
benefits offered by our approach over the simple reweighted estimator of Rose and van der Laan
[147], we focus on how estimation of g0,C influences the estimator performance comparing stan-
dard logistic regression to the highly adaptive lasso in the construction of gn,C . In a second, we
evaluate our estimators in a data-generating mechanism inspired by HVTN 505. We compare
the relative performance of proposed one-step and TML estimators. These results are detailed in
Section 2.7.

We generated data by drawing covariates W1 ∼ Normal(3, 1), W2 ∼ Bern(0.6), and W3 ∼
Bern(0.3), exposure A | W ∼ Normal(2(W2 +W3), 1), outcome Y | A,W ∼ Bern(expit((W1 +
W2 +W3)/3 −A)) and sampling probability, C | Y,W ∼ Bern(expit((W1 +W2 +W3)/3 −Y )).
We sampled n i.i.d. observations, for n ∈ {100, 400, 900, 1600, 2500}, from this data-generating
process and used the resultant data to estimate the target parameter with each of the estimators
considered. This was repeated 1000 times. We considered estimation of ψ0,δ for δ ∈ {−0.5, 0, 0.5},
where the corresponding true values ψ0,δ were {0.501, 0.415, 0.333}.

We compared the reweighted estimators of Rose and van der Laan [147] to our proposed es-
timators. For reference, we also present the results of a naive estimate that ignores the two-phase
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sampling design. In each of these three cases, we consider one-step and TML estimators, giving
six estimators in total. Each estimator was constructed by estimating the exposure mechanism qn,A
and outcome mechanism Qn,Y via maximum likelihood based on correctly specified parametric
models, while gn,C was constructed using either logistic regression or the highly adaptive lasso.
Based on theory, we hypothesized that when gn,C is estimated using logistic regression, both the
reweighted estimator and our proposed estimator should be asymptotically linear, which would be
supported by observing that the bias of the estimators is op(n−1/2). On the other hand, when gn,C
using the highly adaptive lasso), the reweighted estimators should not achieve asymptotic linearity,
while our proposed estimators should. The naive estimators, which make no adjustment for the
two-phase sampling design, were expected to perform poorly throughout.

We compared all estimators in terms of their bias (scaled by n1/2), mean squared-error (scaled
by n), and coverage of 95% Wald-style confidence intervals. Figure 4 summarizes our findings for
the case δ = 0.5; results for δ = 0 and δ = −0.5 are presented in Section 2.7.
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Figure 4: Comparison of six estimation strategies for ψ0,δ for δ = 0.5, across 1000 Monte Carlo
simulations for each of five sample sizes. The naive estimators do not make use of the estimated
sampling mechanism gn,C , so their performance is displayed only in the upper panel, in the interest
of visual economy.

When the sampling mechanism is estimated via a correctly specified parametric model (upper
panel), the reweighted and our proposed estimators behave as expected, with low bias and stable
MSE. However, the reweighted estimators display coverage exceeding 95%, while our proposed
estimators achieve nominal coverage. This occurs because the influence function that is basis for
the standard error estimates does not include a first-order contribution resulting from estimation of
the sampling mechanism resulting in a conservative standard error estimate. Unsurprisingly, the
naive estimator performed poorly in all sample sizes, highlighting the importance of accounting
for sampling design.

When the sampling mechanism was estimated using HAL (lower panel), the reweighted esti-
mators do not attain asymptotic linearity, as evidenced by the scaled bias and MSE increasing with
sample size. On the other hand our proposed estimators have small bias and MSE approaching the
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efficiency bound, thus demonstrating the benefits of the additional effort required to produce our
estimators over the simpler reweighted estimators.

Our second simulation study (see Section 2.7) showed that the efficient estimators provide
reliable performance in a setting similar to HVTN 505. Importantly, this setting incorporates both
continuous and binary baseline covariates and a rare outcome (≈5% incidence). We examine
the performance of our proposed one-step and TML estimators at a sample size of n = 1400
across δ ∈ {−2,−1.5,−1, 0.5, 0, 0.5, 1, 2} and all nuisance parameters were estimated via HAL.
We found that the proposed estimators achieve low bias and MSE, as well as empirical coverage
of confidence intervals near the nominal rate. Overall, the TML estimator had slightly better
performance than the one-step estimator.

2.5 Application to the HVTN 505 Trial

HVTN 505 enrolled 2504 HIV-negative participants and randomized participants 1-to-1 to receive
an active vaccine or placebo. The one-year incidence of HIV-1 infection was about 1.8% per
person-year in the vaccine arm and 1.4% per person-year in the placebo arm, during primary
follow-up for HIV-1 acquisition (between week 28 and month 24; the same period as was used for
assessment of immune correlates). Blood was drawn at the week 26 visit and immune responses
measured for all HIV-1 cases diagnosed between week 28 and month 24 and a stratified random
sample of uninfected controls [93]. The two-phase sampling of vaccine-recipient controls sampled
five controls per case without-replacement within each of eight baseline covariate strata defined
by categories of body mass index and race/ethnicity (White, Hispanic, Black). Janes et al. [93]
and Fong et al. [54] analyzed these immune responses, and both found CD4+ and CD8+ polyfunc-
tionality scores to be associated with risk of HIV-1 infection status by month 24.

We examined how a range of posited shifts in standardized polyfunctionality scores of the
CD4+ and CD8+ immune markers (A) would impact the mean counterfactual risk of HIV-1 infec-
tion (Y ) in vaccine recipients. We considered standardized polyfunctionality scores, so that our
pre-specified grid of shifts δ ∈ {−2.0,−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0} can be interpreted
as shifts on the standard deviation (sd) scale. We present results based on our TML estimator;
results for the one-step estimator were similar. To summarize the relationship between the mean
counterfactual risk of HIV-1 infection and shifts in polyfunctionality scores, a working marginal
structural model (MSM) was constructed, as detailed in Section 2.7. Our augmented TML estima-
tor ψ⋆n,δ requires the construction of initial estimators of all nuisance functions.

The conditional probability of inclusion in the second-phase sample was estimated using HAL,
adjusting for age, sex, race/ethnicity, body mass index, and a behavioral risk score for HIV-1
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infection. The density qn,A of the CD4+ or CD8+ polyfunctionality scores (A), conditional on
the same set of covariates (W ), was estimated using our proposed HAL-based conditional density
estimator. The outcome regressionQ0,Y , which estimated the risk of HIV-1 infection by 24 months
(Y ) given polyfunctionality score and baseline covariates, was estimated using super learner [180]
(as detailed in Section 2.7). The pseudo-outcome regression, Gn, was fit via HAL.

Results of applying our estimation procedure separately to both the CD4+ and CD8+ polyfunc-
tionality scores are presented in Figures 5 and 6.
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TML estimates of mean counterfactual HIV−1 infection risk under shifted CD4+ polyfunctionality

Figure 5: TML estimates of counterfactual HIV-1 infection risk in vaccinees under stochastic in-
terventions on the CD4+ standardized polyfunctionality score. A linear working MSM (postulated
a priori), with estimated slope β̂TMLE, summarizes the effect of shifting the polyfunctionality score
on the HIV-1 infection risk, while a V-shaped spline model (constructed post-hoc) traces the profile
of counterfactual HIV-1 risk changes in δ.

Examination of the point estimates and confidence intervals of ψ0,δ in Figure 5 reveals that
downshifts in the CD4+ polyfunctionality score led to a small increase in estimated HIV-1 infection
risk among vaccine recipients. For example, examining the individual point estimates, a shift of
two standard units lower in the CD4+ polyfunctionality score was found to at least double the
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counterfactual risk of HIV-1 infection. The estimated slope parameter of the working MSM β̂TMLE

pointed to an estimated decrease in risk of about -0.3% per standard unit of CD4+ polyfunctionality
change.
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Figure 6: TML estimates of counterfactual HIV-1 infection risk in vaccinees under stochastic inter-
ventions on the CD8+ standardized polyfunctionality score. An linear working MSM (postulated
a priori), with estimated slope β̂TMLE, summarizes the effect of shifting the polyfunctionality score
on the HIV-1 infection risk, while a V-shaped spline model (constructed post-hoc) traces the profile
of counterfactual HIV-1 risk changes in δ.

The estimated result of shifts in the polyfunctionality score of the CD8+ immunological marker
displayed a markedly stronger relationship with the risk of HIV-1 infection, as detailed in Figure 6.
Positive shifts of the standardized CD8+ polyfunctionality score beyond those observed in the trial
do not appear to have a strong effect on HIV-1 infection risk; confidence intervals for counterfactual
risk estimates for all δ ≥ 0 overlap. On the other hand, shifts that lower the CD8+ polyfunctionality
score display a negative linear trend; moreover, confidence intervals for HIV-1 risk estimates at all
δ < 0 do not overlap with those of the estimate at δ = 0. While this may be taken to indicate that
decreases in CD8+ marker activity adversely affect the risk of HIV-1 infection, we note that this
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evidence should be weighed against the fact that all point estimates for δ ̸= 0 are, in fact, higher
than that at δ = 0; thus, an abundance of caution is warranted in drawing conclusions as to whether
shifted CD8+ polyfunctionality score would have improved the HVTN 505 vaccine. Still, it may
be informative that the counterfactual HIV-1 infection risk is over four times that observed in the
HVTN 505 trial at the largest negative shift considered.

Overall, the results of our analyses support the conclusions of Janes et al. [93] and Fong et
al. [54], further indicating that modulation of the CD4+ and CD8+ polyfunctionality scores may
reduce the risk of HIV-1 infection, with CD8+ polyfunctionality playing a particularly important
role. Notably, our analysis differs from the previous efforts in two ways: our estimates (i) are
based on a formal causal model, which provides an alternative estimand to summarize relationships
between immunogenic response and risk of HIV-1 infection, and (ii) leverage machine learning to
allow the use of flexible modeling strategies while simultaneously delivering robust inference.

2.6 Discussion

A possible criticism of our approach is that, in the context of vaccines, the immune responses we
consider may not be directly manipulable. Nevertheless, we believe the estimands that we con-
sider pass the important litmus test question: “If we knew the value of the estimand, could we do
something useful with it to advance science?” [61]. Knowledge of which immune responses may
lead to the largest decrease in infection or disease incidence would advance vaccine science and
stimulate new ideas for the next generation of vaccine research. Another challenge associated with
our approach, as with many examples in causal inference, is selecting a scientifically meaningful
intervention (i.e., modification of the exposure distribution). While we focused here on additive
shifts for simplicity, more scrutiny of this choice is warranted in practice. Scientific context could
provide some clues as to potentially meaningful shifts. For example, in the context of influenza
vaccination, past studies have shown that repeated vaccinations may have a dulling effect on im-
mune responses to new vaccines [165]. When such covariate data are available, they could be used
to define an appropriate shift, where the proposed shift is lessened for individuals with many prior
vaccinations.

Our analysis of the HVTN 505 trial could be improved in several respects. First, there was
participant dropout observed in the trial, which our analysis ignored. A more robust analysis
could leverage available covariate information to account for potentially informative missingness.
Further, while we investigate the effect of altering post-vaccination immune responses on HIV-1
infection, the issue of interference could limit identifiability of our target causal effects. In trials
conducted across geographically diverse sites or within short time frames, it may be reasonable to
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assume that the potential protection conferred by immune response in a given unit would not alter
the infection process in another unit, satisfying the lack of interference requirement for identifia-
bility of the causal parameter of interest. Indeed, there is a growing body of work on relaxing this
condition in causal inference [e.g., 88].

Beyond this issue, there are several other directions for potentially interesting extensions. First,
when a range of shifts is of interest as in our example, we summarized linear trends using working
marginal structural models. An alternative formulation could examine the stronger null hypothesis
that H0 : EYδ = EY , uniformly in δ. This is analogous to the hypothesis tests of Kennedy [95],
which deals with shifted binary exposure distributions. There, the authors propose a test of this
strong null hypothesis and describe methods for obtaining simultaneous confidence bands using the
multiplier bootstrap. Second, it is of interest to extend our estimation strategy to other effects based
on stochastic interventions, such as the population intervention (in)direct effects [37]. Extending
our estimation strategy to such settings and its application in analyzing other vaccine efficacy trials
will be the subject of future research.

2.7 Supplementary Material

Throughout our simulation experiments and data analyses, we rely on our txshift and haldensify
R packages, both discussed in Chapter 5 and available at https://github.com/nhejazi
/txshift and https://CRAN.R-project.org/package=haldensify, respectively.
The txshift R package implements our proposed efficient estimators of the counterfactual mean
outcome under a stochastic intervention (see Section 5.2 of Chapter 5), while our haldensify
R package provides a nonparametric estimator of the generalized propensity score (see Section 5.4
of Chapter 5).

https://github.com/nhejazi/txshift
https://github.com/nhejazi/txshift
https://CRAN.R-project.org/package=haldensify
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Algorithm for Efficient Targeted Minimum Loss Estimation

In Section 2.3, we introduced a novel algorithm for targeted minimum loss estimation with inverse
probability of censoring weights. We formalize our procedure in Algorithm 3:

Algorithm 3: Efficient updating procedure for IPCW-TML estimation
Result: Updated sampling mechanism estimate g⋆n,C and updated outcome mechanism

estimate Q⋆
n,Y

Input :

Initial estimate of the sampling mechanism: gn,C ∈ [0, 1]

Initial estimate of the outcome mechanism: Qn,Y ∈ R

Estimate of the EIF pseudo-outcome regression: Gn ∈ R

Estimate of the auxiliary covariate of the EIF: Hn ∈ R

Observed indicators of the sampling mechanism: C ∈ {0, 1}

Initialize g⋆n,C := 0 and Q⋆
n,Y := 0;

while g⋆n,C = 0 and Q⋆

n,Y = 0 do
Define a working logistic regression model
logit(gn,C,ξ) = logit(gn,C) + ξ(Gn/gn,C) : ξ ∈ R and evaluate the MLE ξn of the
parameter ξ, e.g., via iteratively reweighted least squares;

With the MLE ξn, extract predictions from this working model for the outcome, the
conditional mean of C given {Y,W}, constructing the updated estimate
g⋆n,C := gn,C,ξn;

Define a weighted working logistic regression model
logit(Qn,Y,ϵ) = logit(Qn,Y ) + ϵHn : ϵ ∈ R, with weights Ci/g⋆n,C(Yi,Wi), and
construct the MLE ϵn of the model parameter ϵ;

With the MLE ϵn, construct the updated estimate of the outcome, the conditional mean
of Y given {A,W}, by prediction to obtain Q⋆

n,Y := Qn,Y,ϵn .
end

Output:

g⋆n,C , an updated estimate of the sampling mechanism.

Q
⋆

n,Y , an updated estimate of the outcome mechanism.
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Note that in the two working logistic regression models defined above, the inputs gn,C and
Qn,Y are both treated as offsets (known parameter value equal to one); thus, the working models
are one-dimensional.

The outlined procedure includes two targeting steps. The first of these steps constructs an up-
date of the initial estimator of the second-phase sampling probability, g⋆n,C , based on the initial esti-
mate ofGn. This step ensures that the revised estimate satisfies

∑n
i=1{Gn(Yi,Wi)/g⋆n,C(Yi,Wi}{Ci−

g⋆n,C(Yi,Wi)} = 0. in a single step when a universal least favorable submodel [178] is used,
though an iterative procedure based on locally least favorable parametric submodels may be used
to achieve the same result. In the second step, the updated outcome regression Q⋆

n,Y is generated
based on the conditional density estimate qn,A; the inclusion of weights in the regression ensures
that

∑n
i=1 Ci/gn,C(Yi,Wi)DF

n,i = 0.

Summarization via Working Marginal Structural Models

Estimation of ψ0,δ for a single pre-specified shift δ may be unsatisfactory in some contexts, as it
does not provide information concerning a dose-response relationship between exposure and out-
come. Thus, to develop an understanding of a dose-response pattern in the context of stochastic
interventions, it may be informative to estimate the counterfactual mean outcome across several
values of δ. In the context of HVTN 505, we consider estimation of a grid of counterfactual
means ψ0 = (ψn,δ1 , . . . , ψn,δK

) and examine how the risk of HIV infection varies with choice of
δ over a fixed grid, i.e., δk ∈ {δ1, . . . , δK}. After estimating the counterfactual mean for each
δk, a summary measure relating the stochastic interventions to the mean counterfactual outcomes
may be constructed by projection onto a working marginal structural model (MSM). For exam-
ple, we might consider a (possibly weighted) least-squares projection on the linear working model
mβ(δ) = β0 + β1δ, in which case the parameter β1 corresponds to the linear trend in mean coun-
terfactual outcomes as a function of the δk.

More generally, we can define β(δ) = argminβ∈Rd

∑
δ∈{δ1,...,δK} h(δ){ψ0,δ − mβ(δ)}2, for a

user-selected weight function h(δ). We note that adjustment of the weight function, as well as the
functional form of mβ(δ), allow for a wide variety of working models to be considered. Alterna-
tively, β(δ) can be viewed as the solution of

0 = U(β, ψ) =
∑

δ∈{δ1,...,δK}
h(δ) d

dβ
mβ(δ){ψ0,δ −mβ(δ)}.

The goal is to make statistical inference on the parameter β. We note that this approach does not
assume a linear dose-response curve, but rather uses a working model to summarize the relation-
ship between exposure and outcome [115]. This approach is distinct from that of Haneuse and
Rotnitzky [71], whose proposal involving MSMs pertains specifically to parametric models.
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To estimate β, we assume access to the TML or one-step estimates ψn = (ψn,δ1 , . . . , ψn,δK
)

for each δk. The estimate βn of β is the solution in β of the equation U(β, ψn) = 0. To
derive the limit distribution of βn, let D0,ψ denote a vector whose kth entry is the EIF associ-
ated with parameter ψ0,δk

. The delta method implies that the influence function of βn is Dβ =
[− d

dβ
U(β, ψ0)−1] d

dψ0
U(β, ψ0)Dψ0 , and that n1/2(βn − β) converges in distribution to a mean-zero

Gaussian random variable with variance Σ = EP0{Dβ(O)2}. The empirical covariance matrix of
D0,ψ evaluated at nuisance parameter estimates serves to estimate Σ.

Proof of Theorem 1

We now examine a proof of the theorem establishing conditions for the weak convergence of our ef-
ficient estimators. Building upon Section 2.2, note that the full data parameter may be expressed as
a mapping ΨF : MX → R and that ΨF (PX

0 ) ≡ ΨF (Q0,Y ), since the parameter mapping depends
on PX

0 only through the functional Q0,Y . We recall that the EIF DF (Q0,Y , g0,A) coincides with the
canonical gradient of the parameter mapping ΨF : MX → R, since a regular asymptotically lin-
ear estimator with influence function equal to the canonical gradient is asymptotically efficient [16,
181]. Note further that the observed data parameter is defined such that Ψ(P0) ≡ ΨF (PX

0 ), where
the observed data parameter mapping Ψ : M → R is pathwise differentiable at a distribution P in
the statistical model with a gradient given by the EIF:

D(G0, g0,C , D
F (Q0,Y , q0,A))(o) = C

g0,C(y, w)
DF (Q0,Y , q0,A)(x) − G0(y, w)

g0,C(y, w)
(C − g0,C(y, w)) .

The class of all gradients of Ψ at P is given by {D(G0, g0,C , D
F (PX)) : DF (PX)} whereDF (PX)

varies over all gradients of the full data parameter ΨF at distributions PX ∈ MX . As DF varies,
G0 also necessarily varies since it is defined as the conditional mean of DF given {C = 1, Y,W}.
In particular, if the full data model MX is nonparametric, then there is only one full data gradient,
which is the canonical gradient (or EIF) of Ψ at P .

In the sequel, let ∥f∥2 = E{f(O)2}1/2 denote the L2(P0) norm of a P0-measurable function f ,
define G̃0 := EP0 [DF (Q⋆

n,Y , qn,A)(O) | C = 1, Y,W ], and let Gn be the estimate of G̃0. An exact
characterization of the second-order remainder for the full data parameter ΨF (PX) − ΨF (PX

0 ) is
given by

RF
2 (Qn,Y , qn,A, Q0,Y , q0,A) := ΨF (Qn,Y ) − ΨF (Q0,Y ) + EPX

0
[DF (Qn,Y , qn,A)]

while the exact second-order remainder for the observed data parameter Ψ(P ) − Ψ(P0) is analo-
gously defined

R2(P, P0) := Ψ(P ) − Ψ(P0) + EP0 [D(Gn, gn,C , D
F (Qn,Y , qn,A))].
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Combining these definitions, the exact second-order remainder for the observed data parameter
may be expressed in terms of the second-order remainder of its full data counterpart:

R2(P, P0) = RF
2 (Qn,Y , qn,A, Q0,Y , q0,A) + EP0

(gn,C − g0,C

gn,C

)
(Gn − G̃0)

 .
Assume the following conditions:

Assumption 1. EPnD(Gn, g
⋆
n,C , D

F (Q⋆

n,Y , qn,A)) = 0.

Assumption 2. g0,C > ζ > 0 and g⋆n,C > ζ with probability tending to 1 for some ζ > 0.

Assumption 3. ∥Gn − G̃0∥P0 = oP (n−1/4) and ∥g⋆n,C − g0,C∥P0 = oP (n−1/4).

Assumption 4. RF
2 (Q⋆

n,Y , qn,A, Q0,Y , q0,A) = oP (n−1/2).

Assumption 5. ∥D(Gn, g
⋆
n,C , D

F (Q⋆
n,Y , qn,A)) −D(G0, g0,C , D

F (Q0,Y , q0,A))∥P0 = oP (1).

Assumption 6. Let F⋆
v (M) be the class of cadlag functions f on a cube [0, τ ] ⊂ Rd (for some

integer d), for which the sectional variation norm ∥f∥⋆v is bounded by a universal constant M <

∞. Assume that D(Gn, g
⋆
n,C , D

F (Q⋆
n,Y , qn,A)) ∈ F⋆

v (M) with probability tending to 1 (n.b., the
definition F⋆

v (M) can be replaced by any Donsker class).

Proof [Theorem 1: asymptotic linearity and efficiency of the TML estimator ψ⋆n,δ] Under con-
ditions 1–6, we have EPnD(Gn, g

⋆
n,C , D

F (Q⋆
n,Y , qn,A)) = oP (n−1/2); moreover, by definition of

R2(P, P0):

ΨF (Q⋆

n,Y ) − ΨF (Q0,Y ) = − EP0 [D(Gn, g
⋆
n,C , D

F (Q⋆

n,Y , qn,A))]

+RF
2 (Q⋆

n,Y , qn,A, Q0,Y , q0,A) + EP0


g⋆n,C − g0,C

g⋆n,C

 (Gn − G̃0)

 .
Combining with condition 1, we have

ΨF (Q⋆

n,Y ) − ΨF (Q0,Y ) =EPn [D(Gn, g
⋆
n,C , D

F (Q⋆

n,Y , qn,A))] − EP0 [D(Gn, g
⋆
n,C , D

F (Q⋆

n,Y , qn,A))]

+RF
2 (Q⋆

n,Y , qn,A, Q0,Y , q0,A) + EP0


g⋆n,C − g0,C

g⋆n,C

 (Gn − G̃0)


The sum of the first two terms equals EPn [D(G0, g

⋆
0,C , D

F (Q⋆

0,Y , q0,A)(O)] + oP (n−1/2) as im-
plied by conditions 5 and 6. Condition 4 ensures the third term equals oP (n−1/2). Conditions 2
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and 3 imply that the fourth term equals oP (n−1/2), which completes the proof. An analogous proof
holds for the one-step estimator ψ+

n,δ when the initial estimates Qn,Y and gn,C are used instead of
their revised counterparts. Here, we do not require condition 1, as our proposed estimation proce-
dure guarantees that it will be attained.

Results of Additional Simulation Studies

Simulation #1b: Comparing Estimator Variants under Shifts δ = −0.5 and δ = 0

In the results reported in Section 2.4, for our first simulation study under the shift δ = 0.5, we
noted excellent performance of our proposed estimator variants under several standard metrics,
including

√
n-bias, n-MSE, and the coverage of confidence intervals. To further assess the quality

of performance of our augmented estimators, we examine the same six estimator variants under the
shifts δ ∈ {−0.5, 0}. Details of the simulation study have been previously described in Section 2.4.
As before, results are reported based on aggregation across 1000 repetitions. The results of these
numerical investigations are reported in Figures 7 and 8.
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Figure 7: Results of numerical simulations comparing six estimation strategies for ψ0,δ for δ = 0.
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Figure 8: Results of numerical simulations comparing six estimation strategies for ψ0,δ for δ =
−0.5.

Both the reweighted estimators of Rose and van der Laan [147] and our augmented estima-
tors display the expected level of performance when the sampling mechanism is estimated via
a correctly specified parametric model, standing out against the performance of their unadjusted
counterparts. As in the case of δ = 0.5, the reweighted estimators display coverage exceeding
the desired 95% level, while their augmented analogs cover at exactly the nominal level. This
suggests again that the reweighted estimators exhibit an inflated variance relative to that of our
augmented estimators. The lower panel of each figure visualizes differences in the performance of
the estimators when the sampling mechanism is estimated flexibly via HAL. These results reveal a
significant discrepancy in the performance of the reweighted and augmented estimators, with our
augmented one-step and TML estimators outperforming their reweighted counterparts in terms of√
n-bias, n-MSE, and coverage. In this second case, we note that the TML estimators appear to

exhibit a small degree of estimation instability at n = 100, displaying larger n-MSE in both the
reweighted and augmented variants. We conjecture that this performance is due to an instability
induced by the targeting procedure — in practice, this could be ameliorated by alterations to the
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convergence criterion. Overall, the results of these numerical investigations do not differ substan-
tially from those presented in Section 2.4, establishing that our augmented estimators improve
upon alternative estimation strategies when nonparametric estimation of g0,C is performed.

Simulation #2a: Comparing estimators in a Setting Inspired by the HVTN 505 Trial

For use in real data analysis, we examine only our augmented one-step and TML estimators. We
used the HVTN data to calibrate the following data-generating mechanism:

W1 ∼ Normal(26.6, 5.7);W2 ∼ Poisson(40);W3 ∼ Bern(0.4);W4 ∼ Bern(0.3)
A | W ∼ Normal(−1.37 + 0.004W1 + 0.015W2 + 0.05W3 + 0.25W4, 0.22)

Y | A,W ∼ Bern
(
expit(−2.9 − 0.0013W1 − 0.0016W2 + 0.0678W3 + 0.039W4 − 0.033A)

)
C | Y,W ∼

Bern
(
expit(−2.45 − 0.027W1 + 0.012W2 + 0.39W3 + 0.166W4)

)
, Y = 0

1, Y = 1
.

Here, each of the structural equations were generated by fitting parametric linear or logistic mod-
els for E[A | W ], E[Y | A,W ] and E[C | Y = 0,W ], the means of the CD4+ immunogenic
marker, HIV-1 infection risk at month 24, and probability of inclusion in the second-phase sample,
respectively. Meanwhile, the forms of W1, . . .W4 were based on examination of the empirical
distributions of the relevant baseline covariates. Specifically, with respect to the data from the
HVTN 505 trial, W1 mimics BMI, W2 is based on participants’ age, W3 is a binarized clinical
behavioral risk score for HIV-1 infection, and W4 behaves as the binarized race/ethnicity. For con-
sistency with the observed rate of HIV infection in the HVTN 505 trial, the outcome was made
to have a relatively rare event rate, with P(Y = 1 | A,W ) ≈ 0.059. We considered a setting
where we observed n = 1400 i.i.d. observations, approximately matching the sample size of the
vaccinated arm in HVTN 505. Estimator performance was assessed and reported by aggregating
across 1000 repetitions. Under this data-generating mechanism, the true parameter values were ap-
proximated as ψ0,δ = {0.0627, 0.0617, 0.0609, 0.0598, 0.0589, 0.0580, 0.0571, 0.0561, 0.0554} for
δ ∈ {−2.0,−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0}, respectively. An analogous setting, in which
the effect of exposure on the outcome was removed, yielded similar results.

The proposed estimators were constructed by using the highly adaptive lasso to estimate the
sampling mechanism gn,C , the exposure mechanism qn,A, the outcome mechanism Qn,Y , and the
pseudo-outcome regression Gn. We compared the proposed one-step and TML estimators in terms
of their bias, MSE, and coverage of 95% confidence intervals, summarizing the results in Figure 9.
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Figure 9: Results of numerical simulations comparing our two proposed estimators of ψ0,δ for a
grid of δ, across 1000 Monte Carlo simulations at n = 1400.

Inspection of the bias and MSE indicates that both of our proposed estimators display adequate
performance, with small finite-sample bias and mean squared error. In terms of bias, the TML
estimator outperforms the one-step at δ ≥ −0.5 while the one-step provides better performance at
δ ≤ −0.5. Given the exceedingly small scale of the bias, we conclude this to be a particularity of
this data-generating mechanism, not to be used as a guiding principle in practice. The bias appears
to dominate the MSE, with the parabolic forms of the MSE curves having their respective minima
at points at which each of the estimators is unbiased. Here, the two estimators achieve comparable
performance at δ ≤ 0 but the TML estimator outperforms the one-step at other values of δ. Sim-
ilarly, in terms of empirical coverage, both estimators provide coverage near the nominal rate for
δ ≤ 0.5 but the performance of the TML estimator suffers less at larger δ. Importantly, we note that
coverage at the nominal rate is only to be expected asymptotically and is not guarateed by theory
in the finite-sample setting presently under consideration. From these numerical investigations, we
concluded that our augmented estimators are both well-suited to estimating ψ0,δ in the context of a
re-analysis of data from the HVTN 505 trial.

Simulation #2b: Comparing estimators in a Setting Inspired by the HVTN 505 Trial, with
No Treatment Effect

To further assess the performance of our augmented estimators in a scenario like the HVTN 505
trial, we replace the structural equation for the outcome Y with a draw from the Bernoulli distribu-
tion parameterized as Bern(p = expit(−2.8 − 0.0013W1 − 0.0016W2 + 0.0678W3 + 0.039W4))
to achieve a setting in which there is no effect of the treatment on the outcome. In this case, the
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outcome process is relatively rare, with P(Y = 1 | A,W ) ≈ 0.053. The structural equations for
other components of the observed data O are unaltered. In this setting, the true parameter value
was approximated to be ψ0,δ = 0.0526 regardless of the value of δ. We present the results of
assessing our augmented estimators in Figure 10.
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Figure 10: Results of numerical simulations comparing our two proposed estimators of ψ0,δ for a
grid of δ, across 1000 Monte Carlo simulations at n = 1400.

As the ground truth of the effect of shifting the post-vaccination activity of the CD4+ and CD8+
immunogenic markers on the risk of HIV-1 infection is unknown in the HVTN 505 trial, we assess
our estimators in this scenario so as to be sure of there performance when no effect of treatment
is present. Estimation of all nuisance parameters is performed using exactly the same techniques
outlined previously in Section 2.7.

In terms of bias and MSE, our proposed estimators display adequate performance. With re-
spect to both metrics, the TML estimator outperforms the one-step uniformly in δ, though both
estimators display extremely low bias and MSE. In terms of the coverage of 95% confidence in-
tervals, the TML estimator again outperforms the one-step estimator, though only very slightly.
Unlike the results presented in Section 2.7, the performance of the estimators, in terms of all three
metrics, appears stable across δ, providing further evidence that the phenomenon appearing in that
numerical study was a particularity of the effect of A on Y under this data-generating mechanism.
The improved performance of the TML estimator over the one-step estimator is in line with prior
demonstrations of the enhanced finite-sample performance of TML estimators [183]. As with the
numerical investigations presented in Section 2.7, these results suggest that our augmented estima-
tors will perform well enough to allow accurate estimation of ψ0,δ when applied to data from the
HVTN 505 trial.
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Super Learner Ensemble Models for Qn,Y in the HVTN 505 Data Analysis

As noted in Section 2.5, for both the CD4+ and CD8+ analyses, the estimated outcome mechanism
Qn,Y was constructed from an ensemble model based on the super learner algorithm [180]. The
cross-validation selector that forms the basis of the super learner has been shown to exhibit unique
theoretical guarantees, including asymptotic equivalence to the oracle selector [175, 176, 187], that
make its use preferable over other ensemble learning approaches.

A rich library of candidate classification algorithms was considered in the super learner en-
semble model for Qn,Y . These included ℓ1-penalized lasso regression [167, 55]; ℓ2-penalized
ridge regression [168, 86, 55]; three elastic net regressions weighting the ℓ1 penalty at α ∈
{0.25, 0.50, 0.75} and the ℓ2 penaly at (1 − α) [206, 55]; random forests [18] with 50, 100, and
500 trees based on its implementation in the ranger R package [198]; extreme gradient boosted
trees with 20, 50, 100, and 300 fitting iterations [26]; multivariate adaptive polynomial spline re-
gression [101, 161]; multivariate adaptive regression splines [57]; generalized linear models with
Bayesian priors on parameters; a multilayer perceptron [149]; and the highly adaptive lasso [171,
13, 32]. The implementation of the super learner algorithm in the sl3 R package [33] was used,
and weights assigned to each learning algorithm by the super learner are given in Tables 2.1 and 2.2
for the CD4+ and CD8+ analyses, respectively.



CHAPTER 2. CORRECTING FOR BIASED SAMPLING 58

Table 2.1: Weights and risk estimates assigned to each individual learning algorithm in the en-
semble model for Qn,Y used in the reported re-analysis of the CD4+ immunogenic marker.

Learner Weight Min. Fold Risk Mean CV-Risk Max. Fold Risk
Ridge (ℓ2 penalized) 0.147 0.015 0.036 0.052
Lasso (ℓ1 penalized) 0.000 0.015 0.036 0.052
Elastic net (α = 0.25) 0.116 0.015 0.036 0.051
Elastic net (α = 0.50) 0.000 0.015 0.036 0.051
Elastic net (α = 0.75) 0.181 0.015 0.036 0.051
Random forest (50 trees) 0.000 0.062 0.097 0.173
Random forest (100 trees) 0.000 0.050 0.093 0.153
Random forest (500 trees) 0.000 0.061 0.093 0.158
xgboost(20 iterations) 0.000 0.012 0.072 0.165
xgboost(50 iterations) 0.000 0.012 0.080 0.181
xgboost(100 iterations) 0.010 0.013 0.088 0.192
xgboost(500 iterations) 0.000 0.012 0.098 0.204
Highly adaptive lasso (default) 0.014 0.064 0.074 0.084
Highly adaptive lasso (custom) 0.000 0.066 0.075 0.084
Multivariate regression splines 0.000 0.050 0.086 0.131
Polynomial spline regression 0.208 0.015 0.036 0.053
Multilayer perceptron network 0.000 0.015 0.037 0.055
GLM with Bayesian priors 0.323 0.015 0.036 0.051
Super Learner 1.000 — — —

In the super learner ensemble model for the outcome regression in the CD4+ analysis, the three
best learning algorithms were a GLM with Bayesian priors on parameter estimates, a polynomial
spline regression model, and an elastic net regression model that favored the ℓ1 (lasso) penalty over
the ℓ2 (ridge) penalty. Another variant of elastic net regression, which favored the ℓ2 penalty over
the ℓ1 penalty, and ridge regression were also given nontrivial weights in the ensemble model. A
variant of extreme gradient boosting and the highly adaptive lasso received low weights, while all
other candidate algorithms in the library were assigned weights of zero.
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Table 2.2: Weights and risk estimates assigned to each individual learning algorithm in the en-
semble model for Qn,Y used in the reported re-analysis of the CD8+ immunogenic marker.

Learner Weight Min. Fold Risk Mean CV-Risk Max. Fold Risk
Ridge (ℓ2 penalized) 0.161 0.013 0.037 0.075
Lasso (ℓ1 penalized) 0.161 0.011 0.037 0.075
Elastic net (α = 0.25) 0.003 0.012 0.037 0.075
Elastic net (α = 0.50) 0.000 0.014 0.037 0.076
Elastic net (α = 0.75) 0.131 0.014 0.037 0.074
Random forest (50 trees) 0.090 0.053 0.088 0.129
Random forest (100 trees) 0.055 0.048 0.089 0.136
Random forest (500 trees) 0.119 0.049 0.088 0.127
xgboost(20 iterations) 0.000 0.043 0.064 0.112
xgboost(50 iterations) 0.000 0.036 0.074 0.128
xgboost (100 iterations 0.000 0.031 0.076 0.134
xgboost (300 iterations) 0.000 0.029 0.086 0.146
Highly adaptive lasso (default) 0.000 0.046 0.078 0.115
Highly adaptive lasso (custom) 0.000 0.044 0.078 0.132
Multivariate regression splines 0.000 0.029 0.100 0.159
Polynomial spline regression 0.000 0.015 0.040 0.080
Multilayer perceptron network 0.067 0.007 0.040 0.085
GLM with Bayesian priors 0.214 0.016 0.037 0.073
Super Learner 1.000 — — —

In the CD8+ analysis, the three best learning algorithms, chosen by the super learner ensemble
model for the outcome regression, were a GLM with Bayesian priors on parameter estimates, ridge
regression, and lasso regression. Other algorithms that were assigned nontrivial weights included
an elastic net regression model that favored the ℓ1 (lasso) penalty over the ℓ2 (ridge) penalty and a
random forest with 500 trees. A variant of elastic net regression, random forests with 50 and 100
trees, and a multilayer perceptron all received low weights, while all other candidate algorithms in
the library were assigned weights of zero.
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Chapter 3

Stochastic Interventional Vaccine Efficacy

3.1 Introduction

The core ideas of Chapter 2 can form a novel approach to studying immune correlates of protection
— those immunologic markers causally antagonistic to the process of infection [132]. In vaccine
efficacy trials of infectious diseases, such analyses can aid in developing a more nuanced under-
standing of the differing roles that immunologic markers can play in impacting vaccine efficacy
and, beyond this, elucidate the mechanism by which the activities of these markers may afford
protection. This analytic framework quantifies vaccine efficacy as the effect attributable to shifting
(upwards or downwards) the immune response distribution (i.e., immunologic marker activity) in
vaccinees [81], revealing the complex interplay between vaccination, immunologic marker activity,
and infection.

To formalize, let us denote by the random variable O = (W,A, S, Y ) the data collected on a
single individual in a randomized vaccine efficacy trial, where W are clinically relevant baseline
risk factors for infection (e.g., age, body mass index), A is the randomized assignment to placebo
or vaccine, S is the immune response activity of an antibody of interest, and Y is an indicator
of infection. Throughout, we assume that S is the scalar-valued activity of a particular antibody,
as quantified by an established immunoassay, and is a candidate immune correlate of protection.
In measuring S, we further assume that biological material (e.g., drawn blood) for evaluating the
activity of the immunologic marker is taken at an a priori-specificed time post-vaccination. Since
such trials often measure the time-to-infection, the outcome process is generally a composite time-
to-event quantity {T̃ = min(TF , TC),∆ = I(TF < TC)}, where TF and TC are the (mutually
unobservable) failure and censoring times, respectively, and ∆ is simply the indicator of observed
failure. We simplify this to Y := I(∆ = 1) (i.e., observed infection) by the end of the trial.

Leveraging the framework developed in Chapter 2, we formulate and evaluate vaccine efficacy
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parameters in the context of efficacy trials of the vaccines produced to counteract the COVID-19
pandemic. The central goal of this and related statistical analyses [e.g., 11, 59] is to derive reliable,
parsimonious surrogate endpoints [135, 60] based on the immunologic marker activity measured
by a given immunoassay, effectively narrowing the set of candidate immune correlates of protection
and curbing the time and resources consumed by vaccine efficacy trials. Alternative techniques and
shared details of the data analytic approach are outlined in the immune correlates statistical analysis
plan of the COVID-19 Vaccine Prevention Network (CoVPN) [63], which recently reported the
results of its immune correlates analysis of the vaccine efficacy trial of the mRNA-1273 vaccine [4,
64]. Each of the outlined analyses is implemented in the R programming language [137], all
publicly available at https://github.com/CoVPN/correlates_reporting, which
incorporates version control and continuous integration for automated code checking and analysis
report generation.

3.2 Formulating Vaccine Efficacy Parameters

Taking the outcome of interest Y to be the indicator of a COVID-19 disease endpoint of interest by
a pre-specified time (e.g., Y ∈ {0, 1} by Day 57 post-vaccination), we consider the counterfactual
outcome Y (a, s) generated by a hypothetical intervention setting both the randomized vaccina-
tion assignment (i.e., A = a) and the immunologic marker activity (at the specified timepoint) S
to a random draw from an analyst-specified distribution. Consider the shift δ to be a hypothet-
ical change in the standardized response activity of the immunologic marker S in question. In
particular, we may conceive of the effect on risk of a given COVID-19 endpoint of a controlled in-
tervention shifting the distribution of an immunologic response by δ units, for externally specified
values of δ. Such interventions on vaccine-induced immunologic marker activity can be viewed
as the hypothetical results of potential changes to the candidate vaccine, for example, change in
dose or vaccine re-formulation. As the immunologic marker activity at δ = 0 corresponds to that
induced by the curent vaccine, we can consider counterfactual scenarios in which changes to the
vaccine result in relatively heightened (if δ > 0) or muted (if δ < 0) immune response.

To query the counterfactual risk of the COVID-19 endpoint of interest under the hypothetical
modified vaccine, that is, the vaccine inducing immune response S + δ for δ ∈ R, we naturally
consider the mean of the counterfactual outcomes of the form Y (1, S(1)+δ), corresponding to the
risk in vaccinees receiving the hypothetical vaccine. A similar approach, based on the controlled
direct effect [11], evaluates the effect of an intervention that sets S = s statically, thereby assuming
that it is possible to set the post-intervention immune response value s for all individuals in the
population. Unfortunately, this rather stringent assumption may be unrealistic when s is large

https://github.com/CoVPN/correlates_reporting
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and there exist subpopulations with within which the modified vaccine fails to elicit a strongly
immunogenic response. The stochastic interventional approach presently described makes a far
laxer assumption on the intervention: The intervention need only shift immune responses relative
to the observed value for a given individual, allowing for individual-specific (or subpopulation-
specific) changes in vaccine-induced immunogenicity.

Under standard identification assumptions [39, 81], such as no unmeasured confounding and
positivity, generally required for all causal analyses, the counterfactual risk E[Y (1, S(1) + δ)] is
identified by

E[P(Y = 1 | A = 1, S = S + δ,W = w) | A = 1,W ] . (3.1)

By examining this quantity across a range of feasible δ values provides insight into the relative
contribution of a given immunologic response marker in preventing the manifestation of the end-
point of interest. Noting that P(Y (0) = 1) = P(Y = 1 | A = 0) (in view of vaccine versus
placebo randomization, as given in [59]) and that this quantity may be estimated in the same way
as for the controlled vaccine efficacy analyses, we define stochastic interventional vaccine efficacy
(SVE) as

SVE(δ) = 1 − E[P(Y = 1 | A = 1, S = S + δ,W = w) | A = 1,W ]
P(Y (0) = 1)

. (3.2)

3.3 Considerations for Statistical Estimation

Hejazi et al. [81] proposed nonparametric estimators that rely on estimates of the outcome regres-
sion and the conditional density of the immune response in vaccinated participants. Their estima-
tors efficiently account for two-phase sampling of immune responses and are implemented in the
txshift package [76] for the R language and environment for statistical computing [137], freely
available through both GitHub at https://github.com/nhejazi/txshift and the Com-
prehensive R Archive Network at https://CRAN.R-project.org/package=txshift.

To assess vaccine efficacy against COVID-19 endpoints, we apply these estimators to several
immunologic markers measured at Day 57, controlling for a common set of baseline risk factors
in the interest of alignment with other CoVPN analyses. For further details on the immunologic
markers and risk factors, as well as key details on study design, we refer the interested reader
to the comprehensive statistical analysis plan of Gilbert et al. [63]. Similar to the natural effects
approach of Benkeser, Díaz, and Ran [11], our implementation leverages low-dimensional risk
factors alongside parametric regression strategies and flexible conditional density estimation for
endpoints with fewer than 100 observed cases (pooling across trial arms); however, more flexible
statistical learning techniques are employed for modeling the outcome process for endpoints with
a greater number of observed cases.

https://github.com/nhejazi/txshift
https://CRAN.R-project.org/package=txshift
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In particular, conditional density estimates of immune response markers are based principally
on a nonparametric estimation strategy that constructs the conditional density through estimates
of the conditional hazard of the discretized immune response marker values [81, 77], as per Al-
gorithm 2 of Chapter 1; this approach is an extension of the proposal of Díaz and van der Laan
[41]. A Super Learner ensemble [180] of variants of this nonparametric conditional density es-
timator and the semiparametric location-scale conditional density estimation procedure discussed
in Algorithm 1 of Chapter 1, as. implemented in the sl3 R package [33]. In settings with lim-
ited numbers of case endpoints, the outcome process is modeled as a Super Learner ensemble of
a library of parametric regression techniques [per 69], while the algorithm library is augmented
with flexible regression techniques — including, for example, lasso and ridge regression [167,
168, 86], elastic net regression [206, 55], random forests [18, 198], extreme gradient boosting ma-
chines [26], multivariate adaptive polynomial and regression splines [57, 161, 101], and the highly
adaptive lasso [171, 13, 78, 32] — as the number of case endpoints grows. The choice of algorithm
library is coordinated across the CoVPN correlates of protection analyses [63].

Output of the analyses will be presented as point and 95% confidence interval estimates of
E[Y (1, S(1) + δ)] and of SVE(δ) over the values of s for each of the Day 57 immunologic mark-
ers, for each of a range of δ spanning the interval [−1, 1] on the standard unit scale for each
immunologic marker. As with related analyses, in the context of data from real-world COVID-19
trials, these analyses are to be carried out only if diagnostics support plausibility of the positivity
assumption. Notably, however, the positivity assumption for the stochastic interventional effects
is unique. Where the positivity assumption for effects defined by static interventions requires a
positive probability of treatment assignment across all strata defined by baseline factors (i.e., that
a discretized immune response value be possible regardless of baseline factors), the positivity as-
sumption of our effects is

si ∈ S =⇒ si + δ ∈ S | A = 1,W = w

for all w ∈ W and i = 1, . . . n. In particular, this positivity assumption does not require that the
post-intervention exposure density, q0,S(S− δ | A = 1,W ), place mass across all strata defined by
W . Instead, it requires that the post-intervention exposure mechanism be bounded, that is,

P{q0,S(S − δ | A = 1,W )/q0,S(S | A = 1,W ) > 0} = 1,

which may be readily satisfied by a suitable choice of δ.
Importantly, the static intervention approach may require consideration of counterfactual vari-

ables that are scientifically unrealistic. Namely, it may be inconceivable to imagine a world where
every participant exhibits high immune responses, given the phenotypic variability of participants’
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immune systems. This too may be resolved by considering an intervention indexed not by δ but
by δ(W ), that is, one in which the choice of the shift is itself a function of the baseline covariates
W [81, 39, 71, 40].

3.4 Application to the COVID-19 Pandemic

We estimate the counterfactual mean of symptomatic COVID-19 infection under posited shifts in
the measured activity levels of each of immunologic markers that are candidate mechanistic cor-
relates of protection (mCoP), as defined by the aims of the CoVPN statistical analysis plan [63].
By shifting the standardized immunologic activity levels by standard unit shifts along the grid
{−1,−0.5, 0, 0.5, 1}, we can assess the degree to which vaccines that modulate mCoP immuno-
logic marker activity to these modified levels could mitigate symptomatic COVID-19 infection in
terms of both counterfactual stochastic interventional risk and vaccine efficacy (VE). In the sequel,
we demonstrate our approach using the Day 57 activity of the spike protein binding and pseudo-
neutralizing antibodies.
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Figure 11: Stochastic interventional risk estimates, with confidence intervals, for the spike protein
binding antibody at Day 57.

Estimation of the stochastic interventional risk for the spike protein antibody across several
values of δ reveals a monotonic decrease in risk with increases in the activity of this immunologic
marker. In particular, at δ = 0, for the vaccine administered in the current efficacy trial, the
estimated risk of symptomatic COVID-19 infection at Day 57 is 0.5%. For positive values of
δ, reflecting increased activity of the spike protein antibody, the estimated risk of the adverse
endpoint decreases towards zero. This suggests that improvements to the dosage or formulation of
the current vaccine may be capable of improving its efficacy further still. Considering now negative
values of δ, it appears that even moderate decreases in the modulation of this antibody marker can
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significantly limit the efficacy of the vaccine against infection. For example, with δ = −0.5, the
estimated risk doubles to 1.00%; moreover, risk appears to grow sharply with further decreases in
marker activity. To summarize the trend in the change in estimated risk across the grid in δ, we note
that projection onto a working marginal structural model (MSM; as per Chapter 2) yields a linear
form with slope β̂TMLE = −0.0086 and corresponding p-value of p < 0.001 for the hypothesis test
of no trend (i.e., H0 : β = 0 and H1 : β ̸= 0).
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Figure 12: Stochastic interventional VE estimates, with confidence intervals, for the spike protein
binding antibody at Day 57.

The evaluation of stochastic interventional VE is a process of re-scaling the corresponding
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stochastic interventional risk estimates by the risk of infection in the placebo arm of the trial, as
per equation (3.2). Accordingly, the estimated VE provides information similar to that provided
by the risk estimates. In the case of the spike protein antibody, we find that the VE produced by
the administered vaccine (i.e., at δ = 0) is just over 90%. What’s more, upwards shifts of the
activity of this marker have moderate impacts on the estimated VE, with vaccine efficacy estimates
of roughly 95% and 97% for δ = 0.5 and δ = 1, respectively. While this analysis suggests
that reconstituting a future vaccine so as to specifically increase the activity of the spike protein
antibody may lead to very limited increases in protection, the risk estimates at downwards shifts
in its activity strongly suggest that all vaccines ought to seek to module this marker at the level
at which the current vaccine does so. Specifically, a decrease of just a half standard unit (i.e.,
δ = −0.5) leads to an estimated risk of 80%, while a decrease of a full standard unit (δ = −1)
yields a risk estimate of about 65% — 10% and 25% lower, respectively, than the risk estimate
for the administered vaccine. Examination of how VE estimates vary along the grid in δ reveals
a sharp increasing trend for the projection of the VE estimates onto a linear working MSM. The
slope parameter of the MSM is estimated to be β̂TMLE = 0.1616 with a p-value of p < 0.01 for the
hypothesis test of no trend.
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Figure 13: Stochastic interventional risk estimates, with confidence intervals, for the pseudo-
neutralizing antibody at Day 57.

Estimation of the stochastic interventional risk for the pseudo-neutralizing antibody across
the grid in δ reveals that the estimated risk is largely insensitive to hypothetical changes in the
marker activity. To start, considering δ = 0 (i.e., the activity of S induced by the currently ad-
ministered vaccine), estimated risk of symptomatic COVID-19 infection at Day 57 is 0.5%. The
estimated stochastic interventional risk lies close to this value for other values of δ, suggesting
that the pseudo-neutralizing antibody may not be a suitable target for designing future vaccines to
further curb the risk of symptomatic COVID-19 infection.
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Figure 14: Stochastic interventional VE estimates, with confidence intervals, for the pseudo-
neutralizing antibody at Day 57.

Similarly to the estimates of the stochastic interventional risk for shifting of the pseudo-neutralizing
antibody, the stochastic VE estimates all lie within roughly 3% of the estimated VE at the null shift
of δ = 0. Examining the VE estimate at that shift, we note an efficacy of roughly 90%, with no
sharp or consistent changes in VE estimates at upwards or downwards shifts of the activity of
this marker. Consistent with the risk analyses, these VE estimates suggest the pseudo-neutralizing
antibody to be an unpromising candidate for targeting by future vaccines.
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Chapter 4

Stochastic Interventional Causal Mediation

Causal mediation analysis has historically been limited in two important ways: (i) a focus has
traditionally been placed on binary exposures and static interventions, and (ii) direct and indirect
effect decompositions have been pursued that are only identifiable in the absence of intermediate
confounders affected by exposure. We present a theoretical study of an (in)direct effect decom-
position of the population intervention effect, defined by stochastic interventions jointly applied
to the exposure and mediators. In contrast to existing proposals, our causal effects can be evalu-
ated regardless of whether a exposure is categorical or continuous and remain well-defined even
in the presence of intermediate confounders affected by exposure. Our (in)direct effects are iden-
tifiable without a restrictive assumption on cross-world counterfactual independencies, allowing
for substantive conclusions drawn from them to be validated in randomized controlled trials. Be-
yond the novel effects introduced, we provide a careful study of nonparametric efficiency theory
relevant for the construction of flexible, multiply robust estimators of our (in)direct effects, while
avoiding undue restrictions induced by assuming parametric models of nuisance parameter func-
tionals. To complement our nonparametric estimation strategy, we introduce inferential techniques
for constructing confidence intervals and hypothesis tests, and discuss open source software, the
medshift R package, implementing the proposed methodology. Application of our (in)direct ef-
fects and their nonparametric estimators is illustrated using data from a comparative effectiveness
trial examining the direct and indirect effects of pharmacological therapeutics on relapse to opioid
use disorder.

4.1 Introduction

In myriad applications, one is often interested in the effect of an exposure on an outcome only
through a particular pathway between the two. Indeed, efforts in defining and identifying such
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path-specific effects have come to constitute a rich history in not only philosophy but also in the
sciences of statistics, causal inference, epidemiology, economics, and psychology. In each of these
disciplines, as well as in many others among the biomedical and social sciences, developing a
mechanistic understanding of the complexities that admit representations as path-specific effects
remains a central goal; examples include elucidating the biological mechanism by which a vaccine
reduces infection risk [e.g., 31, 81], assessing the effect on preterm birth of maternal exposure to
environmental toxins [e.g., 51], and ascertaining the effect of novel pharmacological therapies on
substance abuse disorder relapse.

The latter serves as our motivating example as we consider how exposure to a buprenorphine
dose schedule characterized by successive increases toward a maximum dose early in treatment
(versus static dose) affects the risk of relapse to opioid use disorder, both directly and indirectly
through mediating factors such as depression and pain. Developing a detailed mechanistic under-
standing of the process by which such therapeutics modulate intermediary states is necessarily a
causal question — one central to designing and successively improving upon available therapies
in a manner targeted towards the mitigation of the risk of substance abuse relapse. In comparative
effectiveness trials of promising opioid use disorder therapeutics, detailed dissections of the com-
plex neurological and psychiatric pathways involved in the development of addiction disorders is of
clinical interest [102, 155]. The ability to define and evaluate causal effects along paths involving
or avoiding mediating neuropsychiatric sequela would facilitate drug efficacy assessments; more-
over, the ability to refine scientific conclusions based on statistical evidence through randomized
controlled trials remains integral to furthering clinical progress.

To carefully study complex mediation relationships, a wealth of techniques rooted in statistical
causal inference have been formulated. Path analysis [199, 200], perhaps the earliest example of
such methodology, directly inspired the development of subsequent techniques that leveraged para-
metric structural equation models [e.g., 66, 7] for mediation analysis. More recently, the advent of
modern frameworks and formalisms for causal inference, including nonparametric structural equa-
tion models, directed acyclic graphs, and their underlying do-calculus [120, 121], provided the
necessary foundational tools to express causal mechanisms without reliance on more restrictive
approaches tied to parametric modeling.

In tandem with the developments of Pearl [121], similar approaches spearheaded by Robins
[140], Spirtes et al. [157], Dawid [36], and [138] allowed nonparametric formulations of mediation
analysis and uncovered significant limitations of the earlier efforts focused on structural equation
models [123, 90]. Recent applications of modern causal models have illustrated the failings of
popular parametric modeling strategies [i.e., 7], in the presence of intermediate confounders of
the mediator-outcome relationship [29]. Consequently, the usually implausible assumptions that
underlie such restrictive structural equation models make these approaches of limited applicability



CHAPTER 4. STOCHASTIC INTERVENTIONAL CAUSAL MEDIATION 72

for the examination of complex phenomena in the biomedical, health, and social sciences.
Modern approaches to causal inference have allowed for significant advances over the method-

ology of traditional mediation analysis, overcoming the significant restrictions imposed by the use
of parametric structural equation modeling. For example, Robins and Greenland [141] and Pearl
[122], using distinct frameworks, provided equivalent nonparametric decompositions of the av-
erage treatment effect (for binary exposures) into the natural direct and indirect effects, which
quantify all effects of the treatment on the outcome through paths avoiding the mediator and all
paths involving the mediator, respectively. Such advances were not without their limitations, how-
ever. A key assumption of the nonparametric decomposition of the average treatment effect is the
requirement of cross-world counterfactual independencies (i.e., the condition that counterfactuals
indexed by distinct intervention assignments be independent). Unfortunately, such an assumption
limits the scientific relevance of the natural (in)direct effects by making them unidentifiable in ran-
domized trials, directly implying that corresponding scientific claims cannot be falsified through
experimentation [133, 36, 144]. Importantly, such cross-world independencies are also unsatisfied
in the presence of intermediate confounders affected by treatment [3, 164]. As such confounders
are often present in practice, the natural (in)direct effects are of limited applicability.

A related thread of the literature has considered stochastic interventions, which generalize
many intervention classes. For example, within this framework, static interventions result in post-
intervention exposures that have degenerate distributions. Stock [159] first considered the esti-
mation of the total effects of stochastic interventions, while many others [e.g., 143, 44, 166, 124,
158, 71, 38, 46, 202] provided careful studies that expanded the underlying theory of stochastic in-
terventions and demonstrated their numerous applications. Uniquely, stochastic interventions can
be applied to define causal effects of continuous-valued exposures, with an interpretation echoing
that of regression adjustment. For example, Díaz and van der Laan [39] and Haneuse and Rot-
nitzky [71] described modified treatment policies, which assign post-intervention counterfactuals
based on the natural value of the exposure; their methods were demonstrated in the context of in-
creasing leisure physical activity in the elderly and reducing surgical time for non-small-cell lung
cancer operations. Stochastic interventions have also successfully been applied to binary expo-
sures: Kennedy [95] proposed incremental propensity score interventions and demonstrated their
use in longitudinal studies in order to circumvent identifiability and estimation issues arising from
positivity violations.

Contemporaneously, Díaz and Hejazi [37] proposed a decomposition of the total effect of
stochastic interventions into the population intervention (in)direct effects, which are endowed with
interpretations analogous to that of the natural (in)direct effects. Prior related attempts at the
same [e.g., 193] introduced parametric modeling assumptions to lessen reliance on the assumption
of cross-world counterfactual independencies, introducing flexibility at the cost of bias and re-
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strictive assumptions on post-intervention distributions. In a similar vein, the stochastic (in)direct
effects of Díaz and Hejazi [37] do not require cross-world counterfactual independencies but suc-
ceed in accommodating nonparametric estimation strategies. Consequently, these population in-
tervention (in)direct effects may be estimated without restrictive assumptions and yield scientific
results that can be tested through randomization of both the exposure and mediator. Despite these
advances, the results of Díaz and Hejazi [37] suffer a serious shortcoming — that is, these effects
lack identifiability in the presence of intermediate confounders, which affect both mediators and
outcome and are themselves affected by the exposure. This incompatibility with intermediate con-
founding motivated the development of a new and promising family of interventional (in)direct ef-
fects [44, 192, 108, 194, 204, 156, 107, 117], which utilize joint static and stochastic interventions
(applied to the exposure and mediators, respectively) to retain identifiability under such confound-
ing. Until recently, nonparametric effect decompositions and efficiency theory were unavailable
for this class of effects, though efforts by Díaz et al. [43] and Benkeser and Ran [12] have sought
to provide some remedy. While resolving the issues arising from requiring cross-world counterfac-
tual independencies, these interventional (in)direct effects are limited by their lack of applicability
beyond binary exposures.

In the present work, we outline a general framework encompassing many prior causal media-
tion analysis approaches, including the natural (in)direct effects, their interventional effect counter-
parts, and the stochastic (in)direct effects. Building upon the foundations laid by Díaz and Hejazi
[37], the introduced class of mediation effects originate from combining the novel lines of inquiry
established in the distinct literatures on stochastic interventions and the interventional effects; ac-
cordingly, we denote these stochastic interventional (in)direct effects. Our proposed class of effects
are the first to simultaneously avoid the requirement of cross-world counterfactual independencies;
leverage stochastic interventions to be applicable to binary, categorical, and continuous-valued ex-
posures; and remain identifiable despite intermediate confounding. As such, our contributions ap-
ply to a broader class of exposures than the interventional effects [e.g., 43, 12] while generalizing
stochastic (in)direct effects [e.g., 37] to accommodate the presence of intermediate confounders.
While our robust and flexible causal mediation analysis framework subsumes prior classes of ef-
fect definitions, this is far from enough for the successful application of our proposed (in)direct
effects. To this end, we develop novel efficiency theory and efficient nonparametric estimators of
this broad new class of causal mediation parameters, within the frameworks of one-step [131, 16]
and targeted minimum loss estimation [184, 183, 182]. These flexible estimators have desirable
asymptotic properties even when nuisance parameter functionals are estimated via machine learn-
ing; moreover, they are endowed with a form of multiple robustness producing consistent point
estimates under several configurations of nuisance parameter misspecification. Lastly, we provide
implementations of our methodological advances in our free and open source medshift [79]
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package, for the R language and environment for statistical computing [137].

4.2 Mediation Analysis for the Population Intervention Effect

Let A denote a continuous or categorical exposure variable, Y denote a continuous or binary out-
come, Z denote mediator(s), W denote a vector of observed pre-exposure covariates, and L denote
an intermediate (mediator-outcome) confounder affected by exposure. We formalize the causal
inference problem via the nonparametric structural equation model (NPSEM):

W = fW (UW );A = fA(W,UA);L = fL(A,W,UL); (4.1)

Z = fZ(L,A,W,UZ);Y = fY (Z,L,A,W,UY ).

In the NPSEM (4.1), U = (UW , UA, UL, UZ , UY ) is a vector of exogenous factors, and the func-
tions f are assumed deterministic but unknown. This mechanistic model is assumed to generate
the observed data O; it encodes several fundamental assumptions. First, an implicit temporal or-
dering W → A → L → Z → Y is assumed. Second, each variable (i.e., {W,A,L, Z, Y }) is
assumed to be generated from the corresponding deterministic function of the observed variables
that precede it temporally, plus an exogenous variable denoted by U . Each exogenous variable
is assumed to contain all unobserved causes of the corresponding observed variable. For a ran-
dom variable X , let Xa denote the counterfactual outcome observed in a hypothetical world in
which P(A = a) = 1. For example, we have La = fL(a,W,UL), Za = fZ(La, a,W,UZ), and
Ya = fY (Za, La, a,W,UY ). Likewise, we let Ya,z = fY (z, La, a,W,UY ) denote the value of the
outcome in a hypothetical world where P(A = a, Z = z) = 1. Figure 15 represents model (4.1) in
terms of a directed acyclic graph (DAG).

L

W ZA Y

Figure 15: Directed Acyclic Graph of NPSEM (4.1).

Letting O = (W,A,Z, L, Y ) represent a random variable with distribution P, we denote by
O1, . . . , On a sample of n i.i.d. observations of O. We let Pf =

∫
f(o)dP(o) for a given function

f(o). We use Pc to denote the joint distribution of (O,U), and let E and Ec denote corresponding
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expectation operators. We use Pn to denote the empirical distribution of O1, . . . , On, and assume
P ∈ M, where M is the nonparametric statistical model defined as all continuous densities on
O with respect to a dominating measure ν. Let p denote the corresponding probability density
function. We use g(a | w) and e(a | z, w) to denote the probability density function or the
probability mass function of A conditional on W = w and (Z,W ), respectively; m(z, l, a, w) to
denote the outcome regression function E(Y | Z = z, L = l, A = a,W = w). Let g(· | w)
and e(· | z, w) be dominated by a measure κ(a) (e.g., the counting measure for binary A and the
Lebesgue measure for continuous A). We will use the parameterizations

p(z | w)
p(z | a, w)

= g(a | w)
e(a | z, w)

; p(z | a, w)
p(z | l, a, w)

= p(l | a, w)
p(l | z, a, w)

(4.2)

in constructing our estimators, as such parameterizations allow for estimation and integration with
respect to multivariate conditional densities on the mediator Z to be avoided. We use W ,A,Z , L,
and Y to denote the support of the corresponding random variables.

Causal effects are defined in terms of hypothetical interventions on the NPSEM (4.1). In par-
ticular, consider an intervention in which the structural equation corresponding to A is removed,
with the treatment drawn instead from a user-specified distribution gδ(a | w), which may itself
depend on the natural exposure distribution and a user-specified parameter δ. Going forward, we
let Aδ denote a draw from gδ(a | w). Alternatively, such modifications can occasionally be de-
scribed in terms of an intervention in which the structural equation corresponding to A is removed
and the treatment is set equal to a hypothetical regime d(A,W ). Regime d depends on the treat-
ment level A that would be assigned in the absence of the regime as well as on W . The latter
intervention has been referred to as depending on the natural value of treatment, or as a modified
treatment policy [71]. For such interventions, Haneuse and Rotnitzky [71] introduced the assump-
tion of piecewise smooth invertibility, which ensures that the change of variable formula can be
used when computing integrals over A:

A6 (Piecewise smooth invertibility). For eachw ∈ W , assume that the interval I(w) = (l(w, ), u(w))
may be partitioned into subintervals Iδ,j(w) : j = 1, . . . , J(w) such that d(a, w) is equal to some
dj(a, w) in Iδ,j(w) and dj(·, w) has inverse function hj(·, w) with derivative h′

j(·, w).

Assumption A6 can be used to show that the intervention drawingAδ from the post-intervention
distribution gδ(a | w) can be interpreted on the individual level. Young, Hernán, and Robins [202]
provide a discussion comparing and contrasting the interpretation and identification of these two
interventions. Such stochastic interventions can be used to define the population intervention effect
(PIE) of A on Y . To illustrate, consider continuous-valued A and assume the distribution of A
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conditional on W = w is supported in the interval (l(w), u(w)). Then, one may define

d(a, w) =

a− δ if a > l(w) + δ

a if a ≤ l(w) + δ,
(4.3)

where 0 < δ < u(w) is an arbitrary prespecified value. We can alternatively define a tilted
intervention distribution as

gδ(a | w) = exp(δa)g(a | w)∫
exp(δa)g(a | w)dκ(a)

, (4.4)

for δ ∈ R. Kennedy [95] proposed a form of exponential tilting (4.4) under the parameteriza-
tion δ′ = exp(δ), appropriate for incremental interventions on the propensity score for binary A.
Díaz and Hejazi [37] provide a careful study of the interventions 4.3 and 4.4 in the context of
mediation, introducing novel (in)direct effects and corresponding efficiency theory; however, their
contributions assume the absence of intermediate confounding.

Stochastic Mediation Effects

Díaz and Hejazi [37] defined the (in)direct effect ofA on Y in terms of a decomposition of the total
effect of a stochastic intervention. In particular, the total effect E(Y − YAδ

) may be decomposed
as the sum of the population intervention direct and indirect effects (PIDE; PIIE):

PIDE = Ec{fY (Z,L,A,W,UY ) − fY (Z,LAδ
, Aδ,W, UY )}

PIIE = Ec{fY (Z,LAδ
, Aδ,W, UY ) − fY (ZAδ

, LAδ
, Aδ,W, UY )}.

Upon inspection, the definitions above reveal that the direct effect measures the effect through paths
not involving the mediator (i.e., A → Y and A → L → Y ), whereas the indirect effect measures
the effect through paths involving the mediator (i.e., A → Z → Y and A → L → Z → Y ).

Unfortunately, the population intervention (in)direct effects are not generally identified in
the presence of an intermediate confounder affected by treatment such as in the DAG in Figure
(15) [37]. This is due to the dual role of L as a confounder of the relation between Z and Y ,
which requires adjustment, and a variable on the path from A to Y , which precludes adjustment.
It is exactly this issue that the interventional effects [192] resolve, though their limitation to static
interventions and binary exposures is too significant a limitation. Next, we present a solution to
this complication using a joint stochastic intervention on the exposure A and mediator Z. We also
show that the effects defined in this paper are a generalization of the effects of Díaz and Hejazi
[37] in the sense that the former reduce to the latter in the absence of intermediate confounding.
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Stochastic Interventional Mediation Effects

To introduce (in)direct effects robust to the presence of intermediate confounders, we draw upon
ideas first outlined by Didelez, Dawid, and Geneletti [44], Petersen, Sinisi, and van der Laan [130],
and van der Laan and Petersen [179], all subsequently formalized by VanderWeele, Vansteelandt,
and Robins [192] and Vansteelandt and Daniel [194]. Owing to their definition in terms of stochas-
tic interventions on the mediator, these (in)direct effects have been collectively termed interven-
tional effects. We leverage two types of stochastic interventions: one on the treatment A, which
defines the intervention of interest, and one on the mediator Z, which is used to achieve identifi-
ability of the effects. Following the convention of the literature, we term stochastic interventions
on the mediator Z interventional, while reserving the label of stochastic to refer only to inter-
ventions on the treatment A. To proceed, let Gδ denote a random draw from the distribution of
ZAδ

conditional on (Aδ,W ), and let G denote a random draw from the distribution of Z condi-
tional on (A,W ). We consider the effect defined by ψδ = Ec{YA,G − YAδ,Gδ

}. Note that the
effect ψδ is distinct from the effect considered by Díaz and Hejazi [37], which may be expressed
Ec{YA,Z−YAδ,Zδ

}. The effect ψδ arises from fixing the mediator to a random value chosen from its
distribution among all those with a particular treatment level, rather than fixing it to what it would
have been under a particular (static) treatment. Defining the effect in this way aids in achieving an
identifiable decomposition into direct and indirect effects. In particular, we may decompose this
effect in terms of interventional stochastic direct effects (DE) and indirect effects (IE):

ψ(δ) =
DE︷ ︸︸ ︷

E{YA,G − YAδ,G} +
IE︷ ︸︸ ︷

E{YAδ,G − YAδ,Gδ
} . (4.5)

Decomposition as the sum of direct and indirect effects affords an interpretation analogous to the
corresponding standard decomposition of the average treatment effect into the natural direct and
indirect effects [122]. In particular, the direct effect arises from drawing a counterfactual value
of A from a post-intervention distribution while keeping the distribution of Z fixed. The indirect
effect arises from replacing the distribution of Z with a candidate post-intervention distribution
while holding A fixed. Our proposed stochastic interventional effects have an interpretation simi-
lar to the interventional effects of VanderWeele, Vansteelandt, and Robins [192]; moreover, while
both effect definitions account for the presence of an intermediate confounder, our (in)direct effects
utilize flexible, stochastic interventions on the exposure while those of VanderWeele, Vansteelandt,
and Robins [192] are limited to static interventions on binary exposures. By generalizing the effect
definitions of Díaz and Hejazi [37], our proposed (in)direct effects include, as special cases, the
natural (in)direct effects (under a static intervention on binary A and no intermediate confounders
L), the interventional (in)direct effects (under a static intervention on binary A and a stochastic in-
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tervention on Z, allowing intermediate confounders L), and the stochastic (in)direct effects (under
a stochastic intervention on arbitrary-valued A and no intermediate confounders L).

Identification

To construct estimators of our proposed causal (in)direct effects, we turn to examining assumptions
needed to estimate components of the post-intervention quantities corresponding to counterfactual
variables of interest. Towards this end, we introduce the following identification assumptions:

A7 (Common support). Assume supp{gδ( · | w)} ⊆ supp{g( · | w)} for all w ∈ W .

A8 (No unmeasured exposure-outcome confounder). Assume Ya,z⊥⊥A | W .

A9 (No unmeasured mediator-outcome confounder). Assume Ya,z⊥⊥Z | (L,A,W ).

A10 (No unmeasured exposure-mediator confounder). Assume Za⊥⊥A | W .

Under these assumptions, we have the following identification results. A proof is available in
Section 4.8.

Theorem 2 (Identification). Define

θ1,δ =
∫

m(z, l, a, w)p(l | a, w)p(z | a, w)gδ(a | w)p(w)dν(a, z, l, w),

θ2,δ =
∫

m(z, l, a, w)p(l | a, w)p(z | w)gδ(a | w)p(w)dν(a, z, l, w).

Under A7–A10, the direct effect ψD,δ and indirect effect ψI,δ (4.5) are identified, respectively, by

ψD,δ = θ1,0 − θ2,δ

ψI,δ = θ2,δ − θ1,δ.
(4.6)

Assumption A8 states that, conditional on W , there is no unmeasured confounding of the rela-
tion between A and Y ; assumption A10 states that conditional on W there is no unmeasured con-
founding of the relation between A and Z; and assumption A9 states that conditional on (W,A,L)
there is no unmeasured confounding of the relation between Z and Y . These assumptions are
standard in causal mediation analysis. In addition to these assumptions, standard mediation anal-
yses [e.g., 192] require positivity assumptions on the treatment and mediation mechanisms. The
stochastic intervention framework we adopt does not require such assumptions, as positivity can
be arranged by definition of gδ. For example, the interventions in expressions (4.3) and (4.4) sat-
isfy assumption A7 by definition. The interested reader is encouraged to consult Kennedy [95]
and Díaz and Hejazi [37] for a discussion on this topic.
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Another consequence of this identification result is that the definitions (4.6) reduce to the
stochastic (in)direct effects of Díaz and Hejazi [37] in the absence of intermediate confounders
L. Importantly, this implies that our estimators can be safely used in the absence of intermediate
confounders; furthermore, it implies that the corresponding estimates may be interpreted in terms
of a decomposition of the population intervention effect Ec{Y − YAδ

}, which is arguably of more
scientific interest than the interventional effect ψδ = Ec{YA,G − YAδ,Gδ

}.
As is clear from the definition (4.6), evaluation of ψD,δ and ψI,δ requires access to θ1,0, the pop-

ulation mean in the absence of any intervention on the treatment mechanism, as well as both of θ1,δ

and θ2,δ, which are based on the post-intervention treatment mechanism gδ(a | w). Consequently,
we next turn our attention to developing efficiency theory for estimation of the statistical parameter
θj,δ : j = 1, 2, which depends on the observed data distribution P.

4.3 Optimality Theory for Estimation of the Direct Effect

Thus far, we have discussed the decomposition of the effect of a stochastic intervention into direct
and indirect effects and have provided identification results under under standard identifiability
assumptions. We consider the development of efficiency theory for the estimation of θ1,δ and θ2,δ

in the nonparametric model M. To do so, we introduce the efficient influence function (EIF), which
characterizes the asymptotic behavior of all regular and asymptotically linear estimators [16, 186].
Three common approaches exist for constructing local efficient estimators based on the EIF: (i)
estimating equation [e.g., 181], (ii) one-step bias correction [e.g., 131, 16], and targeted minimum
loss estimation [184, 183, 182].

As a consequence of its representation in terms of orthogonal score equations, the EIF allows
the construction of consistent estimators of the target parameter even when certain components of
its distribution are inconsistently estimated. Thirdly, second-order bias terms may be derived from
asymptotic analysis of estimators constructed based on the EIF — often, these estimators require
slow convergence rates (e.g., n−1/4) for the nuisance parameters involved. This latter property
enables the use of flexible, data adaptive regression techniques in estimating these quantities.

For simplicity, we focus on the case of a binary intermediate confounder L, though our gen-
eral approach requires only that either L or Z be low-dimensional. In Theorem 3, we present the
EIF for a general stochastic intervention. Although the components of the EIF associated with
(Y, Z, L,W ) are the same, the component associated with the model for the distribution of A must
be computed on a case-by-case basis, that is, for each intervention of interest. Lemmas 3 and 4
present such components for modified treatment policies satisfying assumption A6 and for expo-
nential tilting, respectively. In theorem 3 below, we present a representation of the EIF that avoids
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the computation of multivariate integrals over Z. To introduce the EIF, we define the following
auxiliary nuisance parameters:

u(z, a, w) =
∫

m(z, l, a, w)dP(l | a, w);

v(l, a, w) =
∫

m(z, l, a, w)dP(z | a, w);

s(l, a, w) =
∫

m(z, l, a, w)dP(z | w);

ū(a, w) =
∫

u(z, a, w)dP(z | a, w)

v̄(a, w) =
∫

v(l, a, w)dP(l | a, w)

s̄(a, w) =
∫

s(l, a, w)dP(l | a, w)

(4.7)

Proofs for the following results are detailed in Section 4.8.

Theorem 3 (Efficient influence functions).

H1
P,δ(a, z, l, w) = gδ(a | w)

g(a | w)
p(z | a, w)

p(z | a, l, w)
; H2

P,δ(a, z, l, w) = gδ(a | w)
g(a | w)

p(z | w)
p(z | a, l, w)

(4.8)

The efficient influence functions for θj,δ : j = 1, 2 in the nonparametric model are equal to
Dj

P,δ(o) − θj,δ, where Dj
P,δ(o) = SjP,δ(o) + Sj,AP,δ (o) and

S1
P,δ(o) = H1

P,δ(a, z, l, w){y − m(z, l, a, w)} (4.9)

+ gδ(a | w)
g(a | w)

[
v(l, a, w) − v̄(a, w) + u(z, a, w) − ū(a, w)

]
(4.10)

+
∫

ū(a, w)gδ(a | w)dκ(a)

S2
P,δ(o) = H2

P,δ(a, z, l, w){y − m(z, l, a, w)} (4.11)

+ gδ(a | w)
g(a | w)

{s(l, a, w) − s̄(a, w)} (4.12)

+
∫

u(z, a, w)gδ(a | w)dκ(a),

and S1,A
P,δ (o), S2,A

P,δ (o) are the respective efficient score functions of the model for g(a | w).

An immediate consequence of Theorem 3 is that, in a randomized trial, Sj,AP,δ (o) = 0 for
j = 1, 2; however, even in such trials, covariate adjustment can improve the efficiency of the
resultant estimator [181]. We now present the efficient scores Sj,AP,δ (o) for modified treatment
policies and exponentially tilted stochastic interventions. To do so, we define the parameter
q(a, w) =

∫
u(z, a, w)dP(z | w).

Lemma 3 (Modified treatment policies). If the modified treatment policy d(A,W ) satisfies as-
sumption A6, then

S1,A
P,δ (o) = ū(d(a, w), w) −

∫
ū(d(a, w), w)g(a | w)dκ(a)

S2,A
P,δ (o) = q(d(a, w), w) −

∫
q(d(a, w), w)g(a | w)dκ(a).



CHAPTER 4. STOCHASTIC INTERVENTIONAL CAUSAL MEDIATION 81

Lemma 4 (Exponential tilt). If the stochastic intervention is the exponential tilt (4.4), then

S1,A
P,δ (o) = gδ(a | w)

g(a | w)

{
ū(a, w) −

∫
ū(a, w)gδ(a | w)dκ(a)

}
(4.13)

S2,A
P,δ (o) = gδ(a | w)

g(a | w)

{
q(a, w) −

∫
q(a, w)gδ(a | w)dκ(a)

}
(4.14)

For binary treatments, the EIF corresponding to the incremental propensity score intervention
may be simplified as per the following corollary.

Corollary 1 (Efficient influence function for incremental propensity score interventions). Let A
take values on {0, 1}, and let the exponentially tilted intervention gδ,0(1 | W ) be based on (4.4)
under the parameterization δ′ = exp(δ). Then, the EIF of Lemma 4 may be simplified as follows.
Define the nuisance parameters

q1(w) = ū(1, w) − ū(0, w),
q2(w) = E

{
u(Z, 1,W ) − u(Z, 0,W ) | W = w

}
,

(4.15)

Then

Sj,Aη,δ (o) = δqj(w){a− g(1 | w)}
{δg(1 | w) + 1 − g(1 | w)}2 .

In contrast to the efficient influence function for the interventional (in)direct effects [43], the
contribution of the treatment process to the EIF for the stochastic interventional effects is non-zero.
This is a direct consequence of the fact that the parameter of interest depends on g; moreover,
this implies that the efficiency bound in observational studies differs from the efficiency bound
in randomized trials. Thus, it is not generally possible to obtain estimating equations robust to
inconsistent estimation of g. Such robustness will only be possible if the stochastic intervention is
also a modified treatment policy satisfying assumption A6.

The form of Theorem 3 makes it clear that estimation of multivariate or continuous conditional
density functions on the mediators Z or intermediate confounders L, as well as integrals with re-
spect to these density functions, is generally necessary for computation of the EIF. This poses a
significant challenge from the perspective of estimation, due to both the curse of dimensionality
and the practical computational complexity inherent in solving multivariate numerical integrals. A
simplification is possible when either either of Z or L is low-dimensional; this is achieved by repa-
rameterizing the densities as conditional expectations (or low-dimensional conditional densities)
that take other nuisance parameters as pseudo-outcomes is possible. To demonstrate, we assume L
is univariate (e.g., binary as in our illustrative application), though similar parameterizations may
be achieved if Z is low-dimensional. In cases where L or Z is low-dimensional, our proposed re-
parameterizations allow for the conditional density to be estimated via appropriate semiparametric
estimators [e.g., 41].
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Lemma 5 (Low-dimensional L andZ). If L is low-dimensional (e.g., binary and univariate) andZ
is multivariate, we can choose a representation of v, s, and ū in terms of conditional expectations
in order to facilitate their estimation. Denote b(l | a, w) and d(l | z, a, w) the probability that
L = l ∈ {0, 1} conditional on (A,W ) and (Z,A,W ), respectively. Then, using (4.2), we have

v(l, a, w) = E

m(z, l, a, w) b(L | A,W )
d(L | Z,A,W )

∣∣∣∣∣L = l, A = a,W = w

 ,
s(l, a, w) = E

m(z, l, a, w) b(L | A,W )
d(L | Z,A,W )

g(A | W )
e(A | Z,W )

∣∣∣∣∣L = l, A = a,W = w

 , (4.16)

ū(a, w) = E

u(Z,A,W )
∣∣∣∣∣A = a,W = w

 .
Likewise,

H1
P,δ(a, z, l, w) = gδ(a | w)

g(a | w)
b(l | a, w)

d(l | z, a, w)
; H2

P,δ(a, z, l, w) = gδ(a | w)
e(a | z, w)

b(l | a, w)
d(l | z, a, w)

,

and

q(a, w) = E
{

g(A | W )
e(A | Z,W )

u(Z,A,W ) | A = a,W = w

}
.

Analogous representations may be constructed for v̄, s̄, and u based on the parameterizations (4.2)
if L is multivariate and Z is of low dimension. We note, however, that at least one of Z or L must
be of small dimensionality so that its density may be estimated and integrals over its range may be
computed with ease.

In what follows, we assumeL is univariate, denote η = (m, g, b, ū, v, d, e, s, q) and letDj
P,δ(o) =

Dj
η,δ(o). The choice of parameterization in Lemma 5 has important consequences for the purpose

of estimation, as it helps to bypass estimation of the (possibly high-dimensional) conditional den-
sity of the mediators, instead allowing for regression methods, far more readily available through-
out the statistics literature and software, to be used for estimation of the relevant quantities. Similar
ideas have been used by Zheng and van der Laan [204], Díaz and Hejazi [37], and Díaz et al. [43].
In addition to the expression for the efficient influence function in Lemma 5, it is important to
understand the behavior of the difference PDη1 − θ, which is expected to yield a second order term
in differences η1 − η, so that consistent estimation of θ is possible under consistent estimation of
certain configurations of the parameters in η. As we will see in Theorems 4 and 5, this second-
order term is fundamental in the construction of asymptotically linear estimators. Lemmas 8 and 9,
found in the 4.8, delinate these second-order terms. The following lemma is a direct consequence.
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Lemma 6 (Multiple robustness for modified treatment policies). Let the modified treatment policy
satisfy A6, and let η1 be such that one of the following conditions hold:

m1 = m g1 = g b1 = b ū1 = ū v1 = v d1 = d e1 = e s1 = s q1 = q
Cond. 1 × × ×
Cond. 2 × × × ×
Cond. 3 × × × ×
Cond. 4 × × × × ×
Cond. 5 × × × ×
Cond. 6 × × × × ×

Table 4.1: Different configurations of consistency for nuisance parameters.

Then PD1
η1,δ = θ1,δ and PD2

η1,δ = θ2,δ, with D1
η,δ and D2

η,δ as defined in Theorem 3 and
Lemma 3.

The above lemma implies that it is possible to construct consistent estimators for for the
(in)direct effects under consistent estimation of subsets of the nuisance parameters in η, in the
configurations described in the lemma. Lemma 6 follows directly from Lemma 8, found in the 4.8.
Some readers may find it surprising that estimation of θj,δ may be robust to inconsistent estimation
of g, even when the parameter definitions are explicitly dependent on g. We offer some intuition
into this result by noting that assumption A6 allows use of the change of variable formula to obtain

θ2,δ = E
{∫

m(z, l, d(A,W ),W )p(l | d(A,W ),W )p(z | W )dν(z, l)
}
.

Estimation of this parameter without relying on g may be carried out by consistently estimating
m(z, l, a, w), p(l | a, w), and p(z | w) and using the empirical distribution as an estimator of the
outer expectation. This behavior has been previously observed for related stochastic intervention
effects under assumption A6 [39, 71, 37].

The robustness result for the case an exponentially tilted intervention (4.1), which does not
satisfy assumption A6, is presented in the following lemma

Lemma 7 (Multiple robustness for exponential tilting). Let gδ be defined as in (4.4). Let η1 be
such that at least one of Cond. 1-4 in Table 4.1 holds. Then PD1

η1,δ = θ1,δ and PD2
η1,δ = θ2,δ, with

D1
η,δ and D2

η,δ as defined in Theorem 3 and Lemma 4

Lemma 7 is a direct consequence of Lemma 9 in the 4.8. The corresponding proof reveals that
the EIF for the binary distribution is not robust to inconsistent estimation of g — that is, the inter-
vention fails to satisfy assumption A6 and integrals over the range of A cannot be computed using
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the change of variable formula. This behavior has been previously observed for other interventions
that do not satisfy assumption A6 [e.g., 38]. Even though this lemma implies that consistent esti-
mation of g is required, the bias terms remain second-order; thus, an estimator of g converging at
rate n1/4 or faster is sufficient.

4.4 Efficient Estimation and Statistical Inference

We discuss two efficient estimators that rely on the efficient influence function Dη,δ, in order to
build an estimator that is both efficient and robust to model misspecification. We discuss an asymp-
totic linearity result for the doubly robust estimator that allows computation of asymptotically cor-
rect confidence intervals and hypothesis tests. In the sequel, we assume that preliminary estimators
of the components of η are available. These estimators may be obtained from flexible regression
techniques such as support vector machines, regression trees, boosting, neural networks, splines,
or ensembles thereof [197, 19, 180]. As previously discussed, the consistency of these estimators
determines consistency of our estimators of θj,δ.

Both of our proposed efficient estimators make use of the EIF Dη,δ to revise an initial substi-
tution estimator through a bias correction step. As such, estimation proceeds by first constructing
initial estimators of the nuisance parameters in η; then, each of the efficient estimators is con-
structed by application of distinct bias-correction steps. In constructing the these efficient estima-
tors, we advocate for the use of cross-fitting [98, 203, 27] to avoid imposing entropy conditions
on the initial estimators of the nuisance parameters in η. Let V1, . . . ,VJ denote a random parti-
tion of the index set {1, . . . , n} into J prediction sets of approximately the same size. That is,
Vj ⊂ {1, . . . , n};

⋃J
j=1 Vj = {1, . . . , n}; and Vj ∩ Vj′ = ∅. For each j, the associated training

sample is given by Tj = {1, . . . , n} \ Vj , and we let j(i) denote the index of the validation set
which contains observation i. Denote by η̂j the estimator of η obtained by training a prediction
algorithm using only data in the sample Tj .

Efficient One-Step Estimator

To construct a robust and efficient estimator using the efficient influence functionDη,δ, the one-step
bias correction [131, 16] adds the empirical mean of the estimated EIFDη̂,δ to an initial substitution
estimator. The estimators are thus defined

ψ̂os
D,δ = 1

n

n∑
i=1

{D1
η̂j(i),0(Oi) −D2

η̂j(i),δ
(Oi)}

ψ̂os
I,δ = 1

n

n∑
i=1

{D2
η̂j(i),δ

(Oi) −D1
η̂j(i),δ

(Oi)}.
(4.17)
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Asymptotic linearity and efficiency of estimators for modified treatment policies follows.

Theorem 4 (Weak convergence of one-step estimators). Let∥·∥ denote the L2(P)-norm defined as
∥f∥2 =

∫
f 2dP. Define the following assumptions.

(i) P{|Dj
η,δ(O)| ≤ C} = P{|Dj

η̂,δ(O)| ≤ C} = 1 for j = 1, 2 and for some C < ∞.

(ii) The following second-order terms converge at the specified rate

• ∥m̂ − m∥ {∥ĝ − g∥ +∥ê − e∥ +
∥∥∥d̂ − d

∥∥∥} = oP(n−1/2)

• ∥ĝ − g∥ {
∥∥∥ˆ̄u − ū

∥∥∥+∥q̂ − q∥} = oP(n−1/2)

•
∥∥∥b̂ − b

∥∥∥ {∥v̂ − v∥ +∥ŝ − s∥} = oP(n−1/2), and

(iii) The effect is defined in terms of modified treatment policy d(a, w), which is piecewise smooth
invertible (A6).

(iv) The intervention gδ is an exponential tilting intervention and P
{∫

(ĝ − g)dκ
}2 = oP(n−1/2).

If assumptions (i) and (ii) hold, and one of assumptions (iii) and (iv) holds, then:

√
n{ψ̂os

D,δ − ψD,δ}⇝ N(0, σ2
D,δ), and

√
n{ψ̂os

I,δ − ψI,δ}⇝ N(0, σ2
I,δ),

where σ2
D,δ = Var{D1

η,0(O) − D2
η,δ(O)} and σ2

I,δ = Var{D2
η,δ(O) − D1

η,δ(O)} are the respective
efficiency bounds.

Theorem 4 establishes the weak convergence of ψ̂os
D,δ and ψ̂os

I,δ pointwise in δ. This convergence
is useful to derive confidence intervals in situations where the modified treatment policy has a
suitable scientific interpretation for a given realization of δ. Under Theorem 4, an estimator σ̂2

D,δ

of σ2
D,δ may be obtained as the empirical variance of D1

η̂j(i),0(Oi) − D2
η̂j(i),δ

(Oi), and a Wald-type

confidence interval may be constructed as ψ̂os
D,δ ± z1−α/2σ̂

2
D(δ)/

√
n; the same applies to ψ̂os

I,δ.
Although the one-step estimator has optimal asymptotic performance, its finite-sample behav-

ior may be affected by the inverse probability weighting involved in the computation of the efficient
influence functions Dj

η̂(Oi) : j = 1, 2. In particular, it is not guaranteed that ψ̂os
D,δ and ψ̂os

I,δ will re-
main within the bounds of the parameter space. This issue may be attenuated by performing weight
stabilization. The estimated EIFD1

η̂j(i)
(Oi) can be weight-stabilized by dividing (4.9) and (4.11) by

the empirical mean of H1
η̂j(i),δ(Ai, Zi, Li,Wi) and H2

η̂j(i),δ(Ai, Zi, Li,Wi), respectively; as well as
dividing (4.10), (4.12), (4.13), and (4.14) by the empirical mean of ĝj(i),δ(Ai | Wi)/ĝj(i)(Ai | Wi).
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Efficient Targeted Minimum Loss Estimator

Although corrections may be applied to the one-step estimator, a more principled way to obtain
estimators that remain in the parameter space may be derived from the targeted minimum loss
(TML) estimation framework. The TML estimator is constructed by tilting an initial data adaptive
estimator η̂ towards a solution η̃ of the estimating equations

Pn{D1
η̃,0 −D2

η̃,δ} = ψD,δ(η̃)
Pn{D2

η̃,δ −D1
η̃,δ} = ψI,δ(η̃),

(4.18)

where ψD,δ(η̃) and ψI,δ(η̃) are the substitution estimators in formula (4.19) obtained by plugging
in the estimates η̃ in the parameter definition (4.6). Thus, a TML estimator is guaranteed to remain
in the parameter space by virtue of its being a substitution estimator. The fact that the nuisance
estimators solve the relevant estimating equation is used to obtain a weak convergence result anal-
ogous to Theorem 4. Thus, while the TML estimator is expected to attain the same optimal asymp-
totic behavior as the one-step estimator, its finite-sample behavior may be better. An algorithm to
compute a TML estimator η̃ is presented in the 4.8. Roughly, the algorithm proceeds by project-
ing the EIF into score functions for the model of each nuisance parameter, and fitting appropriate
parametric submodels [183, 182]. For example, the following model is fitted for m:

logit mβ(a, z, l, w) = logit m̂(z, l, a, w) + βIHI(o) + βDHD(o), where

HD(o) = b̂(l | a, w)
d̂(l | z, a, w)

{
1 − ĝδ(a | w)

ê(a | z, w)

}

HI(o) = b̂(l | a, w)
d̂(l | z, a, w)

{
ĝδ(a | w)
ê(a | z, w)

− ĝδ(a | w)
ĝ(a | w)

}
,

and logit(p) = log{p(1 − p)−1}. Here, the initial estimator logit m̂(z, l, a, w) is considered a fixed
offset variable (i.e., a variable with known parameter value equal to one). The score of these tilting
models is equal to the corresponding component of the efficient influence function. The parameter
β = (βI , βD) may be estimated by running standard logistic regression of Y on (HD(O), HI(O))
with no intercept and an offset term equal to logit m̂(z, l, a, w). Let β̂ denote the MLE, and let
m̃ = mβ̂ denote the updated estimates. Fitting this model ensures that m̃ solves the relevant score
equations. Models like this are estimated iteratively for all parameters in a way that guarantees that
the estimating equations (4.18) are solved up to a term that converges to zero in probability at rate
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faster than n−1/2. After the iteration ends, the TML estimators are defined as

ψ̂tmle
D,δ = 1

n

∫ n∑
i=1

{
˜̄u(a,Wi)g̃(a | Wi) − ũ(Zi, a,Wi)g̃δ(a | Wi)

}
dκ(a)

ψ̂tmle
I,δ = 1

n

∫ n∑
i=1

{
ũ(Zi, a,Wi) − ˜̄u(a,Wi)

}
g̃δ(a | Wi)dκ(a).

(4.19)

The fact that the TML estimator solves estimating equations (4.18) is a fundamental step in proving
the following theorem.

Theorem 5 (Weak convergence of TML estimator). Assume (i) and (ii) hold, and one of (iii), (iv)
defined in Theorem 4 holds, then:

√
n{ψ̂tmle

D,δ − ψD,δ}⇝ N(0, σ2
D,δ), and

√
n{ψ̂tmle

I,δ − ψI,δ}⇝ N(0, σ2
I,δ),

where σ2
D,δ = Var{D1

η,0(O) −D2
η,δ(O)} and σ2

I,δ = Var{D2
η,δ(O) −D1

η,δ(O)}.

Using Theorem 5, asymptotically valid variance estimators, p-values, and confidence intervals
for the (in)direct effects may be obtained in a manner analogous to those for the one-step estimator.
The proof of the theorem proceeds using similar arguments as the proof of Theorem 4 for the
one-step estimator, using empirical process theory and leveraging cross-fitting to avoid entropy
conditions on the initial estimators of η. Since the estimators now depend on the full sample
through the estimates of the parameters β of the logistic tilting models, the empirical process
treatment differs slightly to that of Theorem 4; its proof is detailed in the 4.8.

4.5 Simulation Study

We used simulation experiments to assess our two proposed efficient estimators of the (in)direct ef-
fects. On account of computational considerations, we focus on binary exposures and intermediate
confounders in this example; however, as noted in the prior, our proposed methodology is general
enough to be readily applicable in the presence of continuous-valued covariates, treatment, medi-
ators, intermediate confounders, and outcome. We used the following data-generating mechanism
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for the joint distribution of O to generate synthetic data for evaluation of the two estimators:

W1 ∼ Bernoulli(p = 0.6);W2 ∼ Bernoulli(p = 0.3);
W3 | (W1,W2) ∼ Bernoulli(p = 0.2 + 1/3 · (W1 +W2));

A | W ∼ Bernoulli(p = expit(2 + (5/(W1 +W2 +W3))));
L | (A,W ) ∼ Bernoulli(p = expit(1/3(W1 +W2 +W3) − A− log(2) + 0.2));

Z | (L,A,W ) ∼ Bernoulli(p = expit(log(3) · (W1 +W2) + A− L));

Y | (Z,L,A,W ) ∼ Bernoulli

p = expit
(

1 − 3 · (3 − L− 3A+ Z)
2 + (W1 +W2 +W3)

) ,
where expit(x) := {1 + exp(x)}−1. For each of the sample sizes n ∈ {200, 800, 1800, 3200, 5000,
7200, 9800, 12800, 16200}, 500 datasets were generated. For every dataset, six variations of each
of the two efficient estimators was applied — five variants were based on misspecification of a
single nuisance parameter among {e,m, d, g, b} while the sixth variant was constructed based on
consistent estimation of all five nuisance parameters. An intercept-only logistic regression model
provided inconsistent estimation of each of the nuisance parameters {e,m, d, g, b}, while a Super
Learner ensemble [180] was used to achieve consistent estimation. The Super Learner ensemble
was constructed with a library of algorithms composed of intercept-only logistic regression; main-
terms logistic regression; and several variants of the highly adaptive lasso [13, 171, 78, 32], a
nonparametric regression approach capable of flexibly estimating arbitrary functional forms at a
fast convergence rate under only a global smoothness assumption [174, 15]. Note that we do not
consider cases of misspecified estimation of {v, s, q, ū}, as their consistent estimation depends on a
subset of the nuisance parameters {e,m, d, g, b}. Generally, based on Lemmas 6 and 7, robustness
of the direct and indrect effect estimators to misspecification of {e,m, d} is to be expected, but the
same is not true under misspecification of {g, b}.

Figure 16 summarizes the results of our investigations of the relative performance of the esti-
mator variants enumerated above. Specifically, we assess the relative performance of our proposed
estimators in terms of absolute bias, scaled (by n1/2) bias, standard error and scaled (by n) mean
squared error relative to the efficiency bound for the data-generating model, the empirical cover-
age of 95% confidence intervals, and relative efficiency. In terms of both raw (unscaled) bias and
scaled bias, the estimator variants appear to conform to the predictions of Lemmas 6 and 7 —
specifically, raw bias vanishes and scaled bias stabilizes to a small value (providing evidence for
rate-consistency) under misspecification of any of {e,m, d} as well as in the case of no nuisance
parameter misspecification. In the same vein, when either of {g, b} are estimated inconsistently,
some of the estimator variants display diverging asymptotic (scaled) bias, in agreement with expec-
tations based upon theory. The consistency of other estimator variants (e.g., the one-step estimator
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under misspecification of b) is likely an artifact of this data-generating mechanism, not to be taken
as a general indication of robust performance. In terms of their relative mean squared error, the es-
timators of the (in)direct effects exhibit convergence to the efficiency bound under misspecification
of {e,m, d} and under no misspecification; this also appears to hold for a subset of the estimator
variants under misspecification of {g, b}. We stress that aspects of this are likely to be a partic-
ularity of the given data-generating mechanism or on account of the irregularity of misspecified
estimator variants, for the regularity and asymptotically linearity of the estimators is only to be
expected under consistent estimation of all nuisance parameters. Finally, the empirical coverage
of 95% confidence intervals is as expected: under a lack of nuisance parameter misspecification,
both the one-step and TML estimators of the direct and indirect effect achieve 95% coverage in
larger sample sizes. We note that misspecification of e leads to over-coverage for all estimator
variants, implying an overly inflated variance estimate, while the confidence intervals fail to attain
the nominal rate in most other instances. Notably, several of the estimator variants generate confi-
dence intervals that are liable to converge to 0% coverage in larger samples under misspecification
of {g, b}, very much in line with theoretical expectations.
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Figure 16: Comparison of efficient estimators across different nuisance parameter configurations.

Importantly, the TML estimator appears to generally outperform the one-step estimator through-
out several scenarios. This comes in several forms, including lower bias, relative standard devia-
tion, or relative mean squared error under misspecification of {e,m, d} or under no misspecifica-
tion; however, under inconsistent estimation of {g, b}, the irregularity of the estimators complicates
this comparison. Interestingly, under misspecification of g, the TML estimators of the direct and
indirect effects appear unbiased and efficient, a result unpredictable from theory given the irregu-
larity of the estimators under this configuration. Altogether, results of our numerical experiments
indicate that our proposed estimators exhibit properties that align with the theoretical results of
Lemmas 6 and 7.
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4.6 Application to the X:BOT Trial

We now consider the application of our proposed stochastic interventional direct and indirect ef-
fects to decompose the causal effect of a strategy where buprenorphine dose is successively in-
creased early in treatment (regardless of opioid use) on relapse among those with opioid use dis-
order (OUD). Data for our illustrative analysis come from the X:BOT trial, a 24-week, multi-site
randomized controlled trial designed to examine the comparative effectiveness of extended-release
naltrexone (XR-NTX) and sublingual buprenorphine-naloxone (BUP-NX) on relapse [102, 103,
118]. The X:BOT trial enrolled 570 participants, all of whom were 18 years or older, had OUD [as
per the Diagnostic and Statistical Manual of Mental Disorders-5; 1], and had used non-prescribed
opioids in the 30 days preceding enrollment. Participants were randomized to receive either XR-
NTX or BUP-NX using a stratified permuted block design; 287 of the 570 were randomized to
receive BUP-NX. Prior analytic efforts have established a protective effect of BUP-NX adminis-
tration (versus placebo) on OUD relapse [110]. For each participant assigned to receive BUP-NX,
the prescribed dose was based on both clinical indication [102] and clinician judgment. Some clin-
icians tended to hold dose constant over time (i.e., a static regimen), while others increased dose
— either based on clinical assessment or on the hypothesis that higher doses would result in better
outcomes [119, 68, 30, 74]. In this analysis, we estimated hypothetical stochastic interventional
(in)direct effects to assess the mechanism by which universally ramping up BUP-NX dose early
in treatment (defined as three or more dose increases in the first four weeks of treatment) could
mitigate the risk of OUD relapse.

Baseline covariates (W ) available in the data included site; gender; age; race/ethnicity; home-
less status; educational attainment; employment status; marital status; current intravenous drug
use; alcohol use disorder; cocaine use disorder; age at start of heroin use; severity of current opioid
use; indicator of prior OUD treatment; past withdrawal discomfort level; histories of amphetamine
use, sedative use, and cannabis use; weekly cost of primary drug; whether or not living with an
individual currently using drugs or with alcohol use disorder; histories of psychiatric illnesses;
randomization timing; baseline pain level; baseline depression symptoms. The exposure (A) was
taken to be successive increases in dose of BUP-NX versus static dose, measured during the first
four weeks of treatment. Mediating factors (Z) included depression and pain, measured from week
6 until relapse or week 24 (end of follow-up). Abstinence from illicit opioid use early in the treat-
ment schedule, measured between weeks 4 and 6, acted as an intermediate confounder affected
by exposure (L). OUD relapse status at the X:BOT trial’s end of follow-up was the outcome of
interest (Y ). To examine the effect of exposure to successive increases in BUP-NX dose, we con-
sider an incremental propensity score intervention, which, for binary A, replaces the propensity
score g(1 | w) with a shifted variant constructed from multiplying the odds of treatment by a user-



CHAPTER 4. STOCHASTIC INTERVENTIONAL CAUSAL MEDIATION 92

specified parameter δ [95], which we vary along a grid log(δ) ∈ {−10.0,−9.5, . . . , 9.5, 10.0} of
the exposure odds observed in the X:BOT trial. Across all such estimates in the odds δ of expo-
sure, the stochastic interventional (in)direct effects that we estimated may be interpreted in terms
of the overall effect of increasingly encouraging ramping up BUP-NX dose early in treatment on
the counterfactual risk of OUD relapse; thus, the results of our analysis may be informative of
the mechanisms by which increasing BUP-NX dose can alter the risk of OUD relapse. Figure 17
presents the direct and indirect effect estimates across the grid in δ.
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Figure 17: Stochastic interventional direct (upper panel) and indirect (lower panel) effect estimates
of a hypothetical intervention increasing odds of exposure to a BUP-NX dose schedule in which
dose is successively increased early in OUD relapse treatment across a grid of shifts δ in the odds.

We applied both of our cross-fitted, efficient one-step and TML estimators to examine the
stochastic interventional direct and indirect effects of increasing the odds of ramping up BUP-NX
dose. Both estimation strategies produced results that were generally in very close agreement as
to the magnitude of the direct and indirect effects. For each point estimate, standard error es-
timates and 95% Wald-style confidence intervals were constructed based on the conclusions of
Theorem 5. In order to ensure the flexibility of our estimators, each component of the vector
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of nuisance parameters η = (e,m, d, g, b) was estimated via ensemble machine learning, using
the Super Learner algorithm [180, 33]. The library of machine learning algorithms from which
the Super Learner ensemble was constructed included intercept-only logistic regression, logistic
regression with Bayesian priors on parameters, multivariate adaptive regression splines [57], gen-
eralized additive models [72], random forests [18], gradient boosted machines [56], and the highly
adaptive lasso [13, 32, 78].

From examination of the point estimates and confidence intervals of the direct and indirect
effects in Figure 17, two conclusions may be drawn. Firstly, there appears to be little to no indirect
effect of successively increasing BUP-NX dose on risk of OUD relapse, revealing that any effect
of BUP-NX dose does not appear to operate through mediating factors such as depression or pain.
Secondly, the direct effect of successively increasing BUP-NX dose varies considerably across
changes in the odds of the introduction of such a dose schedule. Importantly, it appears that
decreasing the odds of increasing dose could lead to as much as a 5% increase in the OUD relapse
risk, with a plateau emerging at odds lower than ≈0.1%, suggesting that static dose can lead to
increased relapse risk relative to successive dose increases. Continuing this pattern, OUD relapse
risk appears to decrease by ≈10% with increasing odds of successively increasing BUP-NX dose,
with the risk plateauing at odds higher than 33%. This decrease in the counterfactual risk of
OUD relapse suggests a protective effect of BUP-NX dose schedules where dose is successively
increased early in treatment relative to static dose.

The conclusions that may be drawn from our re-analysis using the stochastic interventional
direct and indirect effects complement those previously reported in the investigations of Lee et al.
[102], who evaluated the total effect of BUP-NX (versus XR-NTX) treatment on OUD relapse,
and Rudolph et al. [155], who used the interventional mediation analysis approach of Díaz et al.
[43] (limited to static interventions on A) to examine differences in relapse risk between homeless
and non-homeless participants. Importantly, our substantive conclusion — that dose increases
directly lower the risk of relapse — agree generally with those of Rudolph et al. [154], who found
that dose increases directly lowered risk of OUD relapse when such dose increases followed opioid
use. Notably, our proposed (in)direct effects and estimation approach differ from previous efforts in
three important ways: (i) our causal effect definitions remain unaltered in the presence intermediate
confounders affected by exposure and may be re-evaluated in randomized trials, (ii) the flexible
estimators we introduce eschew restrictive modeling assumptions by incorporating state-of-the-
art machine learning in the estimation of nuisance parameters, and (iii) our strategy provides an
analog to a dose-response analysis by allowing for the risk of OUD relapse to be traced out across
changes in the odds of exposure to a schedule in which BUP-NX dose is increased repeatedly early
in treatment.
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4.7 Discussion

We have proposed a class of novel direct and indirect effects for causal mediation analysis, as well
as two efficient estimators of these effects in the nonparametric statistical model. Importantly, our
proposed estimation framework allows for data adaptive estimation of nuisance parameters, while
still preserving the benefits associated with similar classical techniques — that is, our estimators
are regular and asymptotically linear, provide unbiased point estimates, are multiply robust, al-
low the construction of asymptotically valid confidence intervals, and are capable of attaining the
nonparametric efficiency bound. Our (in)direct effects have interpretations that echo those of the
classical natural (in)direct effects; however, our effects remain well-defined even in the presence
of intermediate confounders affected by exposure. Further, any scientific conclusions drawn based
upon our proposed (in)direct effects may be readily interrogated in trials that randomize both the
exposure and mediators. Such flexible effect definitions and estimators seem necessary both to
cope with the design complexity exhibited by modern epidemiological and biomedical studies and
to take appropriate advantage of the ever-growing number of data adaptive regression techniques.

The challenge of leveraging data adaptive regression methodology to construct robust estima-
tors that accommodate valid statistical inference is not a new one. It has been considered in great
detail as early as the work of Pfanzagl and Wefelmeyer [131] as well in numerous recent advances,
most notably by van der Laan and Rose [183, 182] and Chernozhukov et al. [27]; related work
by these authors presents a wealth of extensions and applications. In the present work, we derive
multiply robust, efficient estimators based on both the one-step and targeted minimum loss esti-
mation frameworks. Following Klaassen [98] and Zheng and van der Laan [203], our estimators
leverage cross-validation to avoid imposing possibly restrictive assumptions on nuisance function
estimators. We demonstrated the properties of our estimators in simulation experiments that il-
lustrated their ability to yield unbiased point estimates, attain the nonparametric efficiency bound,
and build confidence intervals covering at the nominal rate across several nuisance parameter con-
figurations — all within a problem context in which classical mediation effects are ill-defined. We
demonstrated the application of our novel (in)direct effects in dissecting the mechanism by which
increasing odds of adopting a dose schedule of universal successive increases in buprenorphine
dose early in treatment affects OUD relapse [102, 155].

Several significant extensions and refinements are left for future consideration. Firstly, our
proposed estimation strategy for the direct and indirect effects leverages re-parameterizations of
factors of the likelihood in order to simplify the estimation of nuisance parameters. This approach
works particularly well when either mediators or intermediate confounders are of low dimension;
however, improving this approach to accommodate moderate dimensionality of both mediators and
intermediate confounders would surely widen the range of scenarios to which the methodology
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may be applied. Secondly, when defining effects based upon stochastic interventions indexed by
the user-specified parameter δ, an important consideration is choosing a priori a particular value of
δ. One solution is to evaluate a set of causal effects indexed by a grid in δ. In such cases, aggregate
effects (across δ) may be summarized via working marginal structural models [e.g., 81] or the
construction of uniform tests of the null hypothesis of no direct effect [e.g., 37]. Developments
of these distinct summarization strategies would enrich the range of scientific problems on which
these robust and flexible (in)direct effects may be brought to bear.

4.8 Supplementary Material

Theorem 2

Proof First, we have

E{YAδ,Gδ
}

=
∫

E
{
Ya,z | Aδ = a,Gδ = z,W = w

}
gδ(a | w)P(Gδ = z | Aδ = a,W = w)p(w)dν(a, z, w)

=
∫

E
{
Ya,z | W = w

}
gδ(a | w)P(Z(a) = z | Aδ = a,W = w)p(w)dν(a, z, w) (4.20)

=
∫

E
{
Ya,z | A = a,W = w

}
gδ(a | w)P(Z(a) = z | W = w)p(w)dν(a, z, w) (4.21)

=
∫

E
{
Ya,z | A = a,W = w

}
gδ(a | w)P(Z(a) = z | A = a,W = w)p(w)dν(a, z, w)

(4.22)

=
∫

E
{
Ya,z | A = a,W = w,L = l

}
b(l | a, w)gδ(a | w)p(z | a, w)p(w)dν(a, z, l, w)

=
∫

m(a, z, l, w)b(l | a, w)gδ(a | w)p(z | a, w)p(w)dν(a, z, l, w), (4.23)

where (4.20) follows by definition of (Aδ, Gδ), (4.21) follows by A8 and definition of Aδ, (4.22)
follows by A10, and (4.23) follows by A9. Similar arguments yield

E{YA,G} =
∫

m(a, z, l, w)b(l | a, w)g(z | w)p(z | a, w)p(w)dν(a, z, l, w).
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We also have

E{YAδ,G}

=
∫

E
{
Ya,z | Aδ = a,G = z,W = w

}
gδ(a | w)P(G = z | Aδ = a,W = w)p(w)dν(a, z, w)

=
∫

E
{
Ya,z | W = w

}
gδ(a | w)P(G = z | W = w)p(w)dν(a, z, w)

=
∫

E
{
Ya,z | A = a,W = w

}
gδ(a | w)p(z | w)p(w)dν(a, z, w)

=
∫

E
{
Ya,z | A = a,W = w

}
gδ(a | w)p(z | w)p(w)dν(a, z, w)

=
∫

E
{
Ya,z | A = a,W = w,L = l

}
b(l | a, w)gδ(a | w)p(z | w)p(w)dν(a, z, l, w)

=
∫

m(a, z, l, w)b(l | a, w)gδ(a | w)p(z | w)p(w)dν(a, z, l, w).

Subtracting gives the expressions for the PIIE and PIDE in the theorem.

Efficient Influence Functions (Theorem 3)

Proof In this proof we will use Θj(P) : j = 1, 2 to denote a parameter as a functional that maps
the distribution P in the model to a real number. We will assume that the measure ν is discrete
so that integrals can be written as sums, and will omit the dependence on δ. It can be checked
algebraically that the resulting influence function will also correspond to the influence function of
a general measure ν. The true parameter value for θ1 is thus given by

θ1 = Θ1(P) =
∑

y,a,z,m,w

y p(y | a, z, l, w)p(l | a, w)p(z | a, w)gδ(a | w)p(w).

The non-parametric MLE of θ1 in the model of gδ known is given by

Θ(Pn) =
∑

y,a,z,m,w

y
Pnfy,a,z,l,w
Pnfa,z,l,w

Pnfl,a,w
Pnfa,w

Pnfz,a,w
Pnfa,w

gδ(a | w)Pnfw, (4.24)

where we remind the reader of the notation Pf =
∫
fdP. Here fy,a,z,l,w = 1(Y = y, A = a, Z =

z,M = m,W = w), and 1(·) denotes the indicator function. The other functions f are defined
analogously.

We will use the fact that the efficient influence function in a non-parametric model corresponds
with the influence curve of the NPMLE. This is true because the influence curve of any regular
estimator is also a gradient, and a non-parametric model has only one gradient. The Delta method
[see, e.g., Appendix 18 of 183] shows that if Θ̂1(Pn) is a substitution estimator such that θ1 =
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Θ̂1(P), and Θ̂1(Pn) can be written as Θ̂∗
1(Pnf : f ∈ F) for some class of functions F and some

mapping Θ∗
1, the influence function of Θ̂1(Pn) is equal to

IFP(O) =
∑
f∈F

dΘ̂∗
1(P)

dPf {f(O) − Pf}.

Applying this result to (4.24) with F = {fy,a,z,l,w, fa,z,l,w, fz,a,w, fa′,w, fl,a,w, fa,w, fw : y, a, z, l, w}
and rearranging terms gives the result of the theorem. The algebraic derivations involved here are
lengthy and not particularly illuminating, and are therefore omitted from the proof. Similar analy-
ses may be performed for the model where only gδ is unknown, as well as θ2.

Targeted Minimum Loss Estimation Algorithm

To simplify notation, in the remaining of this section we will denote η̃j(i)(Oi) with η̃(Oi). If L
is binary, the efficient influence functions in Theorem 3 may be simplified using the following
identity:

v(l, a, w) − v̄(a, w) = {v(1, a, w) − v(0, a, w)}{l − b(1 | a, w)},

which also holds for v replaced by s and v̄ by s̄.

Step 1. Initialize η̃ = η̂. Compute ṽ, s̃, and q̃j by plugging in m̃, g̃, ẽ, d̃ into equations (4.7),
(4.16) and (4.15) if Z is multivariate, and fitting data-adaptive regression algorithms as
appropriate.

Step 2. For each subject, compute the auxiliary covariates

HD,i = b̃(Li | Ai,Wi)
d̃(Li | Zi, Ai,Wi)

{
1 − g̃δ(Ai | Wi)

ẽ(Ai | Zi,Wi)

}

HI,i = b̃(Li | Ai,Wi)
d̃(Li | Zi, Ai,Wi)

{
g̃δ(Ai | Wi)

ẽ(Ai | Zi,Wi)
− g̃δ(Ai | Wi)

g̃(Ai | Wi)

}

KD,i = ṽ(1, Ai,Wi) − ṽ(0, Ai,Wi) − g̃δ(Ai | Wi)
g̃(Ai | Wi)

{s̃(1, Ai,Wi) − s̃(0, Ai,Wi)}

KI,i = g̃δ(Ai | Wi)
g̃(Ai | Wi)

{s̃(1, Ai,Wi) − s̃(0, Ai,Wi) − ṽ(1, Ai,Wi) + ṽ(0, Ai,Wi)}

MD,i = − g̃δ(1 | w)(1 − g̃δ(1 | w))
g̃(1 | w)(1 − g̃(1 | w))

q̃2(w)

MI,i = g̃δ(1 | w)(1 − g̃δ(1 | w))
g̃(1 | w)(1 − g̃(1 | w))

{q̃2(w) − q̃1(w)}
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Step 3. Fit the logistic tilting models

logit mβ(Ai, Zi, Li,Wi) = logit m̃(Ai, Zi, Li,Wi) + βIHI,i + βDHD,i

logit bα(1 | Ai,Wi) = logit b̃(1 | Ai,Wi) + αIKI,i + αDKD,i

logit gγ(1 | Wi) = logit g̃(1 | Wi) + γIMI,i + γDMD,i

where logit(p) = log{p(1 − p)−1}. Here, logit m̃(a, z, l, w) is an offset variable (i.e., a
variable with known parameter value equal to one). The parameter β = (βI , βD) may be
estimated by running standard logistic regression of Yi on (HD,i, HI,i) with no intercept
and an offset term equal to logit m̃(Ai, Zi, Li,Wi). Let β̂ denote the estimate, and let
m̃ = mβ̂ denote the updated estimates. Perform analogous computations for b and g.

Step 4. Compute ũ according to equation (4.7) by plugging in m̃ and b̃. Compute the covariate

Ji = g̃δ(Ai | Wi)
g̃(Ai | Wi)

,

and fit the model

logit ūκ(Ai,Wi) = logit ˜̄u(Ai,Wi) + κD + κIJi

by running a logistic regression of ũ(Zi, Ai,Wi) on Ji with an intercept and offset logit ˜̄u(Ai,Wi).
Let κ̂ denote the MLE, and update ˜̄u = ūκ̂.

Step 5. The TMLE of the direct and indirect effects are defined as:

ψ̂tmle
D,δ = 1

n

∫ n∑
i=1

{
˜̄u(a,Wi)g̃(a | Wi) − ũ(Zi, a,Wi)g̃δ(a | Wi)

}
dκ(a)

ψ̂tmle
I,δ = 1

n

∫ n∑
i=1

{
ũ(Zi, a,Wi) − ˜̄u(a,Wi)

}
g̃δ(a | Wi)dκ(a)

Proof of Theorem 4

Proof Let Pn,j denote the empirical distribution of the prediction set Vj , and let Gn,j denote the
associated empirical process

√
n/J(Pn,j − P). For simplicity we denote a general parameter ψ

with influence function Dη, the proof applies equally to the direct and indirect effect parameters.
Note that

ψ̂os
δ = 1

J

J∑
j=1

Pn,jDη̂j ,δ, ψδ = PDη.

Thus, √
n{ψ̂os

δ − ψδ} = Gn{Dη,δ − ψδ} +Rn,1(δ) +Rn,2(δ),
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where

Rn,1(δ) = 1√
J

J∑
j=1

Gn,j(Dη̂j ,δ −Dη,δ), Rn,2(δ) =
√
n

J

J∑
j=1

P{Dη̂j ,δ − ψδ}.

It remains to show that Rn,1(δ) and Rn,2(δ) are oP (1). Lemmas 6 and 7 together with the Cauchy-
Schwartz inequality and assumption (ii) of the theorem shows that ||Rn,2||∆ = oP (1). For ||Rn,1||∆
we use empirical process theory to argue conditional on the training sample Tj . In particular,
Lemma 19.33 of [185] applied to the class of functions F = {Dη̂j ,δ −Dη,δ} (which consists of one
element) yields

E

∣∣∣Gn,j(Dη̂j ,δ −Dη,δ)
∣∣∣ ∣∣∣∣∣ Tj

 ≲ 2C log 2
n1/2 + ||Dη̂j ,δ −Dη,δ||(log 2)1/2

By assumption (ii), the left hand side is oP (1). Lemma 6.1 of [27] may now be used to argue that
conditional convergence implies unconditional convergence, concluding the proof.

Theorem 5

Proof Let Pn,j denote the empirical distribution of the prediction set Vj , and let Gn,j denote the
associated empirical process

√
n/J(Pn,j − P). For simplicity we denote a general parameter ψ

with influence function Dη, the proof applies equally to the direct and indirect effect parameters.
By definition, the sum of the scores of the submodels {mβ, bα, gγ, ūκ : (β, α, γ, κ)} at the last
iteration of the TMLE procedure is equal to n−1∑n

i=1 Dη̃(Oi) = oP (n−1/2). Thus, we have

ψ̂tmle
δ = 1

J

J∑
j=1

Pn,jDη̃j
+ oP (n−1/2).

Thus, √
n(ψ̂tmle

δ − θ) = Gn(Dη − θ) +Rn,1 +Rn,2 + oP (n−1/2),

where

Rn,1 = 1√
J

J∑
j=1

Gn,j(Dη̃j
−Dη), Rn,2 =

√
n

J

J∑
j=1

P(Dη̃j
− θ).

As in the proof of Theorem 4, Lemmas 6 and 7 together with the Cauchy-Schwartz inequality and
the assumptions of the theorem shows that Rn,2 = oP (1).

Since Dη̃j
depends on the full sample through the estimates of the parameters β of the logistic

tilting models, the empirical process treatment of Rn,1 needs to be slightly from that in the proof of
Theorem 4. To make this dependence explicit, we introduce the notationDη̂j ,β = Dη̃j

andRn,1(β).
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Let F j
n = {Dη̂j ,β − Dη : β ∈ B}. Because the function η̂j is fixed given the training data, we can

apply Theorem 2.14.2 of [188] to obtain

E

 sup
f∈Fj

n

|Gn,jf |
∣∣∣∣∣ Tj

 ≲ ||F j
n||
∫ 1

0

√
1 +N[ ](ϵ||F j

n||,F j
n, L2(P))dϵ,

where N[ ](ϵ||F j
n||,F j

n, L2(P)) is the bracketing number and we take F j
n = supβ∈B |Dη̂j ,β −Dη| as

an envelope for the class F j
n. Theorem 2.7.2 of [188] shows

logN[ ](ϵ||F j
n||,F j

n, L2(P)) ≲ 1
ϵ||F j

n||
.

This shows

||F j
n||
∫ 1

0

√
1 +N[ ](ϵ||F j

n||,F j
n, L2(P))dϵ ≲

∫ 1

0

√
||F j

n||2 + ||F j
n||
ϵ

dϵ

≤ ||F j
n|| + ||F j

n||1/2
∫ 1

0

1
ϵ1/2 dϵ

≤ ||F j
n|| + 2||F j

n||1/2.

Since ||F j
n|| = oP (1), this shows supf∈Fj

n
Gn,jf = oP (1) for each j, conditional on Tj . Thus

supβ∈B Rn,1(β) = oP (1). Lemmas 6 and 7 together with the Cauchy-Schwartz inequality and the
assumptions of the theorem show that Rn,2 = oP (1), concluding the proof of the theorem.

Additional Results

Lemma 8 (Second order terms for modified treatment policies). Let dξ(o) denote dν(a, l, z)dP(w),
and let r(z |, a, w) denote p(z | a, w), and let h(z |, w) denote p(z | w). Let d(a, w) denote a mod-
ified treatment policy satisfying A6. We have

PD1
η1,δ − ψ1(δ) =

∫ (
g
g1

d
d1

− 1
)

(m − m1)b1rgδ,1dξ (4.25)

−
∫ (

g
g1

− 1
)

(ū1 − ū)gδ,1dξ (4.26)

+
∫ (

g
g1

− 1
)

(m1 − m)b1rgδ,1dξ (4.27)

−
∫ g

g1
(b1 − b)(v1 − v)gδ,1dξ (4.28)

−
∫

(ū1 − ū)(gδ,1 − gδ)dξ (4.29)
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and

PD2
η1,δ − ψ2(δ) =

∫ (
e
e1

d
d1

− 1
)

(m − m1)b1hgδ,1dξ

+
∫ g

g1
(b1 − b)(s1 − s)gδ,1dξ

−
∫

(q1 − q)(gδ,1 − gδ)dξ.



CHAPTER 4. STOCHASTIC INTERVENTIONAL CAUSAL MEDIATION 102

Proof Note that

PS1
η1,δ − ψ1(δ) =

∫ (
g
g1

d
d1

− 1
)

(m − m1)b1rgδ,1dξ +
∫

(m − m1)b1rgδ,1dξ

−
∫

ū(gδ − gδ,1)dξ −
∫

ūgδ,1dξ

+
∫ g

g1
(b − b1)v1gδ,1dξ +

∫ g
g1

(u1r − ū1)gδ,1dξ +
∫

ū1gδ,1dξ

= (4.25) +
∫

(ū1 − ū)gδ,1dξ

+
∫

(m − m1)b1rgδ,1dξ +
∫ g

g1
(b − b1)v1gδ,1dξ

+
∫ g

g1
u1rgδ,1dξ −

∫ g
g1

ū1gδ,1dξ

−
∫

ū(gδ − gδ,1)dξ

= (4.25) −
∫ (

g
g1

− 1
)

(ū1 − ū)gδ,1dξ

+
∫ g

g1
m1b1rgδ,1dξ −

∫ g
g1

mbrgδ,1dξ

+
∫

(m − m1)b1rgδ,1dξ +
∫ g

g1
(b − b1)v1gδ,1dξ

−
∫

ū(gδ − gδ,1)dξ

= (4.25) − (4.26)

+
∫

(m − m1)b1rgδ,1dξ +
∫ g

g1
(b − b1)v1gδ,1dξ

+
∫ g

g1
(m1b1 + mb1 − mb1 − mb)rgδ,1dξ

−
∫

ū(gδ − gδ,1)dξ

= (4.25) − (4.26)

+
∫

(m − m1)b1rgδ,1dξ +
∫ g

g1
(b − b1)v1gδ,1dξ

+
∫ g

g1
(m1 − m)b1rgδ,1dξ +

∫ g
g1

(b1 − b)mrgδ,1dξ

−
∫

ū(gδ − gδ,1)dξ

= (4.25) − (4.26) + (4.27) − (4.28)

−
∫

ū(gδ − gδ,1)dξ.

(4.30)
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Using A6 we can change variables to obtain

PSA,1η1,δ
=
∫

ū1(gδ − gδ,1)dξ.

The proof for ψ2 is analogous. This completes the proof of the theorem.

Lemma 9 (Second order terms for exponential tilting.). Define c(w) = {
∫
a exp(δa)g(a | w)}−1,

and let c1(w) be defined analogously. Let b(a) = exp(δa). Using the same notation as in Lemma 6,
we have

PD1
η1,δ − ψ1(δ) =

∫ (
g
g1

d
d1

− 1
)

(m − m1)b1rgδ,1dξ

−
∫ (

g
g1

− 1
)

(ū1 − ū)gδ,1dξ

+
∫ (

g
g1

− 1
)

(m1 − m)b1rgδ,1dξ

−
∫ g

g1
(b1 − b)(v1 − v)gδ,1dξ

+
∫

(ū1 − ū)(gδ,1 − gδ)dξ

−
∫ {

(c1 − c)2
∫
bg1ū1dκ

∫
bgdκ

}
dξ

+
∫ {

(c1 − c)
∫
bū1(g − g1)dκ

}
dξ,

and

PD2
η1,δ − ψ2(δ) =

∫ (
e
e1

d
d1

− 1
)

(m − m1)b1hgδ,1dξ

+
∫ g

g1
(b1 − b)(s1 − s)gδ,1dξ

−
∫

(q1 − q)(gδ,1 − gδ)dξ

−
∫ {

(c1 − c)2
∫
bg1q̄1dκ

∫
bgdκ

}
dξ

+
∫ {

(c1 − c)
∫
bq̄1(g − g1)dκ

}
dξ.

Proof In this proof, (4.30) is also valid. We have

PS1,A
η1,δ

−
∫

ū(gδ − gδ,1)dξ = PS1,A
η1,δ

−
∫

ū1(gδ − gδ,1)dξ +
∫

(ū1 − ū)(gδ,1 − gδ)dξ
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It thus remains to prove that

PS1,A
η1,δ

−
∫

ū1(gδ − gδ,1)dξ = −
∫ {

(c1 − c)2
∫
bg1ū1dκ

∫
bgdκ

}
dξ

+
∫ {

(c1 − c)
∫
bū1(g − g1)dκ

}
dξ.

We have

PS1,A
η1 −

∫
ū1(gδ − gδ,1)dξ

=
∫ {∫ g1,δ

g1
ū1gdκ−

∫ g1,δ

g1
gdκ

∫
ū1g1,δdκ+

∫
(g1,δ − gδ)ū1dκ

}
dξ

=
∫ g1,δ

g1
gū1dκ−

∫
gδū1dκ+

∫
g1,δū1dκ

[
1 −

∫ g1,δ

g1
gdκ

] dξ

=
∫ {

c1

∫
bū1gdκ− c1

∫
bū1gdκ+ c1

∫
bgū1dκ

∫
(c− c1)bgdκ

}
dξ

=
∫

(c1 − c)
{∫

bū1gdκ− c1

∫
bg1ū1dκ

∫
bgdκ

}
dξ

=
∫

(c1 − c)
{∫

bū1gdκ− c
∫
bg1ū1dκ

∫
bgdκ− (c1 − c)

∫
bg1ū1dκ

∫
bgdκ

}
dξ

=
∫ {

−(c1 − c)2
∫
bg1ū1dκ

∫
bgdκ+ (c1 − c)

[∫
bū1gdκ−

∫
bg1ū1dκ

]}
dξ (4.31)

=
∫ {

−(c1 − c)2
∫
bg1ū1dκ

∫
bgdκ+ (c1 − c)

∫
bū1(g − g1)dκ

}
dξ,

where (4.31) follows from c
∫
bgdκ = 1. The proof for ψ2 is analogous.
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Chapter 5

Open Source Software for Causal Inference

5.1 Towards “Really Reproducible” Research

Electronic computation has had a transformative impact on the discipline of statistics, both in the
development of novel statistical methodology and the practice of statistical data analysis. Mod-
ern statistical techniques rely heavily upon the widespread availability of personal computers and
high-performance computing systems, and, today, some of the most well-known and influential
procedures for statistical estimation and inference — including ensemble machine learning [197,
19, 180], the jackknife [48], and the bootstrap [48, 49, 35] — presume the availability of signifi-
cant computational resources. The ease of access to and reliability of modern computing systems,
coupled with their ever-increasing capabilities, has allowed tremendous strides in not only how
statistical methods are developed but in the range of scientific problems to which they may be ap-
plied. Despite these advances, critical lessons and practices for facilitating the reproducibility of
findings from the computational sciences, readily absorbed by allied disciplines, were left largely
unheeded by statisticians for most of the twentieth and early twenty-first centuries.

An early call to embrace computing and programming was issued by Tukey [169], who saw
such activities as critical to the next generation of developments in statistical data analysis. While
Tukey’s prominence afforded his timely concerns visibility, only a very small fraction of the total
academic effort in statistics research became concentrated upon the inception and improvement of
standards for statistical programming, computing, and graphics [8, 9, 89] or on the complemen-
tary paradigms of literate programming [100] and literate computing [129]. Cross-talk between
statistics and related computationally intensive sciences led to further concern about the state of
reproducibility in computational research. For example, as lessons learned from their development
of Wavelab, a robust software toolkit for wavelet analysis, Buckheit and Donoho [23] bemoaned
the lack of availability of scientific software, remarking that the “release of software underlying
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scientific publication is the exception rather than the rule” while simultaneously observing that,
with respect to scientific publications, “the actual scholarship is the complete software develop-
ment environment and the complete set of instructions which generated the figures.” Fortunately,
the decades leading to the recent emergence of the interdisciplinary field of data science [45] have
been marked by a renewed and fervent interest in open source software development and repro-
ducible research.

As we move into an era in which sophisticated statistical techniques are routinely deployed
for rigorously evaluating scientific claims of global concern, such as the vaccine efficacy trials
discussed in Chapters 2 and 3, the availability and adoption of robust statistical software will
undoubtedly play a central role in enhancing the transparency inherent to the scientific process.
That is, the conscientious use of modern statistical methodology alone has become insufficient for
the practice of open science. For transparent scientific practice to thrive, user-friendly software
will need to become the norm, rather than the exception, as has historically been the case [162,
136]. Such software is characterized by at least five essential characteristics.

1. Clear, easily accessible, highly detailed documentation of all code-derived interfaces and
objects, whether developer-oriented or user-facing.

2. Rigorous and focused testing to assess programmatic procedures (e.g., functions, classes,
methods) and data structures (e.g., the ubiquitous data frame).

3. In-depth examples using literate programming documents that blend executable code with
prose (e.g., RMarkdown [201]) or literate computing notebooks that promote the interactive
development of computation informed by data (e.g., Jupyter notebooks [99, 67]).

4. Open source development, embodying an ongoing, continuous, public peer review of the
research product.

5. The automated, near-constant monitoring of software quality through continuous integration
services, ensuring accessibility across diverse computer systems and architectures.

By displaying these characteristics, software for statistics can empower the scientific community
— and possibly even the public at large — to directly access the published results of scientific
investigations. Practices for reproducible research in statistics and allied computational sciences
have been the subject of much discussion [e.g., 127, 128, 160, 97, 114]; however, in many academic
circles, the core aspects of software development are still viewed as an ancillary activity, rather than
as a primary pursuit.

As the fields of statistics and data science continue to co-develop in the coming decades, statis-
ticians will be challenged by questions that highlight the importance of software to the field. Such
questions include, for example, (1) how a theorem, or similar mathematical result, can significantly
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impact science except through software, or (2) in what ways software implementations can read-
ily reveal important insights about the computational bottlenecks of newly developed statistical
methodology. Recalling an anecdote of Buckheit and Donoho [23], we note that, without contin-
ued investment in the development and promotion of open source software standards, “a year [will
continue to be] a long time in this business,” as the application of existing statistical methodology to
newly procured datasets will be marked by the unreliability and instability of accompanying soft-
ware. We hope that such occurrences will become exceedingly rare. To that end, we next present
three open source software packages, each developed to implement distinct statistical methods
described in this greater body of work. Written for the R programming language [137], the un-
restricted source code for each package is available on the collaborative programming platform
GitHub; moreover, each package is accompanied by online documentation, a suite of unit tests,
and automated quality control through continuous integration services.

5.2 The txshift R Package

Summary

Statistical causal inference has traditionally focused on effects defined by inflexible static interven-
tions, applicable only to binary or categorical exposures. The evaluation of such interventions is
often plagued by many problems, both theoretical (e.g., non-identification) and practical (e.g., pos-
itivity violations); however, stochastic interventions provide a promising solution to these funda-
mental issues [40]. The txshift R package provides researchers in (bio)statistics, epidemiology,
health policy, economics, and related disciplines with access to state-of-the-art statistical method-
ology for evaluating the causal effects of stochastic shift interventions on continuous-valued expo-
sures. txshift estimates the causal effects of modified treatment policies (or “feasible interven-
tions”), which take into account the natural value of an exposure in assigning an intervention level.
To accommodate use in study designs incorporating outcome-dependent two-phase sampling (e.g.,
case-control), the package provides two types of modern corrections, both rooted in semipara-
metric theory, for constructing unbiased and efficient estimates, despite the significant limitations
induced by such designs. Thus, txshift makes possible the estimation of the causal effects
of stochastic interventions in experimental and observational study settings subject to real-world
design limitations that commonly arise in modern scientific practice.
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Statement of Need

Researchers seeking to build upon or apply cutting-edge statistical approaches for causal inference
often face significant obstacles: such methods are usually not accompanied by robust, well-tested,
and well-documented software packages. Yet coding such methods from scratch is often imprac-
tical for the applied researcher, as understanding the theoretical underpinnings of these methods
requires advanced training, severely complicating the assessment and testing of bespoke causal
inference software. What’s more, even when such software tools exist, they are usually minimal
implementations, providing support only for deploying the statistical method in problem settings
untouched by the complexities of real-world data. The txshift R package solves this problem by
providing an open source tool for evaluating the causal effects of flexible, stochastic interventions,
applicable to categorical or continuous-valued exposures, while providing corrections for appro-
priately handling data generated by commonly used but complex two-phase sampling designs.

Background

Causal inference has traditionally focused on the effects of static interventions, under which the
magnitude of the exposure is set to a fixed, prespecified value for each unit. The evaluation of
such interventions faces a host of issues, among them non-identification, violations of the assump-
tion of positivity, and inefficiency. Stochastic interventions provide a promising solution to these
fundamental issues by allowing for the target parameter to be defined as the mean counterfactual
outcome under a hypothetically shifted version of the observed exposure distribution [39]. Modi-
fied treatment policies, a particular class of such interventions, may be interpreted as shifting the
natural exposure level at the level of a given observational unit [71, 40].

Despite the promise of such advances in causal inference, real data analyses are often further
complicated by economic constraints, such as when the primary variable of interest is far more
expensive to collect than auxiliary covariates. Two-phase sampling is often used to bypass these
limitations — unfortunately, these sampling schemes produce side effects that require further ad-
justment when formal statistical inference is the principal goal of a study. Among the rich literature
on two-phase designs, Rose and van der Laan [147] stand out for providing a study of nonpara-
metric efficiency theory under a broad class of two-phase designs. Their work provides guidance
on constructing efficient estimators of causal effects under general two-phase sampling designs.

txshift’s Scope

Building on these prior works, Hejazi et al. [81] outlined a novel approach for use in such set-
tings: augmented targeted minimum loss (TML) and one-step estimators for the causal effects of
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stochastic interventions, with guarantees of consistency, efficiency, and multiple robustness despite
the presence of two-phase sampling. These authors further outlined a technique that summarizes
the effect of shifting an exposure variable on the outcome of interest via a nonparametric work-
ing marginal structural model, analogous to a dose-response analysis. The txshift software
package, for the R language and environment for statistical computing [137], implements this
methodology.

txshift is designed to facilitate the construction of TML and one-step estimators of the
causal effects of modified treatment policies that shift the observed exposure value up (or down)
by an arbitrary scalar δ, which may possibly take into account the natural value of the exposure
(and, in future versions, the covariates). The R package includes tools for deploying these efficient
estimators under outcome-dependent two-phase sampling designs, with two types of corrections:
(1) a reweighting procedure that introduces inverse probability of censoring weights directly into
relevant loss functions, as discussed in Rose and van der Laan [147]; as well as (2) an augmented
efficient influence function estimating equation, studied more thoroughly by Hejazi et al. [81].
txshift integrates with the sl3 package [33] to allow for ensemble machine learning to be
leveraged in the estimation of nuisance parameters. What’s more, the txshift package draws
on both the hal9001 [32, 78] and haldensify [77] R packages to allow each of the efficient
estimators to be constructed in a manner consistent with the methodological and theoretical ad-
vances of Hejazi et al. [81], which require fast convergence rates of nuisance parameters to their
true counterparts for efficiency of the resultant estimator.

Availability

The txshift package has been made publicly available both via GitHub (https://github
.com/nhejazi/txshift) and the Comprehensive R Archive Network (https://CRAN.R
-project.org/package=txshift). Use of the txshift package has been extensively
documented in the package’s README, two vignettes, and its pkgdown documentation website
(https://code.nimahejazi.org/txshift).

5.3 The medshift R Package

Background

This R package aims to provide tools for assessing the population intervention direct effect and
the population intervention indirect effect, based on the effect decomposition of the population
intervention effect introduced in Díaz and Hejazi [37].

https://github.com/nhejazi/txshift
https://github.com/nhejazi/txshift
https://CRAN.R-project.org/package=txshift
https://CRAN.R-project.org/package=txshift
https://code.nimahejazi.org/txshift
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To proceed, we will use as our running example a simple data set from an observational study
of the relationship between BMI and kids behavior, distributed as part of the mma R package on the
Comprehensive R Archive Netowrk (https://CRAN.R-project.org/package=mma).
First, a bit of quick programmatic housekeepking for this data example.

# preliminaries

library(data.table)

library(dplyr)

library(tidyr)

library(sl3)

library(medshift)

library(mma)

The documentation for the data set describes it as a “database obtained from the Louisiana
State University Health Sciences Center, New Orleans, by Dr. Richard Scribner. He explored the
relationship between BMI and kids behavior through a survey at children, teachers and parents in
Grenada in 2014. This data set includes 691 observations and 15 variables.”

Unfortunately, the data set contains a few observations with missing values. As these are
unrelated to the object of our analysis, we’ll simply remove these for the time being. Note that in
a real data analysis, we might consider strategies to fully make of the observed data, perhaps by
imputing missing values. For now, we simply remove the incomplete observations, resulting in a
data set with fewer observations (now 567 units) but otherwise the same structure as the original.

# load and clean up data

data(weight_behavior)

weight_behavior_complete <- weight_behavior %>%

drop_na() %>%

mutate(as.numeric(sports) - 1)

dim(weight_behavior_complete)

head(weight_behavior_complete)

## bmi age sex race numpeople car gotosch snack tvhours

cmpthours

## 1 18.20665 12.2 F OTHER 5 3 2 1 4

0

## 2 22.78401 12.8 M OTHER 4 3 2 1 4

2

## 4 25.56754 12.1 M OTHER 2 3 2 1 0

2

https://CRAN.R-project.org/package=mma
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## 5 15.07408 12.3 M OTHER 4 1 2 1 2

1

## 6 22.98338 11.8 M OTHER 4 1 1 1 4

3

## 8 19.15658 12.1 F OTHER 3 3 2 1 0

0

## cellhours sports exercises sweat overweigh

## 1 0 1 2 1 0

## 2 0 0 8 2 0

## 4 0 1 9 1 1

## 5 3 0 12 1 0

## 6 2 0 1 1 0

## 8 1 0 1 3 0

For the analysis of this observational data set, we focus on the effect of participating in a sports
team (sports) on the BMI of children (bmi), taking several related covariates as mediators
(snack, exercises, overweigh) and all other collected covariates as potential confounders.
Considering an NPSEM, we separate the observed variables from the data set into their corre-
sponding nodes as follows.

Y <- weight_behavior_complete$bmi

A <- weight_behavior_complete$sports

Z <- weight_behavior_complete %>%

select(snack, exercises, overweigh)

W <- weight_behavior_complete %>%

select(age, sex, race, numpeople, car, gotosch, tvhours, cmpthours,

cellhours, sweat)

Finally, in our analysis, we consider an incremental propensity score intervention (IPSI), as first
proposed by Kennedy et al. [96], wherein the odds of participating in a sports team is modulated
by a fixed amount (0 ≤ δ ≤ ∞), specified a priori, for each individual. Such an intervention
may be interpreted as the effect of a school program that motivates children to participate in sports
teams. To exemplify our approach, we postulate a motivational intervention that triples the odds
of participating in a sports team for each individual:

delta_shift_ipsi <- 3

To easily incorporate ensemble machine learning into the estimation procedure, we rely on the
facilities provided in the sl3 R package (https://tlverse.org/sl3) [33]. We construct
an ensemble learner using a handful of popular machine learning algorithms below.

https://tlverse.org/sl3
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# SL learners used for continuous data (nuisance parameter M)

xgb_contin_lrnr <- Lrnr_xgboost$new(

nrounds = 50, objective = "reg:linear"

)

enet_contin_lrnr <- Lrnr_glmnet$new(

alpha = 0.5, family = "gaussian", nfolds = 3

)

lasso_contin_lrnr <- Lrnr_glmnet$new(

alpha = 1, family = "gaussian", nfolds = 3

)

fglm_contin_lrnr <- Lrnr_glm_fast$new(family = gaussian())

contin_lrnr_lib <- Stack$new(

enet_contin_lrnr, lasso_contin_lrnr,

fglm_contin_lrnr, xgb_contin_lrnr

)

sl_contin_lrnr <- Lrnr_sl$new(

learners = contin_lrnr_lib,

metalearner = Lrnr_nnls$new()

)

# SL learners used for binary data (nuisance parameters G and E)

xgb_binary_lrnr <- Lrnr_xgboost$new(

nrounds = 50, objective = "reg:logistic"

)

enet_binary_lrnr <- Lrnr_glmnet$new(

alpha = 0.5, family = "binomial", nfolds = 3

)

lasso_binary_lrnr <- Lrnr_glmnet$new(

alpha = 1, family = "binomial", nfolds = 3

)

fglm_binary_lrnr <- Lrnr_glm_fast$new(family = binomial())

binary_lrnr_lib <- Stack$new(

enet_binary_lrnr, lasso_binary_lrnr,

fglm_binary_lrnr, xgb_binary_lrnr

)

logistic_metalearner <- make_learner(

Lrnr_solnp, metalearner_logistic_binomial, loss_loglik_binomial

)

sl_binary_lrnr <- Lrnr_sl$new(



CHAPTER 5. OPEN SOURCE SOFTWARE FOR CAUSAL INFERENCE 113

learners = binary_lrnr_lib,

metalearner = logistic_metalearner

)

Population Intervention Effect Decomposition

We may decompose the population intervention effect (PIE) in terms of a population intervention
direct effect (PIDE) and a population intervention indirect effect (PIIE):

PIIE︷ ︸︸ ︷
E{Y (Aδ, Z(Aδ)) − Y (Aδ, Z)} +

PIDE︷ ︸︸ ︷
E{Y (Aδ, Z) − Y (A,Z)} .

This decomposition of the PIE as the sum of the population intervention direct and indirect
effects has an interpretation analogous to the corresponding standard decomposition of the average
treatment effect. In the sequel, we will compute each of the components of the direct and indirect
effects above using appropriate estimators as follows.

• For E{Y (A,Z)}, the sample mean 1
n

∑n
i=1 Yi is sufficient;

• for E{Y (Aδ, Z)}, an efficient one-step estimator for the effect of a joint intervention altering
the exposure mechanism but not the mediation mechanism, as proposed in Díaz and Hejazi
[37]; and,

• for E{Y (Aδ, ZAδ
)}, an efficient one-step estimator for the effect of a joint intervention on

both the exposure and and mediator(s), as proposed in Kennedy et al. [96] and implemented
in the npcausal R package (https://github.com/ehkennedy/npcausal).

Estimating the Effect Decomposition Term

As given in Díaz and Hejazi [37], the statistical functional identifying the decomposition term
that appears in both the PIDE and PIIE E{Y (Aδ, Z)}, which corresponds to altering the exposure
mechanism while keeping the mediation mechanism fixed, is

θ0(δ) =
∫
m0(a, z, w)g0,δ(a | w)p0(z, w)dν(a, z, w),

for which a one-step estimator is available. The corresponding efficient influence function (EIF)
with respect to the nonparametric model M is Dη,δ(o) = DY

η,δ(o) + DA
η,δ(o) + DZ,W

η,δ (o) − θ(δ).
The one-step estimator may be computed using the EIF estimating equation, making use of cross-
fitting [203, 27] to circumvent any need for entropy conditions (i.e., Donsker class restrictions).

https://github.com/ehkennedy/npcausal
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The resultant estimator is

θ̂(δ) = 1
n

n∑
i=1

Dη̂j(i),δ(Oi) = 1
n

n∑
i=1

{
DY
η̂j(i),δ

(Oi) +DA
η̂j(i),δ

(Oi) +DZ,W
η̂j(i),δ

(Oi)
}
,

which is implemented in the medshift R package. We make use of that implementation to
estimate E{Y (Aδ, Z)} via its one-step estimator θ̂(δ), as demonstrated below.

# let’s compute the parameter where A (but not Z) are shifted

theta_eff <- medshift(

W = W, A = A, Z = Z, Y = Y,

delta = delta_shift_ipsi,

g_learners = sl_binary_lrnr,

e_learners = sl_binary_lrnr,

m_learners = sl_contin_lrnr,

phi_learners = Lrnr_hal9001$new(),

estimator = "onestep",

estimator_args = list(cv_folds = 3)

)

summary(theta_eff)

Estimating the Direct Effect

Recall that, based on the decomposition outlined previously, the population intervention direct
effect may be denoted βPIDE(δ) = θ0(δ) − EY . Thus, an estimator of the PIDE, β̂PIDE(δ) may be
expressed as a composition of estimators of its constituent parameters:

β̂PIDE(δ) = θ̂(δ) − 1
n

n∑
i=1

Yi.

Based on the above, we may construct an estimator of the PIDE using quantities already com-
puted. The convenience function below applies the simple delta method required in the case of a
linear contrast between the two constituent parameters:

# convenience function to compute inference via delta method: EY1 - EY0

linear_contrast <- function(params, eifs, ci_level = 0.95) {

# bounds for confidence interval

ci_norm_bounds <- c(-1, 1) * abs(qnorm(p = (1 - ci_level) / 2))

param_est <- params[[1]] - params[[2]]

eif <- eifs[[1]] - eifs[[2]]

se_eif <- sqrt(var(eif) / length(eif))
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param_ci <- param_est + ci_norm_bounds * se_eif

# parameter and inference

out <- c(param_ci[1], param_est, param_ci[2])

names(out) <- c("lwr_ci", "param_est", "upr_ci")

return(out)

}

With the above convenience function in hand, we’ll construct or extract the necessary compo-
nents from existing objects and simply apply the function:

# parameter estimates and EIFs for components of direct effect

EY <- mean(Y)

eif_EY <- Y - EY

params_de <- list(theta_eff$theta, EY)

eifs_de <- list(theta_eff$eif, eif_EY)

# direct effect = EY - estimated quantity

de_est <- linear_contrast(params_de, eifs_de)

de_est

## lwr_ci param_est upr_ci

## -0.4961 -0.0073 0.4815

As given above, we have for our estimate of the direct effect β̂PIDE(δ) = −0.007.

5.4 The haldensify R Package

Statement of Need

In causal inference problems, both classical estimators (e.g., based on inverse probability weight-
ing) and doubly robust estimators (e.g., one-step estimation, targeted minimum loss estimation)
require estimation of the propensity score, a nuisance parameter corresponding to the treatment
mechanism. While exposures of interest may often be continuous-valued, most approaches opt to
discretize the exposure so as to estimate effects based on categorical exposures — such a simplifi-
cation is often done out of convenience, to avoid estimation of the generalized propensity score [84,
91], which is a conditional density function. The haldensify package introduces a flexible ap-
proach for estimating such conditional density functions, using the highly adaptive lasso (HAL), a
nonparametric regression function that has been proven to converge to a given target function(al)
at n−1/3-rate under minimal conditions.
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Consider data generated by typical cohort sampling O = (W,A, Y ), where W is a vector of
baseline covariates, A is a continuous-valued exposure, and Y is an outcome of interest. Estimation
of the generalized propensity score g0,A corresponds to estimating the conditional density of A
given W = w. A simple strategy for estimating this nuisance function is to assume a parametric
working model and use parametric regression to generate suitable density estimates. For example,
one could operate under the working assumption that A given W follows a normal distribution
with homoscedastic variance and mean

∑p
j=1 βjϕj(W ), where ϕ = (ϕj : j) are user-selected basis

functions and β = (βj : j) are unknown regression parameters. In this case, a density estimate
would be generated by fitting a linear regression of A on ϕ(W ) to estimate the conditional mean
of A given W , paired with an estimate of the variance of A. Then, the estimated conditional
density would be given by the density of a Gaussian distribution evaluated at these estimates.
Unfortunately, most such approaches do not allow for flexible modeling of g0,A. This motivated
our development of a novel and flexible procedure for constructing conditional density estimates
gn,A(a | w) of A givenW = w (possibly subject to observation-level weights), evaluated at a ∈ A.

Conditional Density Estimation by Pooled Hazard Regression

As consistent estimation of the generalized propensity score is an integral part of constructing es-
timators of the causal effects of continuous-valued exposures, our conditional density estimator,
built around the HAL regression function, may be quite useful in flexibly constructing such es-
timates. We note that proposals for the data adaptive estimation of such quantities are sparse in
the literature [e.g., 205]. Notably, Díaz and van der Laan [41] gave a proposal for constructing
semiparametric estimators of such a target quantity based on exploiting the relationship between
the hazard and density functions. Our proposal builds upon theirs in several key ways.

1. We adjust their algorithm so as to incorporate sample-level weights, necessary for making
use of sample-level weights (e.g., inverse probability of censoring weighting).

2. We replace the use of arbitrary classification models with the highly adaptive lasso.
While our first modification is general and may be applied to the estimation strategy of Díaz and
van der Laan [41], our latter contribution requires adjusting the penalization aspect of HAL regres-
sion models so as to respect the use of a loss function appropriate for density estimation on the
hazard scale.

To build an estimator of a conditional density, Díaz and van der Laan [41] considered discretiz-
ing the observed a ∈ A based on a number of bins T and a binning procedure (e.g., including the
same number of points in each bin or forcing bins to be of the same length). We note that the choice
of the tuning parameter T corresponds roughly to the choice of bandwidth in classical kernel den-
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sity estimation; this will be made clear upon further examination of the proposed algorithm. The
data {A,W} are reformatted such that the hazard of an observed value a ∈ A falling in a given bin
may be evaluated via standard classification techniques. In fact, this proposal may be viewed as a
re-formulation of the classification problem into a corresponding set of hazard regressions:

P(A ∈ [αt−1, αt) | W ) =P(A ∈ [αt−1, αt) | A ≥ αt−1,W )

×
t−1∏
j=1

{1 − P(A ∈ [αj−1, αj) | A ≥ αj−1,W )},

where the probability that a value of A ∈ A falls in a bin [αt−1, αt) may be directly estimated
from a standard classification model. The likelihood of this model may be re-expressed in terms
of the likelihood of a binary variable in a data set expressed through a repeated measures structure.
Specifically, this re-formatting procedure is carried out by creating a data set in which any given
observation Ai appears (repeatedly) for as many intervals [αt−1, αt) that there are prior to the inter-
val to which the observed a belongs. A new binary outcome variable, indicating Ai ∈ [αt−1, αt), is
recorded as part of this new data structure. With the re-formatted data, a pooled hazard regression,
spanning the support of A is then executed. Finally, the conditional density estimator

gn,α(A | W ) = P(A ∈ [αt−1, αt) | W )
(αt − αt−1)

,

for αt−1 ≤ a ≤ αt, may be constructed. As part of this procedure, the hazard estimates are mapped
to density estimates through rescaling of the estimates by the bin size (αt − αt−1).

In its original proposal, a key element of this procedure was the use of any arbitrary classifica-
tion procedure for estimating P(A ∈ [αt−1, αt) | W ), facilitating the incorporation of flexible, data
adaptive estimators. We alter this proposal in two ways.

1. Replace the arbitrary estimator of P(A ∈ [αt−1, αt) | W ) with HAL regression [170, 13,
171], as implemented in the hal9001 R package [32, 78].

2. Accommodate the use of sample-level weights, making it possible for the resultant condi-
tional density estimator to achieve a convergence rate with respect to a loss-based dissimi-
larity of n−1/3 [15].

Our procedure alters the HAL regression function to use a loss function tailored for estimation
of the hazard, invoking ℓ1-penalization in a manner consistent with this loss.

Code Demonstration

First, let’s load a few required packages, set a seed to make our example reproducible, and generate
some very simple, simulated example data.
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library(haldensify)

library(data.table)

library(ggplot2)

set.seed(75681)

make_example_data <- function(n_obs) {

W <- runif(n_obs, -4, 4)

A <- rnorm(n_obs, mean = W, sd = 0.25)

dat <- as.data.table(list(A = A, W = W))

return(dat)

}

# number of observations in our simulated dataset

n_obs <- 200

example_data <- make_example_data(n_obs)

# let’s take a quick look at the data

head(example_data)

## A W

## 1: 2.3063922 2.24687273

## 2: 0.9297479 0.91025531

## 3: -3.2443382 -2.98696024

## 4: -0.1842217 -0.01204378

## 5: 3.2756387 3.59166824

## 6: -2.9132139 -3.02363838

The function make_example_data(), defined below, generates a baseline covariate W
and a continuous-valued exposure variable A, whose mean is a function of W .

Next, we’ll fit our pooled hazards conditional density estimator via the haldensify() func-
tion. Based on underlying theory and simulation experiments, we recommend setting a relatively
large number of bins and using a binning strategy compatible with the large number of bins.

haldensify_fit <- haldensify(

A = example_data[["A"]],

W = example_data[["W"]],

n_bins = c(10, 20),

grid_type = "equal_range",

lambda_seq = exp(seq(-0.1, -10, length = 500)),
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# the following are passed to hal9001::fit_hal() internally

max_degree = 5,

num_knots = NULL,

smoothness_orders = 0,

reduce_basis = 1 / sqrt(n_obs)

)

# print the output object

haldensify_fit

## HAL Conditional Density Estimation

## Number of bins over support of A: 20

## CV-selected lambda: 4e-04

## Summary of fitted HAL:

## coef term

## 1: 4.015834 (Intercept)

## 2: 8.219963 [ I(W >= -3.305) ]

## 3: 7.080282 [ I(bin_id >= 9) ]

## 4: -6.906777 [ I(W >= -3.393) ]

## 5: 6.111346 [ I(bin_id >= 7) ]

## 6: 5.984919 [ I(W >= 0.474) ]

## 7: 5.615845 [ I(bin_id >= 2) ]

## 8: 5.536335 [ I(bin_id >= 4) ]

## 9: 5.375681 [ I(bin_id >= 13) ]

## 10: 5.270633 [ I(W >= -0.267) ]

Having constructed the conditional density estimator, we can examine the empirical risk over
the grid of choices of the ℓ1 regularization parameter λ. To do this, we can simply call the
available plot() method, which uses the cross-validated conditional density fit stored in the
haldensify object. For example,

plot(haldensify_fit)

The empirical risk curve of the conditional density estimates across differing values of λ are
visualized in Figure 18.
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Figure 18: Empirical risk of the estimated conditional density gn,A across a grid in the regulariza-
tion parameter λ.

Finally, we can predict the conditional density over the grid of observed values A across differ-
ent elements of the support W . We do this using the predict() method of haldensify and
plot the results below.

# predictions to recover conditional density of A|W

new_a <- seq(-4, 4, by = 0.05)

new_dat <- as.data.table(list(

a = new_a,

w_neg = rep(-2, length(new_a)),

w_zero = rep(0, length(new_a)),

w_pos = rep(2, length(new_a))

))

new_dat[, pred_w_neg := predict(haldensify_fit,

new_A = new_dat[["a"]],

new_W = new_dat[["w_neg"]])]

new_dat[, pred_w_zero := predict(haldensify_fit,

new_A = new_dat[["a"]],

new_W = new_dat[["w_zero"]])]
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new_dat[, pred_w_pos := predict(haldensify_fit,

new_A = new_dat[["a"]],

new_W = new_dat[["w_pos"]])]

# visualize results

dens_dat <- melt(

new_dat,

id = c("a"),

measure.vars = c("pred_w_pos", "pred_w_zero", "pred_w_neg")

)

p_dens <- ggplot(dens_dat, aes(x = a, y = value, colour = variable)) +

geom_point() +

geom_line() +

stat_function(fun = dnorm, args = list(mean = -2, sd = 0.25),

colour = "blue", linetype = "dashed") +

stat_function(fun = dnorm, args = list(mean = 0, sd = 0.25),

colour = "darkgreen", linetype = "dashed") +

stat_function(fun = dnorm, args = list(mean = 2, sd = 0.25),

colour = "red", linetype = "dashed") +

labs(

x = "Observed value of W",

y = "Estimated conditional density",

title = "Conditional density estimates g(A|W)"

) +

theme_bw() +

theme(legend.position = "none")

p_dens

The resulting conditional density estimates are visualzed in Figure 19.
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Figure 19: Conditional density estimates evaluated at different values of W , compared to the
reference distribution at those same values.
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Chapter 6

Directions for Future Investigation

While the presented body of work has provided novel statistical methodology for working with
stochastic treatment regimes, there remains much more to do. To motivate future efforts, there is
demand for the development of theory, methods, and software for (1) higher-order efficient estima-
tion of novel causal effects, including (in)direct effects; and (2) generalizable, nonparametric esti-
mation of flexible, path-specific causal effects for time-to-event outcomes and outcome-dependent
sampling. Such statistical developments are well-positioned to be guided by the pressing scientific
necessity of analyzing Phase III COVID-19 vaccine efficacy trials, though myriad other applica-
tions will surely emerge as the proposed new class of methodology reaches maturity.

6.1 Pressing New Challenges

Fueled by the deluge of “Big Data” amassed across collaborative research networks, observational
studies arm today’s scientists with the means to investigate elaborate, albeit daunting, questions.
Fortunately, formal causal inference frameworks outline tools for expressing such questions in
terms of hypothetical interventions and complex path-specific effects [121, 83]. Consider, for
example, efficacy trials to evaluate candidate preventive vaccines for COVID-19; the observed
data are a sample of random variables O, with distribution P0, where O = (W,A,Z,M, Y ) con-
sists of baseline covariates W (e.g., age, sex, co-morbidities), randomized vaccine v. placebo as-
signment A, mediating immunologic biomarkers such as binding or neutralizing antibody levels
M , mediator-outcome confounders affected by treatment Z (e.g., post-vaccination risky behav-
ior), and symptomatic SARS-CoV-2 infection Y . Two distinct pathways reveal the direct and
indirect effects [189] of vaccination: (1) A → Y , and (2) A → M → Y for the partial ef-
fect through immunologic biomarkers. Causal inference empowers us to investigate how disease
risk would have changed under counterfactual treatment regimens, defined by interventions set-
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ting A = a to a⋆ ∈ A, that propagate to mediators M to yield M(a⋆) ∈ M. These coun-
terfactual random variables (i.e., a⋆ and M(a⋆)), with distribution P ⋆

0 , may be used to define
highly interpretable causal estimands ψ⋆0 = ψ(P ⋆

0 ) — for example, the natural indirect effect
ψ⋆0 = E[Y (M(a⋆), a⋆) − Y (M(a), a⋆)] [141], quantifying the causal impact of vaccination on
disease risk mediated only through the immunologic biomarkers M .

Although observational studies have led to a renaissance in statistical causal inference, many
significant challenges remain: causal estimands can be “unidentifiable” (i.e., learning ψ(P ⋆

0 ) may
be impossible from observed dataO), under even mildly non-standard conditions; unfounded para-
metric assumptions can cause estimation bias, leading to questionable conclusions; and, estimation
of the statistical parameter ψ(P ) may be complicated by biased sampling and high-dimensional or
longitudinal data. Even effect definitions can prove limiting: mediation analysis has focused on
natural (in)direct effects, whose identification assumptions preclude intermediate confounding by
Z [130, 164, 113, 191]. While data adaptive regression may address parametric model estimation
bias, its use necessitates augmented estimators [131, 183, 182, 34] and mathematically intricate
derivations [25] on a case-by-case basis for novel causal estimands, motivating the dissemination
of robust statistical software. Real-world study designs, such as outcome-dependent two-phase
sampling (the norm in immunologic biomarker correlates analyses [73]), require substantial cor-
rections to ensure efficient effect estimation [81] and extensions for complex (e.g., possibly right-
censored time-to-event) outcomes.

Vaccine efficacy trials present unlimited yet pressing challenges, from a dire need for path-
specific causal estimands robustly identifiable and estimable with right-censored mediators and
outcomes to efficiency theory for estimation under novel two-phase sampling designs.

Grounding future research efforts, we briefly review the methodological contributions made
thus far, which have leveraged advances in non/semi-parametric causal inference to develop im-
proved statistical estimation techniques as well as new effect definitions extending causal inference
approaches to non-standard yet real-world settings.

6.2 Efficient Estimation and Two-Phase Sampling Corrections

Despite significant strides in statistical causal inference with the development of multiply robust
non/semi-parametric techniques (e.g., double machine learning [28, 27], targeted minimum loss
estimation [184, 183, 182]), classical procedures such as inverse probability weighting (IPW) [87,
148, 83] remain widely used for their ease of implementation across a diversity of settings [83].
Though straightforward, IPW estimators require consistent estimation of a re-weighting mecha-
nism g0(A | W ), used to induce balance on A. Estimates gn(A | W ) are usually obtained via
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finite-dimensional parametric models, a practice prone to biasing estimates through model mis-
specification. While machine learning provides a potential solution, most approaches are incon-
sistent with efficiency theory, which requires a fast convergence rate (1/ 4

√
n) of the estimate to the

true mechanism (typically unattainable by machine learning). We have formulated a novel class
of IPW estimators [50] by coupling the highly adaptive lasso [13, 171, 15, 78] with sieve-based
selection strategies to achieve guarantees of consistency and non/semi-parametric efficiency with-
out sacrificing flexible estimation of gn(A | W ). Our work is the first demonstration that IPW
estimators can successfully incorporate flexible modeling without compromising asymptotic bias
or variance, outlining numerous avenues for future investigation. A simple extension of this ap-
proach appeared in Chapter 1, in which we developed nonparametric-efficient IPW estimators for
the causal effects of stochastic interventions, showing that this class of procedure could work even
when g0 is the conditional density of treatment, instead of the much simpler conditional probability
of treatment studied previously.

While non/semi-parametric causal inference can provide interpretable estimands, their estima-
tion is often complicated by the thorny challenges posed by complex study designs. For example,
immune correlates analyses of vaccine efficacy trials commonly use outcome-dependent two-phase
sampling [73], in which immunologic biomarkers are measured on a subset of study participants
based on outcome status (e.g., infection) and on demographic characteristics, severely complicat-
ing the statistical estimation problem. Janes et al. [93] followed just such a design in providing the
first immune correlates analysis of the HIV Vaccine Trial Network 505 preventive HIV-1 vaccine
efficacy trial [70]. Seeking to quantify the causal impact of post-vaccination antibody and T-cell
immunologic biomarkers on the risk of HIV-1 infection, in Chapter 2 and Hejazi et al. [81], we
fused two disparate literatures on (1) stochastic interventions [159, 39], to adopt a counterfactual
framework applicable to continuous-valued immunologic biomarkers, and (2) non/semi-parametric
efficiency for two-phase designs [21, 147], to generalize our causal effect estimates beyond the
second-phase sample. Our approach allowed for the mean counterfactual HIV-1 infection risk
in the HVTN 505 trial to be quantified under hypothetical shifts in the observed immunologic
biomarker profile. We developed non/semi-parametric estimators of such causal effect estimands,
with guarantees of efficiency and multiple robustness despite two-phase sampling. Using marginal
structural models [115], we formulated a dose-response analysis strategy for summarizing the ef-
fects of shifting immunogenicity along a pre-specified grid, providing a variable importance mea-
sure for ranking immunologic biomarkers as study endpoints in future vaccine trials. In Chapter 3,
we showed that an extension of this strategy could be used to study candidate mechanistic corre-
lates of protection in vaccine efficacy trials of COVID-19.
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6.3 Robust Causal Mediation for Complex Path Analysis

While interest in path-specific effects dates back to the work of Wright [200], causal media-
tion analysis came into its modern form only with the definition and identifiability of the natural
(in)direct effects [141, 122]. Though the natural (in)direct effects were significant advances, they
face several limitations: they cannot accommodate continuous-valued treatments (i.e.,A ∈ {0, 1});
they are defined by static interventions, which deterministically set A to a fixed value a in its
support A; their identification requires a restriction on “cross-world” counterfactuals of the me-
diators M , which is incompatible with randomization; and they are unidentifiable in the presence
of mediator-outcome confounders Z affected by treatment A (“intermediate confounders”). All
this significantly limits the scope of application of these canonical causal effects. To combat these
shortcomings, we developed, in Díaz and Hejazi [37], a path-specific decomposition of the pop-
ulation intervention effect [39] of flexible, stochastic interventions [159, 38, 95], accommodating
multivariate M and applicable to categorical or continuous A. Our novel (in)direct effects do not
require any cross-world counterfactual independencies, allowing for their implications to be rigor-
ously tested in RCTs. We outlined modern, multiply robust estimators of our (in)direct effects (im-
plemented in our open source medshift software package [79]), alongside non/semi-parametric
efficiency theory.

Though our developments laid the foundations of a new, general framework for causal media-
tion analysis, our (in)direct effects, like their natural effect counterparts, could not accommodate
intermediate confounders Z, motivating work on “interventional” (in)direct effects [43, 82]. In-
teventional (in)direct effects [192, 194] are a new class of causal estimands utilizing joint static and
stochastic interventions (to A and M , respectively) to remain identifiable under intermediate con-
founding. In our initial contribution to the literature on interventional effects, we provided the first
detailed developments of efficiency theory and non/semi-parametric efficient estimators for exist-
ing interventional (in)direct effects [43] (and the first open source software package, medoutcon,
for their application [80]). We then expanded upon our new mediation analysis framework by
defining the stochastic interventional (in)direct effects [82], applicable to categorical or continu-
ous A and identifiable under less restrictive assumptions than their classical counterparts. It re-
mains to generalize such effects to accommodate censored mediators and (possibly time-to-event)
outcomes.

6.4 Higher-Order Efficient Estimation of Novel Causal Effects

Several important developments must be pursued in order for study of higher-order efficiency to
apply to complex causal effect estimands and their non/semi-parametric estimators.
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(a) Theoretical development and evaluation of novel higher-order efficient estimators based on
targeted undersmoothing with the highly adaptive lasso regression function.

(b) Higher-order non/semiparametric efficient estimators of the causal direct and indirect effects
of stochastic treatment regimes.

(c) Techniques for higher-order efficient estimation under outcome-dependent two-phase sam-
pling designs, readily applicable to immune correlates analyses of COVID-19 and HIV-1
vaccine efficacy trials.

Higher-order efficient estimation of the complex statistical functionals arising in non/semi-
parametric causal inference is an area largely undeveloped, though the first steps advancing this
research program are slowly being taken [139, 25]. Such techniques are desirable for the fact
that they expand the nuisance parameter configurations under which multiply robust estimators
may attain the non/semi-parametric efficiency bound. In our work constructing nonparametric-
efficient IPW estimators [50], we demonstrated that a targeted undersmoothing approach based
on the highly adaptive lasso (HAL) could solve a critical component of the estimating equation
implied by the efficient influence function (EIF). A significant step in developing this family of
approaches for higher-order efficient estimation requires deriving second-order remainder terms
R2(P, P0) of the EIF Taylor expansion, for example, in problems with flexible stochastic interven-
tions on the treatment A and/or of complex causal (in)direct effect estimands. The formulation of
a unique targeted undersmoothing approach to construct HAL nuisance parameter estimators solv-
ing the EIF estimating equation and remainder R2(P, P0) would constitute a generalizable strategy
for higher-order estimation without reliance on specialized knowledge beyond standard non/semi-
parametric efficiency theory, a significant step past similar recent developments [171, 14]. Like
related approaches, our estimators would be equipped with multiply robust confidence intervals,
allowing for valid, efficient statistical inference even under nuisance parameter misspecification.
Extending our undersmoothing approach to the augmented EIFs implied by outcome-dependent
two-phase sampling corrections would allow our higher-order estimators to be applied in statisti-
cal analyses of immune correlates in vaccine efficacy trials, through our ongoing collaborations
with the COVID-19 Prevention Trials and HIV Vaccine Trials Networks.

6.5 Extending Causal Mediation Analysis to Complex Settings

Causal mediation analysis has proven to be a powerful tool for dissecting the mechanism of partic-
ular interventions in well-studied systems; however, the complex data produced by modern studies
is largely incompatible with the comparatively simple estimation strategies prominent in mediation
analysis. Consequently, several important developments ought to be considered.
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(a) Novel decompositions of direct and indirect causal effects as well as their efficient estima-
tion in settings with possibly right-censored time-to-event outcomes and outcome-dependent
two-phase sampling.

(b) Robust, novel causal inference transport methodology for bridging these direct and indirect
effects to heterogeneous populations (e.g., between vaccine efficacy trials).

(c) Open source software for the adoption of these newly formulated direct and indirect effects
in immune correlates analyses of COVID-19 and HIV-1 vaccine efficacy trials.

Biomedical and health studies, vaccine efficacy trials especially, are often complicated by time-
to-event outcomes and outcome-dependent two-phase sampling [52] (e.g., case-cohort [134, 6,
111]). A common goal is to ascertain the effect of a treatment, through mediating variables, on the
occurrence of a possibly right-censored time-to-event outcome. For example, in immune correlates
analyses of vaccine trials [73], the observed data are random variables X = (W,A,Z,M,∆, T̃ ),
where T̃ = min(T,C) for failure time T and censoring time C with ∆ = I(T ≤ C) indicating
observed failure (other variables remain as previously defined). To assess the indirect effect of
vaccination A through immunologic biomarkers M , two innovations are necessary: (1) new path-
specific effects identifiable under intermediate confounding and capable of handling time-to-event
outcomes, and (2) efficient estimation strategies for outcome-dependent two-phase sampling based
on T̃ . For (1), we have proposed flexible (in)direct effect estimands [37, 82], robust to intermediate
confounding; however, our (in)direct effects accommodate neither time-to-event outcomes nor
censoring. The study of (in)direct effect estimands under such conditions is in its infancy: current
strategies [e.g., 163, 204] break down under intermediate confounding or are limited to binary
treatmentsA ∈ {0, 1}. For (2), current methods construct second-phase samples based on ∆ rather
than T̃ , a limitation ignoring the time-to-event nature of the outcome process and constraining
sampling efficiency. Generalizing (in)direct effect estimands necessitates methods for bridging
estimates to new populations (i.e., external validity); such causal transport techniques [126, 125,
5] are under study but variants for path-specific effects [e.g., 153] are in a nascent stage. We
will complement our theoretical and methodological pursuits by developing and disseminating
open source statistical software and with the application of these approaches in immune correlates
analyses of Phase III vaccine trials through our collaborative role in the COVID-19 Prevention
Trials Network.

6.6 A Broader Significance: Advancing Science

Since path-specific causal effects are ideal for developing scientific answers to questions of mech-
anism, my proposed research program will have important bearings on problems across many
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fields, from epidemiology and medicine to economics and psychology. In the health and medical
sciences, where the measurement of important but costly variables (e.g., immunologic biomarkers)
complicates effect estimation, sophisticated methods for handling outcome-dependent two-phase
sampling, a key tool in scientific trial design, are sorely needed. I am particularly motivated by av-
enues for formulating direct and indirect effects applicable to complex data from vaccine efficacy
trials and will leverage my collaborations with the COVID-19 Vaccine Prevention Trials and HIV
Vaccine Trials Networks to inform scientifically impactful open problems in causal inference. In
turn, the methods we develop will help to maximize what we can learn about critical and timely
scientific questions, such as how best to tailor future vaccines to mitigate infection risk.
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