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Abstract

Generalized Application of Empirical Bayes Statistics to Asymptotically Linear Parameters

by

Nima S. Hejazi

Master of Arts in Biostatistics

University of California, Berkeley

Professor Alan E. Hubbard, Co-chair

Professor Mark J. van der Laan, Co-chair

The exploratory analysis of high-dimensional biological sequencing data has received much
attention for its ability to allow the simultaneous screening of numerous biological characteris-
tics at resolutions unimaginable just two decades ago. While there has been an increase in the
dimensionality of such data sets in studies of environmental exposure and biomarkers, two im-
portant questions have received less attention than deserved: (1) how can individual estimates of
independent associations be derived in the context of many competing causes while avoiding model
misspecification, and (2) how can accurate small-sample inference be obtained when data-adaptive
techniques are employed in such contexts. The central focus of this paper is on variable importance
analysis in high-dimensional biological data sets with modest sample sizes, using semiparametric
statistical models. We present a method that is robust in small samples, but does not rely on ar-
bitrary parametric assumptions, in the context of studies of gene expression and environmental
exposures. Such analyses are faced not only with issues of multiple testing, but also the problem
of teasing out the associations of biological expression measures with exposure, among confounds
such as age, race, and smoking. Specifically, we propose the use of targeted minimum loss-based
estimation, along with a generalization of the moderated empirical Bayes statistics of Smyth, re-
lying on the influence curve representation of a statistical target parameter to obtain estimates of
variable importance measures. The result is a data-adaptive approach that can estimate individual
associations in high-dimensional data, even in the presence of relatively small sample sizes.
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Chapter 1

Introduction

This thesis proposes a straightforward extension of an empirical Bayes inferential method — the
moderated statistics of Smyth, as implemented in the popular “limma” software package [12] —
for general use with asymptotically linear parameters [13, 16]. By way of this extension, estima-
tors of complex target parameters can benefit from the inferential robustness that such moderated
statistics provide, in the context of many comparisons. As a motivating example, consider a pre-
vious study of miRNA expression and occupational exposure to benzene [8]: The data consists
of around 22,000 genes (measured via the Illumina Human Ref-8 BeadChips platform) on 125
subjects in factories in China. In this study, the variable of interest was occupational exposure to
benzene (measured in various ways), though information on confounding factors was also recorded
(e.g., gender, smoking status). Taking benzene exposure to be binary, the quantity of interest can
be framed as the adjusted association of each of the roughly 22,000 expression values with ex-
posure. One could easily use the approach based on moderated statistics by fitting a parametric
linear model with, say, benzene as outcome and both exposure and confounders as predictors, per-
forming a multiple comparison correction on the estimated coefficients associated with benzene.
However, it is generally desirable to utilize a procedure that is less reliant on arbitrary assumptions,
specifically one estimating a nonparametric estimand, where fitting the model of interest could be
performed via automated, data-adaptive techniques (i.e., machine learning). We show that utilizing
moderated statistics in such situations is possible if asymptotically linear parameters are used —
that is, where the difference between the values taken by the estimator and the parameter may be
approximated by a sum of i.i.d. random variables (i.e., the influence curve representation). Many
complex parameters have representations that are asymptotically linear, and so with minor mod-
ifications, moderated statistics can be applied to a wide variety of settings. This is particularly
valuable in smaller samples, as sampling distribution estimates for these complex estimators can
be unstable, yielding false positives, a problem that moderated statistics are well-suited to ame-
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liorate by borrowing estimates of the sampling variability across the variables of interest (in our
case, gene expression measures). In this way, one can use data-adaptive methods to avoid the bias
of arbitrary parametric assumptions, which are common in bioinformatic applications, while still
adding a degree of robustness for these potentially unstable estimators.

In the following sections, we first detail a data-adaptive, machine learning-based estimator of
a well-known estimand for deriving adjusted associations. We then show how the machinery of
moderated statistics can be used to derive an empirical Bayes estimate of the standard error of this
estimator — and, generally, for any asymptotically linear estimator. Finally, we apply the resulting
procedure to the example of occupational benzene exposure previously described.
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Chapter 2

Methodology

2.1 Data and Statistical Model

Others have proposed using estimators developed for low-dimensional causal inference problems
to derive nonparametric estimators of association in the context of high-dimensional biomarker
discovery studies [14]. In such cases, the goals of analyses are similar to those of more typical
parametric approaches, but the approach is based on nonparametric estimands and can be esti-
mated with data-adaptive techniques. Such data structures typically consist of large matrices of
biological expression values as well as tables of phenotypic information on each subject. In partic-
ular, in later sections, we will illustrate the use of our technique on data generated by the Illumina
Human Ref-8 BeadChips platform, from a study which included expression measures on about
22,000 genes as well as phenotypic information, on a sample of 125 subjects. The analysis aims to
evaluate the association of an environmental exposure (benzene) on the expression measures of the
roughly 22,000 genes simultaneously, controlling for the several aforementioned confounders. In
our analysis, we consider three potential confounding factors on the relationship of exposure and
expression: age, sex, and smoking status. This problem setup is easily generalizable to situations
with greater numbers of potential biomarkers and confounders. Ultimately, the aim of analyzing
such data sets is to rank the importance of a set of candidate biomarkers based on their indepen-
dent associations with a treatment variable. In order to build a ranking of biomarkers, we start by
defining a variable importance measure (VIM) [16].

Let O = (W,A,Y ) represent a random variable defined on the observed data, where W are the
confounders, A the exposure of interest, and Y = (Yb,b= 1, . . . ,B) a vector of potential biomarkers.
Note that we observe n i.i.d. copies of the random variable O, such that Oi = {O1, . . . ,On}. Further,
let O ∼ P0 ∈M, where P0 is the unknown probability distribution of the full data, contained in
an infinite-dimensional statistical model M. For the specific data set described in above, W =
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(W1,W2,W3,W4,W5), where age (W1) is a continuous measure, gender (W2) is binary, smoking
status (W3) is binary, BMI (W4) is a continuous measure, and alcohol consumption (W5) is binary;
A is a binary exposure; and Yb are miRNA expression measures.

2.2 The Target Parameter

To define the parameter of interest, generally, let Ψ(P0) be the target parameter based on a function
Ψ that maps the probability distribution P0 into the target feature of interest. Thus, the parameter
Ψ(P0) is a function of the unknown probability distribution P0, defined on the (unobserved) full
data. Let Pn represent the empirical distribution of the observed data O1,O2, . . . ,On. Though we
focus on cases where the Oi are i.i.d., the following is easily generalizable when the data are clus-
tered (e.g., as repeated samples from the same biological unit). We are interested in substitution
estimators of the form Ψ(P∗n ) — that is, we apply the same mapping (Ψ) but to the empirical dis-
tribution Pn to derive our estimate (e.g., Ψ could merely be the expectation operator). In using this
general definition, we expand the parameters of interest beyond coefficients in a misspecified para-
metric statistical model, by defining a parameter as a feature of the true probability distribution P0

of the full data. Specifically, we propose here what is referred to as a targeted variable importance
measure [2]:

Ψb ≡Ψb(P0) = EW,0[E0(Yb | A = 1,W )−E0(Yb | A = 0,W )]. (2.1)

The parameter delineated in ( 2.1) above is generally referred to as the average treatment effect,
often denoted simply as the ATE [10]. When the assumptions underlying the causal model, through
which the target parameter is defined, do not hold, the estimand of the parameter of interest takes
on a statistical interpretation: specifically, the difference of means within the strata W , averaged
across levels of the treatment A. It has been shown that, under identifiability assumptions (e.g.,
no unmeasured confounding), this parameter can be statistically estimated via targeted maximum
likelihood estimation [16]. Such parameters are significant in that they are not defined explicitly
via parametric statistical models, leaving one free to fit the requisite models data-adaptively, mini-
mizing assumptions wherever possible, and yet still estimating a relatively simple parameter with
rich scientific interpretation.
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2.3 Statistical Estimation

As noted previously in Section 2.2, the target parameter is defined as a feature of the unknown
probability distribution P0. While there are several general classes of estimators available for
estimating Ψ, here we focus on a substitution estimator as noted above. Examining ( 2.1), one
can anticipate that a substitution estimator will rely on estimates of two components of the data-
generating mechanism, P0: E0(Y | A = a,W ) and P0(W ), or the true regression of Y on (A,W ) and
the marginal distribution of W . Let Qb

0(A,W ) ≡ E0(Yb | A,W ), and Qb
n(A,W ) an estimate of this

regression. If we use the empirical distribution to estimate the joint marginal distribution of the W ,
then a substitution estimator is:

Ψb(P∗n ) =
1
n

n

∑
i=1

Qb
n(Ai = 1,Wi)−Qb

n(Ai = 0,Wi). (2.2)

Below, we discuss recommendations for an initial estimate of Q0, using the Super Learner algo-
rithm, and a bias-reducing augmentation (targeted minimum loss-based estimation) with optimal
properties for minimizing the error of estimation and deriving robust inference.

Using the Super Learner algorithm

The first step in the two-stage TMLE procedure is to derive an initial estimate of Qb
0, referred to

as Q(b,0)
n . For instance, one may assume a parametric statistical model that results in (2.2) being

equivalent to a regression coefficient (e.g., Qb
0(A,W ) = αb + β b

AA+ β b
WW ). By defining ( 2.2)

in a nonparametric statistical model, using data-adaptive tools to estimate Qb
0, we avoid settings

wherein estimators based on parametric models would be inconsistent. Specifically, given that
the true model Qb

0 is typically unknown, more accurate estimates may be derived by employing
machine learning algorithms in the estimation procedure.

This reliance on machine learning algorithms leads naturally to the issue of choosing an op-
timal data-adaptive algorithm. To address this issue, we advocate use of the Super Learner algo-
rithm, a generalized stacking algorithm for ensemble learning, implemented via cross-validation,
which produces an optimally weighted combination of candidate estimators, minimizing the cross-
validated risk. Using this procedure, the predictions from a set of candidate algorithms are com-
bined, allowing for highly data-adaptive functional forms to be specified [15].

Though the set of candidate algorithms in the library may be arbitrary, the theoretical under-
pinnings of the Super Learner algorithm offer guidance as to the type and number of learning
algorithms that ought to be considered in the fitting routine. In the rare case that one of the can-
didate learning algorithms captures the true model and, consequently, converges to the correct
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estimate at a parametric rate, the Super Learner algorithm has been shown to converge to the same
estimate at a near-parametric rate of O

(
log(n)

n

)
[15]. As true relationships are rarely captured by

single learning algorithms alone, Super Learner will, up to a first order term, do as well (in terms
of risk) as an algorithm that chooses the particular candidate learner based on full knowledge of
the true distribution — that is, an oracle selector — a result that holds as long as the number of
candidate algorithms is polynomial in sample size. The principle implementation of the Super
Learner algorithm is available as a software package [15] for the R language and environment for
statistical computing [9].

Targeted minimum loss-based estimation

While the Super Learner estimate of Q0 is performed to minimize the cross-validated risk based
on an appropriate loss-function, Q0 is not the target of our analysis, rather we seek to minimize
the mean-squared error of an estimator of Ψb(P0), the target parameter of interest. There is no
guarantee that, given a set of highly data-adaptive learning algorithms, the estimate of Ψb(P0) will
have a normal sampling distribution, even in cases of fairly large sample size. Fortunately, an esti-
mator of Q0 that not only “targets” the estimate of the regression towards the particular parameter
of interest but also “smooths” the estimator such that the sampling distribution converges reliably
to a normal distribution is available [16]. This “targeting” step can be thought of as optimizing the
bias-variance tradeoff, since the data-adaptive selection procedure of Super Learner results in an
estimate of Ψb(P0) that suffers from residual confounding. This form of confounding can occur,
for instance, if the variable selection step in the procedure estimating Qb

0 leaves out any regres-
sors that are, in truth, confounders of the association of A and Y . In this case, bias in estimation
of Ψb(P0) is caused by under-fitting. Thus, the resultant targeted minimum loss-based estimator
(TMLE) is more robust to model misspecification than the initial substitution estimator, based on
the initial fit of Super Learner, and is also, if one has consistent estimates of all relevant portions
of P0, semiparametrically locally efficient. For a detailed discussion of the theory of targeted min-
imum loss-based estimation and formal justifications of the efficiency of the resultant estimator,
consult the appendix of van der Laan and Rose [16].

Algorithmically, the TMLE-based estimator in our case is a simple one-dimensional augmen-
tation of the initial fit. Specifically, in the case of a continuous outcome, following the initial Super
Learner fit, one proceeds by fitting a simple, one-dimensional regression:

Q(b,1)
n (A,W ) = Q(b,0)

n (A,W )+ ε̂hgn(A,W )

where the initial fit, Q(b,0)
n (A,W ) is treated as an offset, and hgn(A,W ) is a so-called “clever”
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covariate:

hgn(A,W ) =
I(A = 1)
gn(1 |W )

− I(A = 0)
gn(0 |W )

,

where gn(1 |W ) is an estimate of P(A = 1 |W ), or the propensity score [10]; ε̂ is the estimated
coefficient from the regression of Y on hgn(A,W ), treating Q(b,0)

n (A,W ) (or the logit of this quantity
if regression is logistic) as the offset. The selection of gn can be made via a process that minimizes
the mean-squared error of the parameter of interest [5], but for application purposes, a simple
main-terms logistic regression is usually sufficient. In the final step of this procedure, the targeted
minimum loss-based estimate of Ψb is derived using the targeted estimate of Q:

Ψb(P∗n ) =
1
n

n

∑
i=1

[Q(b,1)
n (Ai = 1,Wi)−Q(b,1)

n (Ai = 0,Wi)], (2.3)

where P∗n is the estimate of the data-generating distribution based on TMLE, in this case, based on
estimates of gn,Q

(b,1)
n .

2.4 Statistical Inference

An influence curve-based approach

As shown in [16], Ψb(P∗n ) is an asymptotically linear estimator of Ψb(P0), with influence curve
IC(Oi) if it satisfies

√
n(Ψb(P∗n )−Ψb(P0)) =

1√
n

n

∑
i=1

IC(Oi)+op(1). (2.4)

Note from ( 2.4) above that the variance of Ψb(P∗n ) is well approximated by the sample variance
of the influence curve divided by the sample size. When considering biomarkers, the estimated
influence curve for the ATE is

(2.5)
ICb,n(Oi) =

[
I(Ai = 1)
gn(1 |Wi)

− I(Ai = 0)
gn(0 |Wi)

]
(Yb,i − Q(b,1)

n (Ai,Wi))

+ Q(b,1)
n (1,Wi)− Q(b,1)

n (0,Wi)−Ψb(P∗n ).

With the above in hand, we easily derive asymptotic p-values and confidence intervals (CI)
with a Wald-type approach:

p-value = 2
[

1−Φ

(
|Ψb(P∗n )|
σb

n/
√

n

)]
(2.6)

(1 - α) CI = Ψb(P∗n )±
Z(1−α)σ

b
n√

n
(2.7)
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where σb
n is the sample standard deviation of ICb and Φ(·) is the CDF of the standard normal

distribution.

Moderated statistics for influence curve-based estimates

In high-dimensional settings, with small sample sizes, direct application of TMLE for obtaining
joint inference for a targeted estimate of a variable importance measure can result in unstable
standard error estimates, and thus potentially erroneous identification of biomarkers. This is par-
ticularly important if data-adaptive procedures are utilized, as these can add to finite-sample non-
robustness. To address this problem, we apply moderated statistics [11], a technique that preserves
accurate asymptotic inference, yet, provides robust inference in small sample settings by drawing
on information across the many estimates of sampling variability (the σb

n ) by invoking an empir-
ical Bayes procedure. First developed for the analysis of data from microarray experiments, the
moderated t-statistic is implemented in the immensely popular “limma” software package, which
provides a suite of tools for analyzing differential expression of genes using linear models, borrow-
ing information across all genes to provide stable and robust inference for microarray data [11].
Previously, we noted that a common way of making inference about the target parameter Ψb(P0)

is to compute the influence curve-based values for Ψb(P∗n ), which can then be used to calculate the
corresponding standard errors of the influence curve of the target parameter. After obtaining these
IC values, finding corresponding p-values and making inference about Ψb for each probe follow
trivially.

The procedure for using moderated statistics on IC-based estimates of Ψb, using the approach
of “limma” to impose variance shrinkage with an empirical Bayes procedure, is as follows:

1. Assume repeated tests, across all probes b, of null and alternative hypotheses:
H0 : Ψb(P0) = 0,HA : Ψb(P0) 6= 0.

2. Find influence curve-based estimates for each probe, one at a time, using these to iteratively
build a matrix of IC-based estimates of the target parameter across all subjects, for all probes.

3. Since the IC-based estimates have mean zero, add in the corresponding estimates of Ψb(Pn)

to each row (probe). This results in each row having an appropriate average (Ψb(Pn)) and
sample variance equivalent to that of the influence curve for that probe (ICb).

4. Using the implementation readily available in the “limma” R package, apply the moderated
t-statistic (t̃b,b = 1, . . . ,B) to the aforementioned matrix of IC-based estimates of the target
parameter, resulting in individual estimates across each probe, relative to the null hypotheses
above.
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5. The resulting inference, based on the shrinkage estimate of the sampling standard deviation
of the influence curve (σ̃b

n ) is a weighted average of σb
n and a value close to the average of all

these sample standard deviation estimates across the biomarkers (σ̄b
n ≈ 1

B ∑
B
b=1 σb

n , or σ̃b
n =

wtbσb
n +(1−wtb)σ̄b

n , where wtb ∈ (0,1)). See [11] for a rigorous and formal presentation.
Asymptotically, as n→ ∞, wtb→ 1, and thus σ̃b

n → σb
n as desired.

6. Use a multiple testing correction procedure to obtain accurate simultaneous inference for
all probes (biomarkers) b = 1, . . . ,B. In standard practice, we recommend the well-known
Benjamini-Hochberg procedure for controlling the False Discovery Rate (FDR) [3].

The procedure enumerated above will shrink aberrant estimates of variability towards the cen-
ter of their joint distribution, with a particularly noticeable effect when the sample size is small.
The practical effect is that application of this procedure reduces the number of significant biomark-
ers, largely false positives driven by potentially erroneous underestimates of the variation of the
estimate of the parameter of interest, Ψb(Pn). This approach is convenient in that it can handle any
asymptotically linear estimator (has a representation as in ( 2.4)), which covers many estimators of
parameters of scientific interest. An open source software package, “biotmle,” implementing the
described procedure, is publicly available [6].
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Chapter 3

Data Analysis

For the gene expression data set previously described in Section 2.1, we applied the TMLE-based
biomarker evaluation procedure to obtain separate, individual estimates of the association of each
of the roughly 22,000 biomarkers with benzene exposure, while controlling for potential con-
founding based on age, sex, and smoking status. The values obtained from applying this procedure
on a biomarker-by-biomarker basis correspond to the contributions of each potential biomarker to
changes measured by the ATE (the target parameter of interest, in this case), based on the influence
curve decomposition of the ATE parameter. While having a direct interpretation in relation to the
ATE, such transformed expression values hold little bearing on statistical inference.

Using the ATE, the moderated t-statistic for the test performed is as follows:

t̃b =
√

n(Ψb,n(P∗n ))
s̃b,n

,

where s̃2
b,n =

d0s2
0+db(s2

b(ICb,n))
d0+db

, where db is the degrees of freedom for the bth biomarker, d0 is
the degrees of freedom for the remaining biomarkers, sb(ICb,n) the standard deviation for the bth

biomarker, and s0 the common standard deviation across all biomarkers towards which the empir-
ical Bayes procedure performs shrinkage.

In order to isolate a set of differentially up-regulated or down-regulated biomarkers, we ap-
ply the moderated t-statistic [12] to test for group differences based on the observed benzene
exposure status. This results in a table including the moderated t-statistic for each test of the
ATE-transformed values between the exposed and unexposed groups (a coefficient corresponding
to exposure in the gene-wise linear models fit via the approach of “limma”), standard errors of
the coefficient, raw p-values, and adjusted p-values from application of the Benjamini-Hochberg
procedure for controlling the FDR [3]. See table 3 below:
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Biomarker ID ATE Change p-value adjusted p-value
1 198 1.69167E+01 1.04812E-54 2.90551E-51
2 1055 8.30585E+00 1.73105E-47 1.74498E-44
3 1764 -1.83308E+00 6.00103E-55 1.90121E-51
4 2469 1.70375E+02 2.87168E-47 2.76893E-44
5 3607 -4.36856E+00 6.07654E-47 5.39038E-44
6 4195 7.19651E+00 1.38153E-52 2.78529E-49
7 6207 -3.05520E+01 1.17986E-57 5.23316E-54
8 6262 -1.30293E+01 8.96437E-49 1.10446E-45
9 7481 -2.72348E+01 1.06992E-48 1.24883E-45

10 8664 -9.94950E+01 3.25553E-47 3.00824E-44
11 10255 1.07510E+01 9.07492E-54 2.01255E-50
12 11073 -2.88118E+01 7.45674E-54 1.83742E-50
13 12898 -2.50923E+01 1.34871E-58 7.47759E-55
14 14003 -1.84590E+01 5.86475E-59 4.33542E-55
15 14472 7.39674E-01 2.61339E-52 4.82976E-49
16 16255 -3.41521E+01 1.31512E-50 2.08324E-47
17 16454 -5.35507E+00 8.58888E-48 9.52378E-45
18 16608 -3.34112E+00 1.16964E-55 4.32320E-52
19 16658 -6.27276E+00 2.21905E-51 3.78552E-48
20 17537 -1.77342E+02 2.27910E-59 2.52718E-55
21 17982 -1.09417E+02 4.52028E-63 1.00246E-58
22 18337 1.49518E+00 1.87252E-49 2.44275E-46
23 19399 -1.06334E+02 3.36332E-50 4.97256E-47
24 20294 -1.16305E+02 1.64737E-47 1.73970E-44
25 22058 -1.13907E+01 6.07700E-50 8.42310E-47

Table 3.1: The top 25 biomarkers isolated as a result of applying the moderated
t-statistic to the ATE parameter. Applying empirical Bayes moderation to the variance
of the ATE estimates produced by standard TMLE-based procedures identifies nearly
5,000 biomarkers as significant in total.

The analysis presented can be completely replicated by using the “biotmle” software package,
which provides facilities for visualizing the results. Using this R package, a heatmap for visualizing
differences in the ATE induced by benzene exposure, with all 125 subjects on the x-axis and the top
25 isolated biomarkers on the y-axis, may be produced. The heatmap, created using the “superheat”
R package [1], is displayed as figure 3 below:
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Figure 1: Heatmap of the ATE estimates. Blue indicates a depression in the ATE,
while red indicates elevation of the ATE, based on exposure to the maximal level of
benzene as opposed to the minimal level. Hierarchical clustering is performed on the
top 25 biomarkers identified by the proposed procedure.
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As expected, the use of moderated statistics reduces the spread of the standard deviation esti-
mates of the influence curve by probe (s̃2

b) across the approximately 20,000 probes, and the corre-
sponding Wald statistics for testing the target parameter, in comparison to using the original stan-
dard error. The results of our analysis indicate that application of moderated statistics to asymptot-
ically linear parameters constitutes a powerful approach for assessing variable importance, based
on treatment or exposure, in the context of high-dimensional investigations of biomarkers. We
conclude that using this adaptation of TMLE, complimented by moderated statistics implemented
in the “limma” R package, reduces the variability of standard errors and reduces the number of
probes identified as significant, leading to more stable and robust inference, while providing the
opportunity to evaluate biomarkers in the context of statistical parameters of scientific relevance,
such as the average treatment effect focused on in the example discussed above.
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Chapter 4

Discussion

This thesis has introduced an automated, robust method for analyzing high-dimensional biological
sequencing data with relatively modest sample sizes. In the provided examples, the challenges
presented were two-fold, including both obtaining simultaneous inference for a large number of
comparisons and adjustment to account for potential confounders of the association of interest, in
the context of a large statistical model and few biological replicates. Since the goal is estimation
within a nonparametric (infinite-dimensional) statistical model, the techniques leveraged must in-
volve data-adaptive estimation, while still providing trustworthy statistical inference, necessarily
using estimators grounded in semiparametric efficiency theory. That is, given the parameter of
interest and the nature of the statistical model, we maintain that the choice guiding the algorithm
should not be ad hoc, but rather based on the relative efficiency of competing estimators. We
have proposed methods that draw on existing work in statistical genomics and merge these with
modern proposals for the analysis of variable importance, ultimately yielding a procedure that
data-adaptively identifies promising biomarkers from a large set and that can be applied to data
generated from experiments belonging to a large class of study designs.

We illustrated the method using an example miRNA data set (featuring benzene exposure) by
applying, on a biomarker-by-biomarker basis, the outlined approach, combining TMLE with the
moderated t-statistic to estimate the association of each potential biomarker with exposure. Thus,
we present a flexible generalization of moderated statistics to the case of asymptotically linear pa-
rameters, obtaining robust small-sample inference, derived from influence curve-based estimation
of the parameter of interest. The results suggest that instabilities inherent in small-sample infer-
ence can be ameliorated by combining this asymptotically efficient estimator of the ATE (based
on TMLE) with the moderated t-statistic (implemented in the “limma” software package); in our
example, this results in the isolation of fewer statistically significant biomarkers. Since application
of the moderated statistics has no impact on asymptotic properties of TMLE-based estimation pro-
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cedures — the adjustment for within-probe inference becomes negligible as sample size grows —
we can readily use the asymptotic theory underlying TMLE.

This combination of existing methods offers many advantages: (1) it estimates target parame-
ters relevant to specific scientific questions, in the presence of many confounders, without placing
assumptions on the underlying statistical model; (2) it uses the theoretical optimality of loss-based
estimation via the Super Learner algorithm, which optimally balances the bias-variance tradeoff in
finite samples by appropriately choosing a level of parsimony to match the information available
in the sample; (3) its reliance on TMLE-based estimators reduces residual bias and adds an appro-
priate degree of smoothing, making influence curve-based based inference available for the target
parameters of interest; and (4) it robustifies inference by leveraging moderated statistics to derive
joint inference with fewer false positives than would result from otherwise poor estimation of the
sampling variability of the estimator. The result is a theoretically sound, data-adaptive estimation
procedure, based on pre-specified, flexible learning algorithms, that guarantees robust statistical
inference. While the continuing development of new biotechnologies promises new insights into
the myriad relationships between biomarkers and health, procedures like the one presented here
will surely be necessary to ameliorate the pitfalls of increasing dimensionality of the scientific
problems of interest, by providing a rigorous and generalizable statistical framework for accurate,
robust, and conservative biomarker discovery.
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Chapter 5

Software Package

To support widespread use of this newly developed methodology, an R package, “biotmle,” which
provides a generalized implementation of this biomarker discovery procedure, has been made pub-
licly available. As previously described in Section 2.3, the method, based on targeted minimum
loss-based estimation [16] and a generalization of the moderated statistics of Smyth [12], is de-
signed for use with both microarray and next-generation biological sequencing data. The statistical
approach made available in this software package relies on the use of TMLE to rigorously evaluate
the association between a set of potential biomarkers and another variable of interest while adjust-
ing for potential confounding from another set of user-specified covariates. The implementation is
in the form of a package for the R language for statistical computing [9].

There are two principal ways in which the biomarker discovery techniques in the “biotmle” R
package may be used: to evaluate the association between (1) a phenotypic measure (say, environ-
mental exposure) and a biomarker of interest, and (2) an outcome of interest (e.g., survival status
at a given time) and a biomarker measurement, both while controlling for background covariates
(e.g., BMI, age). By using a TMLE-based procedure to estimate the average treatment effect in a
targeted manner, the package produces easily interpretable results in the form of a variable impor-
tance measure (see [16] for an extended discussion), making the “biotmle” package aptly suited
for applications in bioinformatics, genomics, and molecular epidemiology.

While the principal results produced by this R package matches those produced by the im-
mensely popular “limma” R package [11], “biotmle” provides several unique utilities, largely
in the form of several expressive plotting methods — for example, a heatmap based on the re-
cently developed “superheat” R package [1] — and a custom “biotmle” class, based on the pop-
ular “SummarizedExperiment” class [7]. While the R package is currently publicly available at
https://github.com/nhejazi/biotmle, submission of the software package to the centralized
repository maintained by the Bioconductor project [4] is underway.
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Chapter 6

Future Work

The proposed procedure for applying empirical Bayes moderated statistics to asymptotically lin-
ear parameters currently suffers from several limitations, both in terms of pragmatic theoretical
development and software implementation. As previously discussed, empirical Bayes moderation
of estimates of parameters with asymptotically linear representations may be used to obtain robust
standard deviation estimates when the estimated parameter is formulated in terms of a binary ex-
posure variable. It is for this reason that we largely rely on the moderated t-statistic of Smyth [12]
in our presentation of applied data analysis. The limitation imposed by assessing the difference
between two levels of the exposure variable has several solutions: (1) the applied researcher could
decide on a binarization scheme that fits their scientific question of interest, and (2) the range of tar-
get parameters currently supported by our software implementation [6] could be increased beyond
just the average treatment effect.

Going further, this application of moderated statistics to the development of robust hypothe-
sis testing procedures for asymptotically linear parameters may be further extended to a general
notion of hypothesis testing for parameters that do not have straightforward asymptotically linear
representations. Specifically, one might be interested in assessing more complex parameters (e.g.,
the causal dose-response curve) that allow a greater degree of flexibility in answering scientific
questions of interest — that is, it is easy to conceive of investigations in which a dose-response
relationship is of interest, rather than a mere difference in the levels of a binary exposure. Support-
ing the application of moderated statistics to such parameters would greatly increase the flexibility
of the proposed procedure.

While the proposed method has been well-established theoretically, there are a number of com-
putational improvements that can still be made, including both improvements of the software to
meet the standards of the Bioconductor project and numerical simulations to confirm that the ap-
plication of moderated statistics to asymptotically linear estimates of target parameters of interest
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produces consistent results. Several ideas for simulation studies have been proposed, and work is
underway to implement these ideas, to ensure that the proposed method and corresponding soft-
ware implementation do hold to the theoretical properties presented in preceding sections.
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