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Immune Correlates of HIV-1 and COVID-19



The Fights Against HIV-1 and COVID-19

• The HIV-1 epidemic:
• 1.5 million new infections occurring annually worldwide;
• new infections outpace patients starting antiretroviral therapy;
• HIV Vaccine Trials Network’s (HVTN) 505 trial evaluated a

novel antibody boost vaccine (?).

• The COVID-19 epi pan endemic (?):
• 270 331 619 million total cases have been detected globally;
• new variants emerging, with vaccine uptake globally slowing;
• COVID-19 Prevention Network’s (CoVPN) COVE trial focused

on Moderna’s (mRNA-1273) vaccine (?).

Evaluating Vaccines for HIV-1 and COVID-19

• 505: How would HIV-1 infection risk have differed had the
boost vaccine modulated immunogenic responses differently?

• COVE : How would COVID-19 disease rate have differed for
alternative vaccine-induced immunogenic response profiles?

• Question: How can [HIV-1, COVID-19] vaccines be improved
through modulating immunogenic response profiles?



Why Measure and Analyze Immune Correlates?

• Two, interrelated goals of vaccine correlates analyses are to
• identify/validate possible surrogate endpoints (?);
• understand protective mechanisms of vaccines.

• If an immune correlate is established to reliably predict VE,
subsequent efficacy trials may use it as a primary endpoint.

• This may accelerate the approval of
• existing vaccines in different populations (e.g., in children);
• new vaccines within the same class.

Measuring Correlates: Two-Phase Designs

• Often, use case-cohort design (?), a special case of two-phase
sampling (?).

• Phase 1: measure baseline, vaccination, endpoint on everyone.

• Phase 2: given baseline, vaccine, endpoint, select members of
immune response subcohort with (possibly known) probability.

• 505: second-phase sample with 100% of HIV-1 cases and
matching of non-cases (n = 189 per ?)).

• COVE : stratified random subcohort (n ≈ 1600) and all
SARS-CoV-2 infection and COVID-19 disease endpoints.



A Simple Two-Phase Design: Case-Cohort

Assaying >30k samples is expensive, statistically unnecessary.

Case-cohort design, per ?, as applied to COVE.

Two-phase Sampling Masks the Complete Data Structure

• Complete (unobserved) data X = (L,A, S,Y) ∼ PX
0 ∈ M:

• L (baseline covariates): sex, age, BMI, behavioral HIV risk,
• A (treatment): randomized assignment to vaccine/placebo,
• S (exposure): immune response profile for relevant markers,
• Y (outcome of interest): infection status at trial’s end.

• Observed data O = (B,BX) = (L,B,BS,Y) ∼ P0 ∈ M.
• B ∈ {0, 1} indicates inclusion in the second-phase sample.
• π0 := P(B = 1 | Y, L) must be known by design or estimated.
• Implicitly conditioning on the vaccine arm: O = {X | A = 1}.



Causal Effects for Quantitative Exposures

Static Interventions Aren’t Enough

• Describe the manner in which X is hypothetically generated by
a nonparametric structural equation model (?):

L = fL(UL);A ∼ Bern(0.5); S = fS(A, L,US);Y = fY(S,A, L,UY)

• Implies a model for the distribution of counterfactual random
variables induced by interventions on the system.

• A static intervention replaces fS with a specific value s in its
conditional support S | L.

• This requires specifying a priori a particular value of exposure
under which to evaluate the outcome — but what value?
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Stochastic Interventions Define the Causal Effects of Shifts

• Stochastic interventions modify the value S would naturally
assume by shifting the natural exposure distribution.

• ??’s shift interventions1

d(s, l) =





s + δ, s + δ < u(l) (if plausible)
s, s + δ ≥ u(l) (otherwise)

• Our estimand is ψ0,δ := EPδ
0
{Yd(S,L)}, which is identified by

ψ0,δ =

∫

L

∫

S
EP0{Y | S = d(s, l), L = l}

g0,S(s | L = l)q0,L(l)dµ(s)dν(l)

1? introduced modified treatment policies.

Interpreting the Causal Effects of Shift Interventions

• Consider a data structure: (Ys, s ∈ S).

• Let Ys = β0 + β1s + ϵs, with error ϵs ∼ N(0, σ2
s ) ∀s ∈ S.

• For the counterfactual outcomes (Ys′+δ,Ys′), their difference
Ys′+δ − Ys′ may be expressed (for some s′ ∈ S)

EYs′+δ − EYs′ = [β0 + β1(s′ + δ) + Eϵs′+δ]− [β0 + β1s′ + Eϵs′ ]

= β1δ

• A unit shift for s′ ∈ S (i.e., δ = 1) causes a counterfactual
difference in Y of magnitude β1.



Stochastic–Interventional Vaccine Efficacy

• Causal parameter based on vaccine efficacy (VE) estimands:

SVE(δ) = 1 − E[P(Y = 1 | S = d(s, l),A = 1, L = l)]
P(Y(0) = 1)

= 1 − ψ0,δ
P(Y(0) = 1)

• P(Y(0) = 1): counterfactual infection risk in the placebo arm
— under randomization, P(Y(0) = 1) ≡ P(Y = 1 | A = 0).

• Summarizes VE via stochastic interventions across δ, per the
CoVPN immune correlates SAP2 (??).

2SAP published at https://doi.org/10.6084/m9.figshare.13198595.

Efficient Estimation in Two-Phase Designs



Estimation of the Counterfactual Mean ψ0,δ

An estimator ψn,δ of ψ0,δ := Ψ(P0) is efficient if and only if

ψn,δ − ψ0,δ = n−1
n∑

i=1
D⋆(P0)(Oi) + oP(n−1/2) ,

where D⋆(P) is the efficient influence function (EIF) of ψ0,δ with
respect to the nonparametric model M at a distribution P.

The EIF of ψ0,δ is indexed by two key nuisance parameters

QY(S, L) := EP(Y | S, L) outcome mechanism
gS(S | L) := p(S | L) generalized propensity score

Flexible, Efficient, Doubly Robust Estimation

• The efficient influence function of ψ0,δ with respect to M is

D⋆
F(P0)(o) =

g0,S(d−1(s, l) | l)
g0,S(s | l) (y − Q0,Y(s, l))+Q0,Y(d(s, l), l)−ψ0,δ.

• The one-step bias-corrected estimator:

ψ+
n =

1
n

n∑

i=1
Qn,Y(d(Si, Li), Li) + D⋆

n(Oi).

• The TML estimator updates initial estimates of Qn by tilting:

ψ⋆
n =

1
n

n∑

i=1
Q⋆

n,Y(d(Si, Li), Li).

• Both doubly robust: flexible modeling for nuisance estimation.



Augmented Estimators for Two-Phase Sampling Designs

• ? suggested inverse probability of censoring weighted (IPCW)
loss functions:

L(PX
0 )(O) =

B
π0(Y, L)

L(PX
0 )(X)

• When the sampling mechanism π0(Y, L) is known by design,
this procedure yields a reasonably reliable estimator.

• When data-adaptive regression must be used — that is, when
π0(Y, L) is not known by design3— this is insufficient.

3Sampling of non-cases in HVTN 505 used matching (?).

Efficiency and Multiple Robustness (?)

• Then, the IPCW augmentation must be applied to the EIF4:

D⋆(PX
0 )(o) =

b
π0(y, l)

D⋆
F(PX

0 )(x)−
(

1 − b
π0(y, l)

)

E(D⋆
F(PX

0 )(x) | B = 1,Y = y, L = l).

• Expresses observed data EIF D⋆(PX
0 )(o) via complete data EIF

D⋆
F(PX

0 )(x); inclusion of second term improves efficiency.

• An emergent multiple robustness property — combinations of
{g0(S | L),Q0(S, L)}×{π0(Y, L),E(D⋆

F(PX
0 )(x) | B = 1,Y, L)}.

• Our txshift R package implements our estimators of ψ0,δ.

4A very general version appears to have been presented in ?.



Comparing Reweighted and Augmented Estimators
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SVE Prediction of HIV-1 Risk thru CD8+ Immune Response
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SVE Prediction of mRNA-1273 VE thru PsV nAb Correlate
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Pooled Phase 1 Studies: PsV nAb Responses Across Variants
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SVE Bridging of mRNA-1273 VE thru PsV nAb Correlate
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SVE Predictions vs. Test-Negative Designs (TND) Estimates

• Compared δ-calibrated SVE predictions to TND VE estimates.
• Inclusion/exclusion criteria for TND-based VE estimates5:

• VE estimated by direct measurement of SARS-CoV-2 variants.
• Reported VE estimates for mRNA vaccines (BNT162b2 or

mRNA-1273), studying VE 2–6 months post-2nd or 3rd dose.
• Flexible in choice of dosing interval (for 2nd or 3rd dose), with

some studies extending to 12 weeks between doses.

• Aimed to study concordance of SVE predictions and TND
estimates of VE following most recent vaccine dose.

• TND-based estimates established as biased (overestimating).

5Comparison of TND studies performed in collaboration with Dr. Lindsay Carpp.

Comparison of SVE Predictions and TND Estimates of VE
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Concordance of SVE Predictions and TND Estimates of VE

SVE−TND Rank Correlation: 0.75

SVE−to−TND Linear R^2: 0.75

−20%
0%

20%

40%

60%

80%

90%

95%

99%

−20% 0% 20% 40% 60% 80% 90% 95%

VE Predicted by SVE

V
E

 E
st

im
at

ed
 b

y 
T

N
D

SARS−CoV−2 variant alpha
delta

epsilon
gamma

iota
mu

omicron mRNA−1273 dosage 2x

(with reported or estimated 95% confidence intervals)
VE Comparison for SARS−CoV−2 Variants of Concern in mRNA−1273

TND VE as reported for infection or symptomatic disease only

Summary of SVE for Prediction and Immunobridging

• SVE prediction shows sharp changes in VE with shifts to the
GM titer of the PsV nAb correlate in vaccinees.

• Bridging VE across variants indicates VE drops but stabilizes
at 50%, if the model based on ancestral D614G strain holds.

• Post-2nd dose: For most variants (excepting omicron), the VE
estimate ranges from 50% (mu) to 80% (epsilon).

• Post-3rd dose: For omicron lineages, VE estimate lies within
80%–92% across five subvariants (lowest VE vs. BA.2.12.1).

• SVE predictions and TND estimates of VE well-correlated.
• TND studies are prone to bias, tending to overestimate VE.
• SVE predictions may be underestimates, since the PsV nAb

correlate is an imperfect causal mediator of the total VE.



Zooming Out

Going “Off-Road”: Real-World Complexities

• We considered the case of O = (L,A,BS,Y,B), but what
about O = (V, L,A,BS,Y,B) or O = (L,A,Z,BS,Y,B)?

• Z: unmeasured baseline confounder (e.g., prior infection)
• A ∈ {0, 1}: randomized treatment assignment
• Z: post-treatment confounder (e.g., unblinded risky behavior)
• S: candidate immune correlates (causal mediators)
• Y: symptomatic SARS-CoV-2 (or HIV-1) infection
• B := f(Y, L): selection into two-phase sample

• And what about survival endpoints, O = (L,A,BS,∆, T̃,B)?
• T̃ = min(TF,TC): possibly right-censored time to failure
• ∆ = I(TF < TC): indicator of failure endpoint occurrence
• Could making B a function of T̃ improve sampling efficiency?



The Big Picture

• Stochastic interventions provide a framework for formulating
novel policies based on natural treatment conditions.

• These modified treatment policies address causal questions
about realistic interventions on quantitative treatments.

• Large-scale vaccine trials rely upon two-phase designs — but
need to (very carefully!) adjust for the resultant sampling bias.

• Efficient estimators with double/multiple robustness can safely
answer such questions while incorporating machine learning.

• Open source software for such statistical analyses is critical for
the methods to have any impact on real-world studies.

Thank you

Thanks for listening. Any questions?

https://nimahejazi.org

https://github.com/nhejazi

https://twitter.com/nshejazi



Appendix

Immune Correlates of Protection (?)

• Correlate of Protection (CoP): immune marker statistically
predictive of vaccine efficacy, not necessarily mechanistic.

• Mechanistic CoP (mCoP): immune marker that is causally
and mechanistically responsible for protection.

• Nonmechanistic CoP (nCoP): immune marker that is
predictive but not a causal agent of protection.

• A CoP is a candidate surrogate endpoint (?) — primary
endpoint in future trials if reliably predictive.



From the Causal to the Statistical Target Parameter

Assumption 1: Stable Unit Treatment Value (SUTVA)
• Yd(si,li)

i does not depend on d(sj, lj) for i = 1, . . . , n and
j ̸= i, or lack of interference (?)

• Yd(s,l) = Y in the event S = d(s, l), for i = 1, . . . , n

Assumption 2: No Unmeasured Confounding

S ⊥⊥ Yd(s,l) | L = l, for i = 1, . . . , n

Assumption 3: Positivity

s ∈ S =⇒ d(s, l) ∈ S for all l ∈ L, where S denotes the
support of S conditional on L = l for all i = 1, . . . n

Literature: ??

• Proposal: Evaluate outcome under an altered intervention
distribution — e.g., Pδ(g0,S)(S = s | L) = g0,S(s − δ(L) | L).

• Identification conditions for a statistical parameter of the
counterfactual outcome ψ0,δ under such an intervention.

• Show that the causal quantity of interest EPδ
0
{Yd(S,L)} is

identified by a functional of the distribution of O, i.e.,

ψ0,δ =

∫

L

∫

S
EP0{Y | S = d(s, l), L = l}

g0,S(s | L = l) · q0,L(l)dµ(s)dν(l)



Literature: ?

• Proposal: Characterization of stochastic interventions as
modified treatment policies (MTPs).

• Assumption of piecewise smooth invertibility allows for the
post-intervention distribution of any MTP to be recovered:

g0,S(s | l; δ) =
J(l)∑

j=1
Iδ,j{hj(s, l), l}g0{hj(s, l) | l}h′

j(s, l)

• MTPs account for the natural value of exposure S yet may be
interpreted as imposing an altered intervention mechanism.

A Linear Modeling Perspective

• Briefly consider a simple data structure: X = (Y, S); we seek
to model the outcome Y as a function of S.

• Linear model: consider Yi = β0 + β1Si + ϵi, with error
ϵi ∼ N(0, 1).

• Letting δ be a change in S, YS+δ − YS may be expressed

EYS+δ − EYS = [β0 + β1(ES + δ)]− [β0 + β1(ES)]
= β0 − β0 + β1ES − β1ES + β1δ

= β1δ

• So, a unit shift in S (i.e., δ = 1) induces a change in the
difference in outcomes of magnitude β1.



Slope in a Semiparametric Model

• Consider the stochastic intervention gδ(· | L):

EYgδ =

∫

L

∫

s
E(Y | S = s, L)g(s − δ | L)dsdP0(L)

=

∫

L

∫

z
E(Y | S = z + δ, L)g(z | L)dzdP0(L),

defning the change of variable z = s − δ.

• For a semiparametric model, E(Y | S = z, L) = βz + θ(L):

EYgδ − EY =

∫

L

∫

z
[E(Y | S = z + δ, L)− E(Y | S = z, L)]
g(z | L)dzdP0(L)

= [β(z + δ) + θ(L)]− [βz + θ(L)]
= βδ

Flexible Conditional Density Estimation of g0,S

• ?’s conditional density estimator:

gn,α(s | L) = P(s ∈ [αt−1, αt) | L)
αt − αt−1

.

• Re-expressed as hazard regressions in repeated measures data.
• Tuning parameter t ≈ bandwidth in kernel density estimation.

• When càdlàg (RCLL) with finite sectional variation, we have

logit{P(s ∈ [αt−1, αt) | L)} = β0 +
∑

w⊂{1,...,d}

n∑

i=1
βw,iϕw,i,

for appropriate basis functions {ϕw,i}n
i=1 (?).



Flexible Conditional Density Estimation of g0,S

• Utilizing a particular basis construction for ϕw, ?’s HAL
estimator achieves n−1/4 convergence rate6.

• Loss-based cross-validation allows selection of a suitable HAL
estimator, which has only the ℓ1 regularization term λ:

βn,λ = argmin
β:|β0|+

∑
w⊂{1,...,d}

∑n
i=1|βw,i|<λ

PnL(gβ,λ,S),

where L(·) is an appropriate loss function, giving {λn, βn}.

• We denote by gn,λ,S := gβn,λ,S, the HAL estimate of g0,S.

• Our haldensify R package implements our estimator of g0,S.
6Similar rates can be achieved via local (vs. global) smoothness assumptions

on gn,S (see, e.g., ???).

A Useful Class of Functions

Consider space of cadlag functions with finite variation norm.

Def. cadlag = left-hand continuous with right-hand limits

Variation norm Let θs(u) = θ(us, 0sc) be the section of θ that sets
the coordinates in s equal to zero.

The variation norm of θ can be written:

|θ|v =
∑

s⊂{1,...,d}

∫
| dθs(us) |,

where xs = (x(j) : j ∈ s) and the sum is over all subsets.



Variation Norm

We can represent the function θ as

θ(x) = θ(0) +
∑

s⊂{1,...,d}

∫
I(xs ≥ us)dθs(us),

For discrete measures dθs with support points {us,j : j} we get a
linear combination of indicator basis functions:

θ(x) = θ(0) +
∑

s⊂{1,...,d}

∑

j
βs,jθus,j(x),

where βs,j = dθs(us,j), θus,j(x) = I(xs ≥ us,j), and

|θ|v = θ(0) +
∑

s⊂{1,...,d}

∑

j
|βs,j|.

Convergence Rate of HAL

We have, for α(d) = 1/(d + 1),

|θn,M − θ0,M|P0 = oP(n−(1/4+α(d)/8)).

Thus, if we select M > |θ0|v, then

|θn,M − θ0|P0 = oP(n−(1/4+α(d)/8)) .

Due to oracle inequality for the cross-validation selector Mn,

|θn,Mn − θ0|P0 = oP(n−(1/4+α(d)/8)) .

Improved convergence rate (?):

|θn,Mn − θ0|P0 = oP(n−1/3 log(n)d/2) .



Algorithm for TML Estimation

1. Construct initial estimators gn of g0(S, L) and Qn of Q0(S, L),
perhaps using data-adaptive regression techniques.

2. For each observation i, compute an estimate Hn(si, li) of the
auxiliary covariate H(si, li).

3. Estimate the parameter ϵ in the logistic regression model

logitQϵ,n(s, l) = logitQn(s, l) + ϵHn(s, l),

or an alternative regression model incorporating weights.

4. Compute TML estimator Ψn of the target parameter, defining
update Q⋆

n of the initial estimate Qn,ϵn :

Ψn = Ψ(P⋆
n) =

1
n

n∑

i=1
Q⋆

n(d(Si, Li), Li).

Algorithm for IPCW-TML Estimation

1. Using all observed units (X), estimate sampling mechanism
π(Y, L), perhaps using data-adaptive regression methods.

2. Using only observed units in the second-stage sample C = 1,
construct initial estimators gn(S, L) and Qn(S, L), weighting
by the sampling mechanism estimate πn(Y, L).

3. With the approach described for the full data case, compute
Hn(si, li), and fluctuate submodel via logistic regression.

4. Compute IPCW-TML estimator Ψn of the target parameter,
by solving the IPCW-augmented EIF estimating equation.

5. Iteratively update estimated sampling weights πn(Y, L) and
IPCW-augmented EIF, updating TMLE in each iteration.
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