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General setup

Consider an observed data unit is O := (L,A,Y) ∼ P0 ∈M:

• L ∈ Rd is a vector of possible confounders;
• A ∈ R is a continuous (or ordinal) exposure; and
• Y ∈ R is an outcome of interest.

Let M be a nonparametric or infinite-dimensional model. For any
P ∈M, define the population intervention effect (PIE):

Ψδ(P) := EP{YAδ − Y} ,

where Aδ is set by a modified treatment policy (MTP).



NPSEM-IE with static interventions

• Use a nonparametric structural equation model (NPSEM) for
the generating process of O (Pearl 2009), that is,

L = fL(UL);A = fA(L,UA);Y = fY(A, L,UY) ,

where UL ⊥⊥ UA ⊥⊥ UA, i.e., “independent errors” (IE).

• Counterfactual RVs arise from interventions on NPSEM.

• A static intervention replaces fA with an a in support A.
• What specific value a ∈ A is of interest a priori?
• Consider all a ∈ A for the causal dose-response curve, but

challenging to identify, estimate (e.g., Kennedy et al. 2017).



Causal effects of stochastic interventions

• A stochastic intervention alters A to Aδ by drawing randomly
from a modified exposure distribution Gδ(· | L).

• Leads to counterfactual RV as YAδ ← fY(Aδ, L,UY), with
YAδ ∼ P0,δ.

• Static interventions are only a special case of this, in which Gδ

is a degenerate distribution that places all mass on a ∈ A.

• Goal: Estimate counterfactual mean under the modified
exposure distribution Gδ, that is, ψ0,δ := EP0,δ{YAδ}.

• Díaz and van der Laan (2012)’s intervention distribution:
Gδ := Pδ(g0,A)(A = a | L) ≡ g0,A(d−1(A, L; δ) | L).



Causal effects of modified treatment policies

• Haneuse and Rotnitzky (2013) introduced modified treatment
policies (MTPs), which adopt the intervention scheme:

d(a, l; δ) =

a + δ, a + δ < u(l) (if plausible)
a, a + δ ≥ u(l) (otherwise)

,

and were also studied and extended by Young et al. (2014),
Díaz and van der Laan (2018), and Díaz et al. (2021).

• ψ0,δ is identified by a functional of the distribution of O as

ψ0,δ =

∫
L

∫
A
EP0{Y | A = d(a, l; δ), L = l}

g0,A(a | L = l)q0,L(l)dµ(a)dν(l) .



Towards a causal interpretation of the PIE ψ0,δ

Assumption 1: Stable Unit Treatment Value (SUTVA)
• Yd(ai,li;δ)

i does not depend on d(aj, lj; δ) for i = 1, . . . , n
and j ̸= i, or lack of interference (Cox 1958).

• Yd(ai,li;δ)
i = Yi in the event Ai = d(ai, li; δ), i = 1, . . . , n.

Assumption 2: No unmeasured confounding

Yd(ai,li;δ)
i ⊥⊥ Ai | Li, for i = 1, . . . , n.

Assumption 3: Structural positivity

ai ∈ A =⇒ d(ai, li; δ) ∈ A for all l ∈ L, where A denotes
the support of A conditional on L = li for all i = 1, . . . n.



Estimation of the PIE ψ0,δ

A RAL estimator ψn,δ of ψ0,δ := Ψδ(P0) is efficient if and only if

ψn,δ − ψ0,δ =
1
n

n∑
i=1

D⋆(P0)(Oi) + oP(n−1/2) ,

where D⋆(P) is the efficient influence function (EIF) of Ψδ(·) with
respect to the nonparametric model M at P.

The EIF of Ψδ(·) is indexed by two common nuisance parameters

QP,Y(A, L) := EP(Y | A, L) outcome regression
gP,A(A, L) := fP(A | L) generalized propensity score



IPW Estimation of the PIE ψ0,δ

We can estimate the counterfactual mean ψ0,δ, using the inverse
probability weighted (IPW) estimator,

ψn,δ =
1
n

n∑
i=1

gn,A(d−1(Ai, Li; δ) | Li)

gn,A(Ai | Li)
Yi ,

or could use stabilized IPW instead...

Why bother? Isn’t simplicity dead? (Ahem, double robustness...)

• IPW estimators are the oldest class of causal effect estimators
and are still very commonly used in practice today.

• Easy to implement and appropriate in many settings, but...
1. require a correctly specified estimate of the propensity score;
2. can be inefficient, never attaining the efficiency bound; and
3. suffer from an (asymptotic) curse of dimensionality.



IPW estimators

The IPW estimator ψn,δ ≡ Ψδ(P, gn,A) is a Z-estimator solving the
score equation EPDIPW(·) = 0, where DIPW is defined as

DIPW(O;ψδ) :=

[gn,A(d−1(Ai, Li; δ) | Li)

gn,A(Ai | Li)

]
Y−Ψ(P) .

Hiccups along the way:

• Consistency and convergence rate of IPW relies on those same
properties of the generalized propensity score estimator gn,A.

• Generally, finite-dimensional (i.e., parametric) models are not
flexible enough to consistently estimate g0,A.

• Our IPW estimator requires the generalized propensity score
(GPS), so we need to estimate a conditional density.



The GPS and conditional density estimation

• There is a rich literature on density estimation. We follow an
approach outlined by Díaz and van der Laan (2011).

• To build a conditional density estimator, note that

gn,A,α(A | L) =
P(A ∈ [αt−1, αt) | L)
|αt − αt−1|

,

for [αt−1, αt), t = 0, . . . , k a discrete partitioning of A.
• Classification problem: probability of A falling in a given bin

[αt−1, αt) is estimated, then re-scaled.
• Classification approach as a series of hazard regressions:

P(A ∈ [αt−1, αt) | L) =P(A ∈ [αt−1, αt) | A ≥ αt−1, L)×
t−1∏
j=1
{1− P(A ∈ [αj−1, αj) | A ≥ αj−1, L)}

• Other: Poisson intensity (Rytgaard et al. 2022), Cox PH.



Curse of dimensionality

Broadly, two approaches for handling the curse of dimensionality.

1. Enlist smoothness or sparsity assumptions on the nuisance
parameter space (i.e., for the GPS g0,A(A | L) in our case).

• No general guarantee of achieving consistency.
• Rates tied to specific learning algorithms and function classes

(e.g., functions being Hölder-smooth, s-sparse, etc.).
• Hirano et al. (2003) took a series regression approach but

required 7-times differentiability of g0,A(A | L) wrt d.

2. Cross-validation with machine learning or ensemble machine
learning (e.g., van der Laan et al. (2007)’s Super Learner),
but no general guarantee of n−1/4 convergence rates.



A class of functions

Consider space of cadlag functions with finite variation norm.

Def. cadlag = left-hand continuous with right-hand limits

Variation norm Let θs(u) = θ(us, 0sc) be the section of θ that sets
the coordinates in s equal to zero.

The variation norm of θ can be written:

|θ|v =
∑

s⊂{1,...,d}

∫
| dθs(us) |,

where xs = (x(j) : j ∈ s) and the sum is over all subsets.



Variation norm

We can represent the function θ as

θ(x) = θ(0) +
∑

s⊂{1,...,d}

∫
I(xs ≥ us)dθs(us),

For discrete measures dθs with support points {us,j : j} we get a
linear combination of indicator basis functions:

θ(x) = θ(0) +
∑

s⊂{1,...,d}

∑
j
βs,jθus,j(x),

where βs,j = dθs(us,j), θus,j(x) = I(xs ≥ us,j), and

|θ|v = θ(0) +
∑

s⊂{1,...,d}

∑
j
|βs,j|.



HAL estimator of GPS g0,A

If the nuisance functional g0,A is cadlag with a finite sectional
variation norm, logit g can be expressed (van der Laan 2015):

logit gβ = β0 +
∑

s⊂{1,...,d}

n∑
i=1

βs,iϕs,i,

where ϕs are indicator basis functions.

The loss-based HAL estimator βn may then be defined as

βn,λ = argmin
β:|β0|+

∑
s⊂{1,...,d}

∑n
i=1|βs,i|<λ

EPnL(logit gβ),

where L(·) is an appropriately selected loss function.

Denote by gn,λ ≡ gβn,λ the HAL estimator of the GPS g0,A.



Targeted selection of λn for IPW estimation

1. CV: select λn as cross-validated empirical risk minimizer of
negative log-density loss (Dudoit and van der Laan 2005):

L(·) = − log(gn,A,λ(A | L)).

n.b., incorrect tradeoff optimizing gn,A,λ instead of ψn,δ.
2. EIF1: select λn to minimize mean of EIF estimating equation:

λn = argmin
λ
|EPnDCAR(gn,A,λ,Qn,Y)|,

where Qn,Y is an estimate of Q0,Y and D⋆ = DIPW − DCAR by
AIPW representation (Robins and Rotnitzky 1992; 1995).

1Used for nonparametric IPW (when A ∈ {0, 1}) by Ertefaie et al. (2022).



Agnostic selection of λn for IPW estimation

What if we dispensed with criteria based on the EIF altogether?

1. Plateau-based2: Choose λn as the first in λ1, . . . , λK s.t.

|ψn,δ,λj+1−ψn,δ,λj | ≤
Z(1−α/2)
log n |σn,λj+1−σn,λj | for j = {1, . . . ,K−1}

where σn,λj is a standard error estimate for ψn,δ,λj at λj.

2. Smoothing-based: Choose λn by trimming λ1, . . . , λK to run
from λCV to a multiple CλCV, and then finding an inflection
point in the estimator’s trajectory {ψn,λCV , . . . , ψn,CλCV}.

2Inspired by ideas proposed by Lepskii (1993), Lepskii and Spokoiny (1997).



Proof by picture: Smoothing-based selection

IPW: CV global

IPW: |Pn D_CAR| < tol

IPW: min |Pn D_CAR|IPW: Plateau (Lepski)

IPW: Plateau (smoothing)

IPW: Plateau (hybrid)
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Some other efficient estimators

• The one-step bias-corrected estimator:

ψ+
n =

1
n

n∑
i=1

Qn,Y(d(Ai, Li), Li) + D⋆
n(Oi) .

• A TML estimator updates initial estimates of Qn,Y by tilting:

ψ⋆
n =

1
n

n∑
i=1

Q⋆
n,Y(d(Ai, Li), Li) ,

where Q⋆
n,Y is arrived at by updating its initial counterpart:

logit(Q⋆
n,Y(Ai, Li)) = logit(Qn,Y(Ai, Li)) + ϵ

gn,A(d−1(Ai,Li;δ)|Li)
gn,A(Ai|Li)

.

• Both are doubly robust (DR), allowing flexible methods to
estimate the nuisance parameters gn,A and Qn,Y.



Simulation evidence: A first look
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Simulation evidence: A bit deeper

0.85

0.90

0.95

1.00

100 200 500

C
I c

ov
er

ag
e

Coverage of 95% oracle CIs of candidate IPW and DR estimators

0.85

0.90

0.95

1.00

100 200 500

C
I c

ov
er

ag
e

Coverage of 95% Wald CIs of candidate IPW and DR estimators

0.005

0.010

0.015

0.020

0.025

100 200 500

Sample size

M
ea

n 
of

 E
IF

 R
2

DR: CV global, GLM
DR: CV global, HAL

DR: min |Pn D_CAR|, GLM
DR: min |Pn D_CAR|, HAL

IPW: |Pn D_CAR| < tol
IPW: CV global

IPW: min |Pn D_CAR|
IPW: Plateau (hybrid)

IPW: Plateau (Lepski)
IPW: Plateau (smoothing)

Mean of EIF R2 of candidate IPW and DR estimators



Augmenting TMLE via undersmoothing

• Consider again the TML estimator (with a twist):

ψ⋆
n =

1
n

n∑
i=1

Q⋆,λ
n,Y(d(Ai, Li), Li) ,

but adjust the update of Q⋆
n,Y to now involve gn,A,λ, that is,

logit(Q⋆,λ
n,Y(Ai, Li)) = logit(Qn,Y(Ai, Li)) + ϵ

gn,A,λ(d−1(Ai,Li;δ)|Li)
gn,A,λ(Ai|Li)

.

• Update to Q⋆,λ
n,Y involves ϵn and selection of λn via selectors.

• What might be gained from this augmentation?
• If Qn,Y consistent, asymptotic efficiency by bias correction.
• If Qn,Y and gn,A both consistent, then influences higher-order

behavior (e.g., second-order bias).



The big picture

1. Unlike classical IPW estimators, ours avoid the asymptotic
curse of dimensionality and are asymptotically efficient;

2. Our approach leverages flexible conditional density estimation
for initial generalized propensity score estimates; and

3. In contrast with popular DR estimators, these IPW estimators
can be formulated without the form of the EIF.

4. Analogous ideas (as for IPW) can improve DR estimators too.

5. Check out the R packages that make this possible
• hal9001: https://github.com/tlverse/hal9001

• haldensify: https://github.com/nhejazi/haldensify

https://github.com/tlverse/hal9001
https://github.com/nhejazi/haldensify


Thank you
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Appendix



Literature: Haneuse and Rotnitzky (2013)

• Proposal: Re-characterization of stochastic interventions as
modified treatment policies (MTPs).

• Assumption of piecewise smooth invertibility allows for the
intervention distribution of any MTP to be recovered:

g0,δ(a | l) =
J(s)∑
j=1

Sδ,j{hj(a, l), s}g0{hj(a, l) | s}h
′
j(a, l)

• Such intervention policies account for the natural value of the
intervention A directly yet are interpretable as the imposition
of an altered intervention mechanism.

• Only requires that the MTP d(A, L; δ) have an “amenable”
form, by way of a j-sectional inverse hj(a, l) existing.



Literature: Young et al. (2014)

• Establishes equivalence between G-formula when proposed
intervention depends on natural value of A vs. when not.

• This equivalence leads to a sufficient positivity condition for
estimating the counterfactual mean under MTPs via the same
statistical functional studied in Díaz and van der Laan (2012).

• Extends earlier identification results, providing a way to use
the same statistical functional to assess EYd(A,L;δ) or EYd(L;δ).

• The authors also consider some limits on implementing MTPs
d(A, L; δ), and address working in a longitudinal setting.



Literature: Díaz and van der Laan (2018)

• Builds on the proposal of Haneuse and Rotnitzky (2013) to
accommodate MTPs d(A, L; δ), proposed after Díaz and van
der Laan (2012)’s work with interventional distributions.

• To protect against structural positivity violations (Hernán and
Robins 2024), considers an MTP mechanism that can avoid
these via the guardrail encoded in u(l):

d(a, l; δ) =

a + δ, a + δ < u(l)
a, otherwise

• Proposes an improved TMLE algorithm, with a single auxiliary
covariate for constructing the TML estimator.



Highly Adaptive Lasso (HAL) illustration
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HAL illustration
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HAL illustration
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HAL illustration
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HAL illustration
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HAL illustration
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HAL illustration
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Convergence rate of HAL

We have, for α(d) = 1/(d + 1),

|θn,M − θ0,M|P0 = oP(n−(1/4+α(d)/8)).

Thus, if we select M > |θ0|v, then

|θn,M − θ0|P0 = oP(n−(1/4+α(d)/8)) .

Due to oracle inequality for the cross-validation selector Mn,

|θn,Mn − θ0|P0 = oP(n−(1/4+α(d)/8)) .

Improved convergence rate (Bibaut and van der Laan 2019):

|θn,Mn − θ0|P0 = oP(n−1/3 log(n)d/2) .
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