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Preview

1. Computational biology research produces complex data, but
statistical methods are tied to modeling assumptions
challenging to verify from substantive knowledge.

2. Model misspecification can seriously undermine the scientific
value of common, parametric statistical modeling approaches.

3. Semi-parametric inference facilitates construction of robust
estimators that are compatible with machine learning.

4. Variance moderation strengthens hypothesis testing strategies,
reducing false positives and preserving power under instability.



A common problem

• Question: What factors causally impact a health outcome of
interest (e.g., cancer, death).

• Experiment: Assign? patients to novel therapy vs. standard of
care (or exposure) and then evaluate outcome’s occurrence.

• Goal: Deepen mechanistic insights — how does the therapy
or exposure biologically operate? Identify intervention points.

• Combine tools from ⋆-omics and molecular biology, clinical
trials, causal inference, (bio)statistics, epidemiology.
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Meet the data: Smoking and DNA methylation

• Question: Which CpG sites, or larger functional units (e.g.,
“CpG islands”) are affected by long-term smoking?

• Why? Attempt to understand how smoking induces regulatory
and functional changes that relate to disease (e.g., cancer).

• Study: Observational exposure study of 253 individuals (172
smokers, 81 non-smokers) and 450,000 CpG sites assayed.

• Goal: Characterize biological mechanisms, signatures, or
biomarkers derived from or attributable to smoking.
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Data structure and notation

• Structural causal model (SCM) (Pearl 2000) describing
data-generating process for a single unit O:

L = fL(UL);A = fA(L,UA);Y = fY(A,L,UY).

• fL, fA, fY are unknown but deterministic functions; UL, UA,
UY are exogenous (unobserved) random errors.

• Y = (Yb : b = 1, . . .B) is a vector of biomarker outcomes (e.g.,
B = 450,000 CpG sites).

• Temporal ordering between variables: L (sex-at-birth, age), A
(smoking, benzene), Yb (biomarker measurement for site b).

• Data on a single study unit O = (L,A,Y), with O ∼ P0 ∈ M ,
of which we observe n i.i.d. copies, O1, . . . ,On.

3



Hypothetical interventions and causal inference

• Static interventions consider replacing fA with an assigned
value a ∈ A deterministically: “What if everyone smoked?”

• Generates counterfactual RV Y(a) = (Yb(a),b : 1, . . .B): the
expression of the B biomarkers if A had been set to a.

• Viewed as potential outcomes (POs) (Rubin 2005), Yb(1)
when setting A = 1 and Yb(0) when setting A = 0.

• Note Yb = AYb(1)+(1−A)Yb(0) — partial visibility is the
fundamental problem of causal inference (Holland 1986).

• Causal inference yields interpretable, scientifically well-aligned
estimands, e.g., the average treatment effect (ATE).
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A familiar workhorse: the linear model

• The linear model is flexible — linearity in parameters!

• Flexible: transformations (X2
j ), interactions (XjXk).

• For biomarker Yb, fit working linear model, E0[Yb | X] = Xβ ;
if X1 ≡ A is the exposure, then β1 measures its impact on Y.

• Under this working model, β1 is a conditional effect measure,
whose interpretation depends on X\X1, and which coincides
with the ATE only under randomization.

• Test the contrast of interest with a standard t-test:

tb =
β̂b −βb,H0

σ̂b
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Variance moderation to the rescue?!

• When sample size is small, σ2
b may be so small (by chance)

that even small effect sizes (β̂b −βb,H0) yield large tb.

• False positives! Many biomarkers flagged relevant despite
small effect size, only since variance is even smaller still.

• Can we do better? A moderated t-test (Smyth 2004):

t̃b =
β̂b −βb,H0

σ̃b
where σ̃2

b =
σ2

b db +σ2
0 d0

db +d0

• Helps reduce erroneously large tb by “averaging out” low
variance across each of the many biomarkers.
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Variable importance measures as target parameters!

• The statistical functional identifying the ATE (ψb,0) may be
used as an estimand to assess variable importance:

θ ATE = E[Yb(1)−Yb(0)]
ψb,0 := Ψb(P0) = EL,0[E0[Yb | A = 1,L]−E0[Yb | A = 0,L]]

• ψb,0 is a mapping, Ψb(P0), that depends on the underlying
true (but unknown) distribution P0 ∈ M — model-agnostic!

• The causal parameter θ ATE is identified by the statistical
functional ψb,0 under some assumptions (no unmeasured
confounding, positivity), i.e., θ ATE ≡ ψb,0.
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Locally efficient estimation

• An estimator ψ̂b is asymptotically linear if it admits the form

ψ̂b −ψb,0 =
1
n

n
∑
i=1

Db(Oi;P0)+oP

(
1√
n

)
,

where Db(O;P0) is the efficient influence function (wrt M ),
whose asymptotic variance at P0 is the efficiency bound.

• Db(O;P0) helpful to construct efficient estimators. For ATE,

Db(Oi;P0) =

[
2Ai −1
g0(Li)

]
(Yb,i −Q0,b(Ai,Li))+

[Q0,b(1,Li)−Q0,b(0,Li)]−ψb,0,

where g0(L) = P0(A = 1 | L) is the propensity score and
Q0,b(A,L) = E0[Yb | A,L] the conditional outcome mean.
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Constructing locally efficient estimators

• Examining Db(O;P0), we know we must estimate g0(L) and
Q0,b(A,L), but how to do this?

• No need to try to exactly specify functional forms or assume
we know the underlying true data-generating distribution P0.

• Machine learning of g0(L) and Q0,b(A,L), e.g., by ensembling,
stacking (van der Laan et al. 2007, Breiman 1996).

• One-step estimator (Bickel et al. 1993) uses “debiasing” based
on an additive correction: ψ̂+

b = ψ̂b +n−1 ∑n
i=1 D̂b(Oi).

• A valid variance estimator: V̂(ψ̂+
b ) = n−1 ∑n

i=1 D̂2
b(Oi), but its

small-sample behavior may be erratic (asymptotically valid).
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Moderated test statistics with efficient influence functions

• Moderated t-statistic of Smyth (2004) can be paired with
locally efficient estimators:

t̃b =
ψ̂+

b −���ψb,0 H0: ψb,0=0

σ̃b
,

where the moderated (influence function) variance is

σ̃2
b =

σ̂2
b db + σ̂2

0 d0
db +d0

• Preserves robust variance estimator while adding stability by
“averaging out” potentially erratic variance across biomarkers.

• Avoid model misspecification while stabilizing inference.
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Numerical study: Rare effect (10%) without positivity issues



Numerical study: Common effect (30%) with positivity issues



Differential expression analysis procedure

1. Apply a filtering procedure to reduce the set of candidate
biomarkers (Tuglus and van der Laan 2009) optionally.

2. For each biomarker, generate an efficient estimate ψ̂b of ψ0,b
with EIF D̂b(Oi) after estimating nuisances (g0,Q0,b).

3. Apply variance moderation across the EIF estimates, yielding
moderated σ̃2

b , to be used for stabilized hypothesis testing.

4. Hypothesis testing from moderated test statistics can be
made “optimistic” (MVN) or conservative (logistic).

5. Apply a multiple testing correction for accurate simultaneous
inference across all B biomarkers, e.g., by controlling the False
Discovery Rate (Benjamini and Hochberg 1995).
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Applying the differential expression procedure

1. Filtered set of 450,000 CpG sites measured down to 2537 CpG
sites by covariate adjustment in a working linear model.

2. For each candidate CpG (among 2537), estimate (g0,Q0,b) by
super (ensemble) learning, then construct efficient estimate
ψ̂b of ATE from the EIF D̂b(gn,Qn,b).

3. Variance moderation based on estimated EIF, yielding
moderated σ̃2

b , for stabilized hypothesis testing across CpGs.

4. Applied Holm’s procedure to control the family-wise error rate
(FWER), tagging 1173 CpG sites as differentially methylated.

5. Top CpG sites (cg05575921) located in AHRR gene, previously
identified in at least 30 epigenome-wide association studies on
impact of smoking exposure on blood and lung tissues.
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Ranking differentially methylated CpGs



Open-source software: R/biotmle

• R package for differential expression or methylation analysis
based on model-agnostic, efficient estimators of the ATE.

• Incorporates machine learning and allows cross-validation.

• Statistical inference based on semi-parametric efficiency
theory and variance moderation.

• Where can you find it?
• https://github.com/nhejazi/biotmle

• https://bioconductor.org/packages/biotmle
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Review

1. Computational biology research produces complex data —
why should statistical inference be tied to challenging-to-verify
modeling assumptions?

2. Model misspecification seriously undermines scientific value of
common, parametric statistical modeling approaches.

3. Semi-parametric inference allows the construction of robust
estimators that readily bring machine learning into the process.

4. Variance moderation strengthens hypothesis testing strategies,
reducing false positives and preserving power under instability.
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Thank you

https://nimahejazi.org

https://github.com/nhejazi

https://twitter.com/nshejazi
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