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Prelude:
Immune correlates of protection



The fights against HIV and COVID-19

= The HIV epidemic:
= 1.5 million new infections occurring annually worldwide;
= new infections outpace patients starting antiretroviral therapy;
= HIV Vaccine Trials Network's (HVTN) 505 trial evaluated a

novel antibody boost vaccine (Hammer et al. 2013).

= The COVID-19 epi pan endemic (Antia and Halloran 2021):
= 270 331 619 643 686 772 million total cases globally (WHO);
= new variants emerging, with vaccine uptake globally stalled;

= COVID-19 Prevention Network’s (CoVPN) COVE trial focused
on Moderna's (mRNA-1273) vaccine (Baden et al. 2021).



Evaluating vaccine protection for HIV and COVID-19

= In 505: How would HIV infection risk have differed had the
boost vaccine modulated antibody responses differently?

= In COVE: How would COVID-19 disease risk have differed for
alternative vaccine-induced immunogenic response profiles?

= Question: Can [HIV-1, COVID-19] vaccines be improved by
the modulation of immunogenic response profiles? How?



Why measure and analyze immune correlates?

= Two interrelated goals of immune correlates analyses are to

= identify/validate possible surrogate endpoints (Prentice 1989);
= understand/delineate protective mechanisms of vaccination.

= |f an immune correlate is established to reliably predict VE,

subsequent efficacy trials may use it as a primary endpoint.

= Such surrogate endpoints may accelerate approval of
= existing vaccines in different populations (e.g., in children);
= new vaccines within the same class (e.g., based on mRNA);
= inform the development of future vaccines (e.g., Ab targets);
= shed light on immunologic mechanisms of disease occurrence.



Measuring correlates: Two-phase designs

= Often, use case-cohort design (Prentice 1986), a special case
of two-phase sampling (Breslow et al. 2003).

= Phase 1. measure baseline, vaccination, endpoint on everyone.

= Phase 2: given baseline, vaccine, endpoint, select members of
immune response subcohort with (possibly known) probability.

= In 505: phase-two sample with 100% of HIV-1 cases and
matching of non-cases (n = 189 per Janes et al. 2017)).

= In COVE: stratified random subcohort (n ~ 1600) and all
SARS-CoV-2 infection and COVID-19 disease endpoints.



A simple two-phase design: Case-cohort

Assaying over 30000 samples is expensive, statistically unnecessary.

Whole Study Cohort

SARS-CoV-2
Infection Endpoints
(Symptomatic and
Asymptomatic)

Random
Subcohort

Case-cohort design, per Prentice (1986), as applied to COVE.



Two-phase sampling masks the complete data structure

= Complete unobserved data X = (L, A, S, Y) ~ P € M*X:

= L (baseline covariates): sex, age, BMI, behavioral HIV risk,
= A (treatment): randomized assignment to vaccine/placebo,
= S (exposure): immune response profile for relevant markers,
= Y (outcome of interest): infection status at trial's end.

= Observed data O = (B, BX) = (L,A,B,BS, Y) ~ Py € M.
= B e {0,1} indicates inclusion in the phase-two sample.

= mo:=P(B=1]|Y,L) must be known by design or estimated.



Act I:
Causal effects for quantitative exposures



Static interventions: What are they good for?

= Describe the manner in which Xis hypothetically generated
via an NPSEM-IE (Pearl 2009):

= fL(UL); A~ Bern(0.5); 5 = fs(A, L, Us); V= fy(S,A, L, Uy)

= Implies a model for distribution of counterfactual random
variables induced by interventions on the system under study.

= A static intervention replaces (by “graph surgery”) fs with a
specific value S = s in the conditional support S| A= a, L.

= This requires specifying a priori a particular value of exposure
under which to evaluate the outcome — but what value?



Controlled vaccine efficacy

= For a hypothetical value s € S, the controlled direct effect
(CDE) quantifies the effect of A on Y while fixing S = s.

= The hypothetical value S = s must be chosen carefully — to
be scientifically informative and to avoid positivity violations.

= For two hypothetical values sy, s1 € S, Controlled Vaccine
Efficacy (CVE) (Gilbert et al. 2022) is

B EP(Y=1|S=s5,A=1,L=1)]
EP(Y=1|S==,A=0,L=1)]"

CVE(sq,s1) = 1

contrasting risk for vaccine receipt and S = s; vs. placebo and
S = sp, where sp = 0 is a plausible simplifying assumption in
pathogen-naive populations (Gilbert et al. 2024).



Disease risk under modified immunogenic responses
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Disease risk under modified immunogenic responses
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Disease risk under modified immunogenic responses
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Disease risk under modified immunogenic responses
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Stochastic interventions and modified treatment policies

= Stochastic interventions modify the value S would naturally

assume by modifying the “natural” exposure distribution.

= Diaz and van der Laan (2012; 2018)’s shift interventions!

s+0, s+d<u(l) (if plausible)
s, s+ > u(l) (otherwise)

d(s, /) =

= Causal estimand g 5 == E{ Y4501 is identified by

o5 = /E/SEPO{H S=d(s,I),L=1}

go,s(s | L = )qo,.(/)du(s)dv(l)

'Haneuse and Rotnitzky (2013) introduced modified treatment policies
(MTPs), extended by Dfaz and van der Laan (2018) and Diaz et al. (2021).




Causally interpreting the statistical target parameter

N

Assumption 1: Stable Unit Treatment Value (SUTVA)
. Yf!(s”li) does not depend on d(sj, ;) fori=1,...,n and
J # i, or lack of interference (Cox 1958)
= Y¥s) = Yin the event S = d(s, /)

Assumption 2: No Unmeasured Confounding

YD 1 S| L=

Assumption 3: Structural positivity

seS = d(s,I) € S for all | € L, where S denotes the
support of S conditional on L = |




Stochastic—interventional vaccine efficacy (SVE)

= Stochastic—interventional vaccine efficacy (SVE) estimand:

. E[P(Y=1|S=d(s /), A=1,L= I
SVE(§) = 1 — e
o5

TR0 =1

= P(Y(0) = 1): counterfactual infection risk in the placebo arm
— under randomization, P(Y(0) =1)=P(Y=1| A=0).

= Summarizes VE as shifts of S by 6, yielding a VE measure
based on hypothetically modifying S in the vaccine arm.

2CoVPN SAP: https://doi.org/10.6084/m9.figshare.13198595.


https://doi.org/10.6084/m9.figshare.13198595

Estimation of the counterfactual mean

A RAL estimator 1, 5 of 15 = W(Py) is asymptotically efficient if
1 n
no — =" D* P, i _1/2
ns = os = 3 D(P)O) + ().

where D*(P) is the efficient influence function (EIF) of g s with
respect to the nonparametric model M at some distribution P.

The EIF of 1) s is indexed by two key nuisance parameters

Qy(S, L) =Ep(Y]|S,L) conditional outcome mean
gs(S|L)=1p(S|L) generalized propensity score

Ensemble machine learning to estimate Qy(S, L) and gs(S | L).



Flexible, efficient, and doubly robust estimation

= Efficient influence function (EIF) of vg s with respect to M is

go,s(d*(s./) | /)

PlRllo) ==, s(s|1)

(v — Qo,v(s. 1)+ Qo,v(d(s, 1), N—to s -

= One-step estimator performs additive bias-correction:

= 23" (S L), L) + D}(0)

i=1

= TML estimator tilts initial estimator (7?,,,3/ for bias-correction:
Z Qn Y 5I7 L )

Doubly robust: Consistent even if 6,,75/ or g s incorrect.



Act II:
Revenge of the two-phase sampling design

(“There ain’t nothing in this world for free”)



Augmented Estimators for Two-Phase Sampling Designs

= Rose and van der Laan (2011) suggested inverse probability of
censoring weighted (IPCW) loss functions:

B
P§)(0) = ———L(PX)(X
£(R)(0) = iy ERIX)
= When the sampling mechanism (Y, L) is known by design,
this procedure yields a reasonably reliable estimator.

= When data-adaptive regression must be used — that is, when
mo(Y, L) is not known by design®— this is insufficient.

*Sampling of non-cases in HVTN 505 used matching (Janes et al. 2017).



Efficiency and Multiple Robustness (Hejazi et al. 2021)

= Then, the IPCW augmentation must be applied to the EIF3;

D*(Pg)(o) _710([))/, OHFE0) - <1 : ”O(b% ’))

E(DHPs)(x) | B=1,Y=y,L=).

= Expresses observed data EIF D*(PY)(o) via complete data EIF
Dx(PZ)(x); inclusion of second term improves efficiency.

= An emergent multiple robustness property — combinations of
{80(S | L), Qu(S, L)} x {mo( Y, L), E(DE(PY)(x) | B=1, Y, L)}.

» Our txshift R package implements our estimators of g 5.

“Robins et al. (1994) explored a similar correction for such designs.



Comparing Reweighted and Augmented Estimators
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Act IlI:
Prediction and immunobridging via SVE



Prediction of HIV-1 risk (Hejazi et al. 2021)

TML estimates of mean counterfactual HIV-1 infection risk under shifted CD8+ polyfunctionality

A
with pointwise confidence intervals and summarization via working marginal structural model (Bry e =—0. 013)
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Posited change in standardized CD8+ polyfunctionality (sd units)

HIV-1 risk change across CD8+ score (txshift R package).



SVE prediction of mRNA-1273 VE (Huang et al. 2023)

Stoch. Interv. VE vs. COVID-19 (4 weeks post-vaccination with 100 days follow—-up)
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SVE bridging of mRNA-1273 VE (Hejazi et al. 2023)

Stoch. Interv. VE vs. COVID-19 (4 weeks post-vaccination with 100 days follow-up)
After 2 doses of MRNA-1273
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Summary of SVE prediction for immunobridging

= SVE prediction shows sharp changes in VE with shifts to the
GM titer of the PsV nAb correlate in vaccinees.

= Bridging VE across variants indicates VE drops but stabilizes
at 50%, if the model based on ancestral D614G strain holds.

= Post-2"d dose: For most variants (excepting omicron), the VE
estimate ranges from 50% (mu) to about 80% (lambda).

= SVE predictions and real-world VE estimates well-correlated,
but SVE predictions may be underestimates, as PsV nAb
correlate is an imperfect causal mediator of total VE.



The big picture

= Flexible, realistic interventions can be used to formulate
modified treatment policies (based on “natural” exposure).

= Modified treatment policies address causal questions about
hypothetical manipulations of quantitative variables.

= Efficient estimators with double/multiple robustness can safely
answer such questions while incorporating machine learning.

= Applying machine learning with causal inference yields robust
predictions of VE and evidence for immunobridging.

= Open source software for such statistical analyses is critical for
the methods to have any impact on real-world studies.



Thank you

Thanks for your attention! Any questions?
lh https://nimahejazi.org
C)https://github.com/nhejazi
https://twitter.com/nshejazi
«’ Biometrics: https://doi.org/10.1111/biom. 13375
" 1JID: https://doi.org/10.1016/5.1jid.2023.09.012
* Viruses: https://doi.org/10.3390/v15102029

' Vaccine: https://doi.org/10.1016/j.vaccine.2024.02.071
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Appendix



Immune Correlates of Protection (Plotkin and Gilbert 2012)

= Correlate of Protection (CoP): immune marker statistically
predictive of vaccine efficacy, not necessarily mechanistic.

= Mechanistic CoP (mCoP): immune marker that is causally
and mechanistically responsible for protection.

= Nonmechanistic CoP (nCoP): immune marker that is
predictive but not a causal agent of protection.

= A CoP is a candidate surrogate endpoint (Prentice 1989) —
primary endpoint in future trials if reliably predictive.



Literature: Diaz and van der Laan (2012; 2018)

= Proposal: Evaluate outcome under an altered intervention
distribution — e.g., P5(go.s)(S=s|L) = gos(s—d(L) | L).

= |dentification conditions for a statistical parameter of the
counterfactual outcome g s under such an intervention.

» Show that the causal quantity of interest Epg{Yd(syL)} is
identified by a functional of the distribution of O, i.e.,

wo,éz/ﬁ/SEPo{Y’5:d(5,/)7L:/}

go.s(s| L=1)-qo.r(l)du(s)dv (/)



Literature: Haneuse and Rotnitzky (2013)

= Proposal: Characterization of stochastic interventions as
modified treatment policies (MTPs).

= Assumption of piecewise smooth invertibility allows for the
post-intervention distribution of any MTP to be recovered:

J(N
gO,S(S | l; 6) = ZHJJ{hj(Sv /)v /}gO{hj(Sv /) ‘ I}h}(sv /)

=1

= MTPs account for the natural value of exposure S yet may be

interpreted as imposing an altered intervention mechanism.



Literature: Young et al. (2014)

= Establishes equivalence between g-formula when proposed
intervention depends on natural value and when it does not.

= This equivalence leads to a sufficient positivity condition for
estimating the counterfactual mean under MTPs via the same
statistical functional studied in Diaz and van der Laan (2012).

= Extends earlier identification results, providing a way to use

the same statistical functional to assess E Y5 1) or EYy).

= The authors also consider limits on implementing shifts
d(S, L), and address working in a longitudinal setting.



Flexible conditional density estimation of g s

= Diaz and van der Laan (2011)’s conditional density estimator:

gn,a(5’ L) = ]P)(S € [atflaOét) | L)

Qp — Ot

= Re-expressed as hazard regressions in repeated measures data.

= Tuning parameter t ~ bandwidth in kernel density estimation.

= When cadlag (RCLL) with finite sectional variation, we have

logit{P(s € [as_1,0¢) | L)} = Bo + Z ZBW,KZSW,/,

wC{l,...,d} i=1

for appropriate basis functions {¢.,;}7_; (Gill et al. 1995).



Flexible conditional density estimation of g s

= Utilizing a particular basis construction for ¢, van der Laan
(2017)’s HAL estimator achieves n~1/4 convergence rate®.

= | oss-based cross-validation allows selection of a suitable HAL
estimator, which has only the ¢; regularization term A:

BN arg min P.L(gp,x,s),
BilBol+2wc (1, .y 2ol Bw,il <A

where £(-) is an appropriate loss function, giving {An, 5n}.
= We denote by g\ s = gg,,,s, the HAL estimate of gy s.

» Our haldensify R package implements our estimator of g s.

®Similar rates can be achieved via local (vs. global) smoothness assumptions
on g, s (see, e.g., Robins et al. 2008, Mukherjee et al. 2017, Liu et al. 2021).



Algorithm for TML estimation

1.

Construct initial estimators g, of go(S, L) and @, of Qu(S, L),
perhaps using data-adaptive regression techniques.

. For each observation i, compute an estimate H,(s;, /;) of the

auxiliary covariate H(s;, I;).

Estimate the parameter ¢ in the logistic regression model
logit Qe (s, /) = logitQn(s, /) + €Ha(s, 1),

or an alternative regression model incorporating weights.

Compute TML estimator W, of the target parameter, defining
_* 2 gng g Y
update @, of the initial estimate Q. ,:

v, = ZQ d(Si, L), Ly).



Algorithm for IPCW-TML estimation

1. Using all observed units (X), estimate sampling mechanism
(Y, L), perhaps using data-adaptive regression methods.

2. Using only observed units in the phase-two sample B =1,
construct initial estimators g,(S, L) and @,(S, L), weighting
by the sampling mechanism estimate m,( Y, L).

3. With the approach described for the full data case, compute
H,(si, I;), and fluctuate submodel via logistic regression.

4. Compute IPCW-TML estimator W, of the target parameter,
by solving the IPCW-augmented EIF estimating equation.

5. lteratively update estimated sampling weights 7,(Y, L) and
IPCW-augmented EIF, updating TMLE in each iteration.



References

Antia, R. and Halloran, M. E. (2021). Transition to endemicity: Understanding covid-19. Immunity,
54(10):2172-2176.

Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael,
N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil,
K., Corey, L., Gilbert, P., Janes, H., Follmann, D., Marovich, M., Mascola, J., Polakowski, L., Ledgerwood, J.,
Graham, B. S., Bennett, H., Pajon, R., Knightly, C., Leav, B., Deng, W., Zhou, H., Han, S., Ivarsson, M.,
Miller, J., Zaks, T., and the COVE Study Group (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2
vaccine. New England Journal of Medicine, 384(5):403-416.

Breslow, N., McNeney, B., Wellner, J. A., et al. (2003). Large sample theory for semiparametric regression models
with two-phase, outcome dependent sampling. The Annals of Statistics, 31(4):1110-1139.

Cox, D. R. (1958). Planning of Experiments. Wiley.

Diaz, |. and van der Laan, M. J. (2011). Super learner based conditional density estimation with application to
marginal structural models. International Journal of Biostatistics, 7(1):1-20.

Diaz, |. and van der Laan, M. J. (2012). Population intervention causal effects based on stochastic interventions.
Biometrics, 68(2):541-549.

Diaz, |. and van der Laan, M. J. (2018). Stochastic treatment regimes. In Targeted Learning in Data Science:

Causal Inference for Complex Longitudinal Studies, pages 167-180. Springer Science & Business Media.

Diaz, ., Williams, N., Hoffman, K. L., and Schenck, E. J. (2021). Nonparametric causal effects based on
longitudinal modified treatment policies. Journal of the American Statistical Association.

Gilbert, P. B., Fong, Y., Hejazi, N. S., Kenny, A, Huang, Y., Carone, M., Benkeser, D., and Follmann, D. (2024).
Four statistical frameworks for assessing an immune correlate of protection (surrogate endpoint) from a
randomized, controlled, vaccine efficacy trial. Vaccine, 42(9):2181-2190.



Gilbert, P. B., Fong, Y., Kenny, A., and Carone, M. (2022). A controlled effects approach to assessing immune
correlates of protection. Biostatistics, (in press).

Gill, R. D., van der Laan, M. J., and Wellner, J. A. (1995). Inefficient estimators of the bivariate survival function
for three models. In Annales de I'lHP Probabilités et statistiques, volume 31, pages 545-597.

Hammer, S. M., Sobieszczyk, M. E., Janes, H., Karuna, S. T., Mulligan, M. J., Grove, D., Koblin, B. A.,
Buchbinder, S. P., Keefer, M. C., Tomaras, G. D., et al. (2013). Efficacy trial of a DNA/rAd5 HIV-1 preventive
vaccine. New England Journal of Medicine, 369(22):2083-2092.

Haneuse, S. and Rotnitzky, A. (2013). Estimation of the effect of interventions that modify the received treatment.
Statistics in Medicine, 32(30):5260-5277.

Hejazi, N. S., Shen, X., Carpp, L. N., Benkeser, D., Follmann, D., Janes, H. E., Baden, L. R., El Sahly, H. M.,
Deng, W., Zhou, H., Leav, B., Montefiori, D. C., and Gilbert, P. B. (2023). Stochastic interventional correlates
of protection analysis of the COVE trial, with application to predict mRNA-1273 vaccine efficacy against
SARS-CoV-2 variants. under review at Lancet Microbe.

Hejazi, N. S., van der Laan, M. J., Janes, H. E., Gilbert, P. B., and Benkeser, D. C. (2021). Efficient
nonparametric inference on the effects of stochastic interventions under two-phase sampling, with applications
to vaccine efficacy trials. Biometrics.

Huang, Y., Hejazi, N. S., Blette, B., Carpp, L. N., Benkeser, D., Montefiori, D. C., McDermott, A. B., Fong, Y.,
Janes, H. E., Deng, W., Zhou, H., Houchens, C. R., Martins, K. A., Jayashankar, L., Flach, B., Lin, B. C.,
O'Connell, S., McDanal, C., Eaton, A., Sarzotti-Kelsoe, M., Lu, Y., Yu, C., Kenny, A., Carone, M., Huynh, C.,
Miller, J., El Sahly, H. M., Baden, L. R., Jackson, L. A., Campbell, T. B., Clark, J. L., Andrasik, M. P., Kublin,
J. G, Corey, L., Neuzil, K. M., Pajon, R., Follmann, D. A., Donis, R. O., Koup, R. A., Gilbert, P. B., and on
behalf of the Immune Assays Team; Moderna, Inc., Team; Coronavirus Prevention Network
(CoVPN)/Coronavirus Efficacy (COVE) Team; and the United States Government (USG)/CoVPN Biostatistics
Teams (2023). Stochastic interventional vaccine efficacy and principal surrogate analyses of antibody markers
as correlates of protection against symptomatic COVID-19 in the COVE mRNA-1273 trial. Viruses,
15(10):2029.



Janes, H. E., Cohen, K. W., Frahm, N., De Rosa, S. C., Sanchez, B., Hural, J., Magaret, C. A., Karuna, S.,
Bentley, C., Gottardo, R., et al. (2017). Higher t-cell responses induced by dna/rad5 hiv-1 preventive vaccine
are associated with lower hiv-1 infection risk in an efficacy trial. The Journal of Infectious Diseases,
215(9):1376-1385.

Liu, L., Mukherjee, R., Robins, J. M., and Tchetgen Tchetgen, E. (2021). Adaptive estimation of nonparametric
functionals. Journal of Machine Learning Research, 22(99):1-66.

Mukherjee, R., Newey, W. K., and Robins, J. M. (2017). Semiparametric efficient empirical higher order influence
function estimators. arXiv preprint arXiv:1705.07577.

Pearl, J. (2009). Causality: Models, Reasoning, and Inference. Cambridge University Press.

Plotkin, S. A. and Gilbert, P. B. (2012). Nomenclature for immune correlates of protection after vaccination.
Clinical Infectious Diseases, 54(11):1615-1617.

Prentice, R. L. (1986). A case-cohort design for epidemiologic cohort studies and disease prevention trials.
Biometrika, 73(1):1-11.

Prentice, R. L. (1989). Surrogate endpoints in clinical trials: definition and operational criteria. Statistics in
Medicine, 8(4):431-440.

Robins, J. M., Li, L., Tchetgen Tchetgen, E., and van der Vaart, A. W. (2008). Higher order influence functions
and minimax estimation of nonlinear functionals. In Probability and statistics: essays in honor of David A.
Freedman, pages 335—421. Institute of Mathematical Statistics.

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors
are not always observed. Journal of the American statistical Association, 89(427):846-866.

Rose, S. and van der Laan, M. J. (2011). A targeted maximum likelihood estimator for two-stage designs. The
International Journal of Biostatistics, 7(1):1-21.

van der Laan, M. J. (2017). A generally efficient targeted minimum loss based estimator based on the highly
adaptive lasso. International Journal of Biostatistics, 13(2).

Young, J. G., Hernan, M. A., and Robins, J. M. (2014). Identification, estimation and approximation of risk under

interventions that depend on the natural value of treatment using observational data. Epidemiologic Methods,
3(1):1-19.



	Appendix
	References


