
Combining Causal Inference and Machine Learning for

Model-Agnostic Discovery in High-Dimensional Biology

Nima Hejazi

04 November 2022

Department of Biostatistics,
T.H. Chan School of Public Health,
Harvard University

nshejazi
nhejazi
nimahejazi.org

Biomedical AI Seminar,
University of Edinburgh
Joint work with A. Hubbard, M. van der Laan, P. Boileau

Preview

1. Modern computational biology research produces complex,
heterogeneous data — innovative statistical inference still tied
to simplistic and challenging-to-verify modeling assumptions.

2. Model misspecification seriously undermines the scientific
utility of common, classical statistical modeling approaches.

3. Non/semi-parametric inference facilitates constructing robust
estimators that easily bring machine learning into the fold.

4. Variance moderation strengthens hypothesis testing strategies,
reducing false positives and preserving power under instability.



We’ll go over this summary again at the end of the talk. Hopefully, it will
all make more sense then.
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A common problem

• Question: What factors are associated (“causally” perhaps)
with a health outcome of interest (e.g., cancer, death).

• Experiment: Assign? patients to novel therapy vs. standard of
care (or exposure) and then evaluate outcome’s occurrence.

• Goal: Deepen mechanistic insights — how does the therapy
or exposure biologically operate? Identify intervention points.

• Combine tools from ⋆-omics and molecular biology, clinical
trials, causal inference, (bio)statistics, epidemiology.
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Let’s meet the data: Benzene exposure and miRNA

• Question: Which miRNA (non-coding regulators) are affected
by a target occupational exposure (benzene)?

• Why? Attempt to decipher how patterns of miRNA
disregulation may impact subsequent disease states.

• Study: Cohort study of occupational exposure to benzene
with 125 individuals and 22K candidate miRNA assayed.

• Goal: Characterize biological mechanisms or signatures
derived from or attributable to exposure.
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Let’s meet the data: Smoking and DNA methylation

• Question: Which CpG sites, or larger functional units (e.g.,
“CpG islands”), are affected by long-term smoking?

• Why? Attempt to understand how smoking induces regulatory
and functional changes that relate to disease (e.g., cancer).

• Study: Observational exposure study of 253 individuals (with
172 smokers, 81 non-smokers) and ≈ 450K CpG sites assayed.

• Goal: Characterize biological mechanisms or signatures
derived from or attributable to exposure.

3



Let’s meet the data: Smoking and DNA methylation

• Question: Which CpG sites, or larger functional units (e.g.,
“CpG islands”), are affected by long-term smoking?

• Why? Attempt to understand how smoking induces regulatory
and functional changes that relate to disease (e.g., cancer).

• Study: Observational exposure study of 253 individuals (with
172 smokers, 81 non-smokers) and ≈ 450K CpG sites assayed.

• Goal: Characterize biological mechanisms or signatures
derived from or attributable to exposure.

3



Let’s meet the data: Smoking and DNA methylation

• Question: Which CpG sites, or larger functional units (e.g.,
“CpG islands”), are affected by long-term smoking?

• Why? Attempt to understand how smoking induces regulatory
and functional changes that relate to disease (e.g., cancer).

• Study: Observational exposure study of 253 individuals (with
172 smokers, 81 non-smokers) and ≈ 450K CpG sites assayed.

• Goal: Characterize biological mechanisms or signatures
derived from or attributable to exposure.

3



Let’s meet the data: Smoking and DNA methylation

• Question: Which CpG sites, or larger functional units (e.g.,
“CpG islands”), are affected by long-term smoking?

• Why? Attempt to understand how smoking induces regulatory
and functional changes that relate to disease (e.g., cancer).

• Study: Observational exposure study of 253 individuals (with
172 smokers, 81 non-smokers) and ≈ 450K CpG sites assayed.

• Goal: Characterize biological mechanisms or signatures
derived from or attributable to exposure.

3



Data structure and notation

• Consider a structural causal model (SCM) (?) to describe
how data on a single unit O was generated:

L = fL(UL);A = fA(L,UA);Y = fY(A,L,UY).

• fL, fA, fY are unknown but deterministic functions; UL, UA,
UY are exogenous (unobserved) random errors.

• Y = (Yb : b = 1, . . .B) is a vector of biomarker outcomes (e.g.,
B = 22K for miRNA, B = 450K for CpG sites).

• Temporal ordering between variables: L (sex-at-birth, age), A
(smoking, benzene), Yb (biomarker measurement for site b).

• Data on a single study unit O = (L,A,Y), with O ∼ P0 ∈ M ,
of which we observe n i.i.d. copies, O1, . . . ,On.
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Hypothetical interventions and causal inference

• Static interventions consider replacing fA with an assigned
value a ∈ A deterministically. “What if everyone smoked?”

• Generates “counterfactual” RV Y(a) = (Yb(a),b : 1, . . .B): the
expression of the B biomarkers if A had been set to a.

• Viewed as potential outcomes (POs) (?), Yb(1) when setting
A = 1 and Yb(0) when setting A = 0.

• Note that Yb = AYb(1)+(1−A)Yb(0) — only partially seeing
the POs is the fundamental problem of causal inference.

• Causal inference yields interpretable, scientifically well-aligned
estimands, e.g., the average treatment effect (ATE).

5



Statistical parameter may be viewed as a simple adjusted difference in
means even when identifiability conditions appear unsatisfiable.

Hypothetical interventions and causal inference

• Static interventions consider replacing fA with an assigned
value a ∈ A deterministically. “What if everyone smoked?”

• Generates “counterfactual” RV Y(a) = (Yb(a),b : 1, . . .B): the
expression of the B biomarkers if A had been set to a.

• Viewed as potential outcomes (POs) (?), Yb(1) when setting
A = 1 and Yb(0) when setting A = 0.

• Note that Yb = AYb(1)+(1−A)Yb(0) — only partially seeing
the POs is the fundamental problem of causal inference.

• Causal inference yields interpretable, scientifically well-aligned
estimands, e.g., the average treatment effect (ATE).

5



Statistical parameter may be viewed as a simple adjusted difference in
means even when identifiability conditions appear unsatisfiable.

Hypothetical interventions and causal inference

• Static interventions consider replacing fA with an assigned
value a ∈ A deterministically. “What if everyone smoked?”

• Generates “counterfactual” RV Y(a) = (Yb(a),b : 1, . . .B): the
expression of the B biomarkers if A had been set to a.

• Viewed as potential outcomes (POs) (?), Yb(1) when setting
A = 1 and Yb(0) when setting A = 0.

• Note that Yb = AYb(1)+(1−A)Yb(0) — only partially seeing
the POs is the fundamental problem of causal inference.

• Causal inference yields interpretable, scientifically well-aligned
estimands, e.g., the average treatment effect (ATE).

5



Statistical parameter may be viewed as a simple adjusted difference in
means even when identifiability conditions appear unsatisfiable.

Hypothetical interventions and causal inference

• Static interventions consider replacing fA with an assigned
value a ∈ A deterministically. “What if everyone smoked?”

• Generates “counterfactual” RV Y(a) = (Yb(a),b : 1, . . .B): the
expression of the B biomarkers if A had been set to a.

• Viewed as potential outcomes (POs) (?), Yb(1) when setting
A = 1 and Yb(0) when setting A = 0.

• Note that Yb = AYb(1)+(1−A)Yb(0) — only partially seeing
the POs is the fundamental problem of causal inference.

• Causal inference yields interpretable, scientifically well-aligned
estimands, e.g., the average treatment effect (ATE).

5



Statistical parameter may be viewed as a simple adjusted difference in
means even when identifiability conditions appear unsatisfiable.

Hypothetical interventions and causal inference

• Static interventions consider replacing fA with an assigned
value a ∈ A deterministically. “What if everyone smoked?”

• Generates “counterfactual” RV Y(a) = (Yb(a),b : 1, . . .B): the
expression of the B biomarkers if A had been set to a.

• Viewed as potential outcomes (POs) (?), Yb(1) when setting
A = 1 and Yb(0) when setting A = 0.

• Note that Yb = AYb(1)+(1−A)Yb(0) — only partially seeing
the POs is the fundamental problem of causal inference.

• Causal inference yields interpretable, scientifically well-aligned
estimands, e.g., the average treatment effect (ATE).

5



Statistical parameter may be viewed as a simple adjusted difference in
means even when identifiability conditions appear unsatisfiable.

A familiar workhorse: the linear model

• The linear model is semiparametric — linear in parameters!

• Flexible: transformations (X2
j ), interactions (XjXk).

• For biomarker Yb, fit working linear model, E0[Yb | X] = Xβ ,
letting (wlog) X1 ≡ A be the exposure and β1 its “effect”.

• Under this working model, the parameter β1 is the ATE, but
only if there are no interactions (i.e., without flexibility).

• Test the contrast of interest with a standard t-test:

tb =
β̂b −βb,H0

σ̂b

6



There’s nothing particularly wrong with this approach. It’s exactly what
we would come up with after a first-year statistics course. In practice,
there are many issues: (1) we are forced to specify a functional form, the
linear model; (2) we end up with unstable variance estimates that sharply
increase the number of false positives detected, even after multiple testing
corrections. In practice, the incredible flexibility of the linear mode is rarely
taken advantage of — scientific guidance is usually lacking to justify the
fitting of richer models.
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Variance moderation to the rescue?!

• When sample size is small, σ2
b may be so small (by chance)

that even small effects (β̂b −βb,H0) give large tb.

• False positives! Many biomarkers flagged relevant despite
small effect size, only since variance is even smaller still.

• Can we do better? A moderated t-test (?):

t̃b =
β̂b −βb,H0

σ̃b
where σ̃2

b =
σ2

b db +σ2
0 d0

db +d0

• Helps reduce erroneously large tb by “averaging out” low
variance across each of the many biomarkers.

7



The substantive contribution here is the use of an empirical Bayes method
to shrink the standard deviation across all of the biomarkers such that we
obtain a larger (but accurate) estimate that reduces the number of test
statistics that are marked as significant by low s2

b estimates alone.
Note that this is not the exact formulation of the moderated t-statistic as
given by Smyth (his derivation assumes a hierarchical model; see original
paper if interested). This formulation does a good enough job to help us
see the bigger picture.
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Variable importance measures as target parameters!

• If the working model is incorrect, βb does not correspond to
the ATE — results polluted by misspecification bias.

• The statistical functional identifying the ATE may be used as
an interpretable variable importance measure (VIM):

ψb,0 ≡Ψb(P0) = EL,0[E0[Yb | A = 1,L]−E0[Yb | A = 0,L]]

• ψb,0 is a mapping (Ψb(P0)) that depends on the underlying
true (but unknown) distribution P0 ∈ M — model-agnostic!

• The statistical functional identifies the ATE under untestable
assumptions (no unmeasured confounding, positivity).
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By allowing scientific questions to inform the parameters that we choose
to estimate, we can do a better job of actually answering the questions of
interest to our collaborators. Further, we abandon the need to specify the
functional relationship between our outcome and covariates; moreover, we
can now make use of advances in machine learning.
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Locally efficient estimation

• An estimator ψ̂b is asymptotically linear if it admits the form

ψ̂b −ψb,0 =
1
n

n
∑
i=1

Db(Oi;P0)+oP

(
1√
n

)
,

where Db(O;P0) is the efficient influence function (wrt M ),
whose asymptotic variance is the efficiency bound.

• Db(O;P0) helps construct efficient estimators. For ATE,

Db(Oi;P0) =

[
2Ai −1
g0(Li)

]
(Yb,i −Q0,b(Ai,Li))

+Q0,b(1,Li)−Q0,b(0,Li)−ψb,0,

where g0(L) = P0(A = 1 | L) is the “propensity score” and
Q0,b(A,L) = E0[Yb | A,L] is conditional outcome mean.
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Constructing locally efficient estimators

• Examining Db(O;P0), we know we must estimate g0(L) and
Q0,b(A,L), but how exactly we do this is unspecified.

• No need to try to exactly specify functional forms or assume
we know the underlying true data-generating distribution P0.

• Instead, machine learning to estimate g0(L) and Q0,b(A,L),
e.g., by ensemble modeling (?).

• One-step estimator (?) “debiased” by an additive correction:
ψ̂+

b = ψ̂b +n−1 ∑n
i=1 D̂b(Oi).

• A valid variance estimator: V̂(ψ̂+
b ) = n−1 ∑n

i=1 D̂2
b(Oi), but

small-sample behavior may be erratic.
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Natural use of machine learning methods for the estimation of both Q0

and g0. Focuses effort to achieve minimal bias and asymptotic semipara-
metric efficiency bound for the variance, but still get inference (with some
assumptions).

Moderated test statistics with efficient influence functions

• Moderated t-statistic of ? naturally extends to locally efficient
estimators by noticing

t̃b =
ψ̂+

b −���ψb,0 0
σ̃b

,

where the moderated influence function variance is

σ̃2
b =

σ̂2
b db + σ̂2

0 d0
db +d0

• Preserves robust variance estimator while adding stability by
“averaging out” potentially erratic variance across biomarkers.

• Avoid model misspecification while stabilizing inference.
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Let’s take a look: Numerical study



Differential expression analysis algorithm

• Apply a filtering procedure to reduce the set of candidate
biomarkers (?) (optional).

• For each biomarker, generate an efficient estimate of ψ̂b of
ψ0,b with EIF D̂b(Oi) by estimating nuisances (g0,Q0,b).

• Apply variance moderation across the EIF estimates, yielding
moderated σ̃2

b , to be used for hypothesis testing.

• Various techniques for inference are possible based on the
moderated test statistics – taking advantage of near-normality,
standardized logistic or concentration inequalities.

• Apply a multiple testing correction for accurate simultaneous
inference inference across all B biomarkers, e.g., by controlling
the False Discovery Rate (?).
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Ranking differentially methylated CpGs



Open-source software: R/biotmle!

• R package for differential expression or methylation analysis
based on model-agnostic, efficient estimators of the ATE.

• Incorporates machine learning and allows cross-validation.

• Statistical inference based on variance moderation.
• Where can you find it?

• https://github.com/nhejazi/biotmle

• https://bioconductor.org/packages/biotmle
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Use it. File an issue. Help make it better!

Review

1. Modern computational biology research produces complex,
heterogeneous data — innovative statistical inference still tied
to simplistic and challenging-to-verify modeling assumptions.

2. Model misspecification seriously undermines the scientific
utility of common, classical statistical modeling approaches.

3. Non/semi-parametric inference facilitates constructing robust
estimators that easily bring machine learning into the fold.

4. Variance moderation strengthens hypothesis testing strategies,
reducing false positives and preserving power under instability.
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Thank you

https://nimahejazi.org

https://github.com/nhejazi

https://twitter.com/nshejazi
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Here’s where you can find me, as well as the slides for this talk.


