class: center, middle, inverse, title-slide #
COVID-19 vaccine trials
## Evaluating
causal
vaccine efficacy ### Nima Hejazi
University of California, Berkeley
Division of Biostatistics, School of Public Health
###
@nshejazi
nimahejazi.org
SER 2021
--- class: inverse, center, middle .huge[Vaccine Correlates <svg viewBox="0 0 480 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:white;" xmlns="http://www.w3.org/2000/svg"> <path d="M477.7 186.1L309.5 18.3c-3.1-3.1-8.2-3.1-11.3 0l-34 33.9c-3.1 3.1-3.1 8.2 0 11.3l11.2 11.1L33 316.5c-38.8 38.7-45.1 102-9.4 143.5 20.6 24 49.5 36 78.4 35.9 26.4 0 52.8-10 72.9-30.1l246.3-245.7 11.2 11.1c3.1 3.1 8.2 3.1 11.3 0l34-33.9c3.1-3 3.1-8.1 0-11.2zM318 256H161l148-147.7 78.5 78.3L318 256z"></path></svg>] <style type="text/css"> .remark-slide-content { font-size: 22px } </style> --- ## Correlates of risk and protection Two, interrelated goals of vaccine correlates analyses are to * identify/validate possible __surrogate endpoints__\*; * understand __protective mechanisms__ of vaccines. If an __immune correlate__ is established to __reliably predict vaccine efficacy__, then subsequent efficacy trials may use it as the __primary endpoint__. -- __Accelerates approval__ of * existing vaccines in __different populations__ (e.g., in children); * __new vaccines__ within the same class. .footnote[[*] [Prentice (1989)](https://doi.org/10.1002/sim.4780080407) ] --- ## Correlates of risk and protection .large[__Two levels of correlates analysis__\*:] __Correlates of risk (CoR):__ * Correlation of immune response in vaccine recipients with outcome * Prediction of risk * Evaluated via _associative_ parameters -- __Correlates of protection (CoP)__: * Evaluate immune response's ability to predict vaccine efficacy (VE) * Evaluated via _causal_ parameters .footnote[[*] [Plotkin and Gilbert (2012)](https://doi.org/10.1093/cid/cis238), [Qin et al. (2007)](https://doi.org/10.1086/522428) ] --- ## Correlates of protection __Immune response in vaccine recipients__ * How does VE vary across subgroups defined by immune response? * e.g., [Juraska et al. (2020)](https://doi.org/10.1093/biostatistics/kxy074) -- __Path-specific mediators of vaccine efficacy__ * What percentage of VE is attributable to immune response? * [Cowling et al. (2019)](https://doi.org/10.1093/cid/ciy759) * [Benkeser et al. (2021+)](https://arxiv.org/abs/2103.02643) -- __Stochastic interventional vaccine efficacy__ * How would shifting the immune response distribution impact VE? * [Hejazi et al. (2020)](https://doi.org/10.1111/biom.13375), Hejazi et al. (2021+) --- ## Measuring correlates * Running assays on >30k samples is .red[expensive], __statistically unnecessary__. * Use a __case-cohort design\*__ to _measure immune responses_ in * a stratified random subcohort (\~1600 individuals) * all SARS-CoV-2 infection endpoints -- <img src="data:image/png;base64,#/home/nsh/git/conf_ser2021_txshift_covpn/img/casecohort.png" width="70%" style="display: block; margin: auto;" /> .footnote[[*] [Prentice (1986)](https://www.jstor.org/stable/2336266) ] --- ## Measuring correlates * Case-cohort designs are a special case of _two-phase sampling\*_: * Phase 1: measure baseline, randomization arm, endpoint on everyone. * Phase 2: given baseline, randomization arm, endpoint, select immune response subcohort members with (possibly known) probability. -- * Complete (.red[unobservable]) data unit `\(X = (L, A, S, Y) \sim P_0^X \in \mathcal{M}^X\)`: * `\(L\)` (covariates): sex, age, baseline risk/exposure score, * `\(A\)` (treatment): randomized placebo versus vaccine assignment, * `\(S\)` (exposure): candidate marker immune response profiles at Day 57, * `\(Y\)` (outcome): symptomatic SARS-CoV-2 infection (COVID) * Observed data unit `\(O = (C, C X) = (L, C, C S, Y)\)`, where `\(C \in \{0,1\}\)` indicates selection into the second phase sample. .footnote[[*] [Breslow et al. (2003)](https://doi.org/10.1214/aos/1059655907), [Breslow et al. (2009)](https://doi.org/10.1007/s12561-009-9001-6) ] ??? * In general, we work with _known_ two-phase sampling probabilities in this case-cohort setup, so no need for extra EIF component for efficiency. - SARS-CoV-2 infection is measured starting 7+ days after Day 57 to avoid any possibility of infection having occurred prior to second vaccine dose. --- ## Statistical challenges __Estimation in two-phase designs:__ * Individuals who contract COVID may __differ from other participants__. * Two-phase design .blue[_over-samples_] these individuals. * Augmented inverse weighting methods __account for differences__. -- __CoVPN statisticians are committed to open science:__ * A version-controlled statistical analysis plan (SAP) is [available](https://doi.org/10.6084/m9.figshare.13198595) for review. * An [open source GitHub repository](https://github.com/CoVPN/correlates_reporting) implements methods from the SAP. - Tools: `RMarkdown`, `renv`, `bookdown`, Make, GitHub, Travis CI, AWS. * Proof-of-concept for the validation of modern causal inference methodology in a regulatory context. ??? __Low case numbers due to highly effective vaccines (e.g., 95% VE):__ * Power for CoP analyses driven by __vaccine breakthroughs__. * CoR `\(>\)` 25 breakthroughs; CoP `\(>\)` 50 breakthroughs. --- class: inverse, center, middle .huge[Stochastic Interventional Vaccine Efficacy <svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:white;" xmlns="http://www.w3.org/2000/svg"> <path d="M201.5 174.8l55.7 55.8c3.1 3.1 3.1 8.2 0 11.3l-11.3 11.3c-3.1 3.1-8.2 3.1-11.3 0l-55.7-55.8-45.3 45.3 55.8 55.8c3.1 3.1 3.1 8.2 0 11.3l-11.3 11.3c-3.1 3.1-8.2 3.1-11.3 0L111 265.2l-26.4 26.4c-17.3 17.3-25.6 41.1-23 65.4l7.1 63.6L2.3 487c-3.1 3.1-3.1 8.2 0 11.3l11.3 11.3c3.1 3.1 8.2 3.1 11.3 0l66.3-66.3 63.6 7.1c23.9 2.6 47.9-5.4 65.4-23l181.9-181.9-135.7-135.7-64.9 65zm308.2-93.3L430.5 2.3c-3.1-3.1-8.2-3.1-11.3 0l-11.3 11.3c-3.1 3.1-3.1 8.2 0 11.3l28.3 28.3-45.3 45.3-56.6-56.6-17-17c-3.1-3.1-8.2-3.1-11.3 0l-33.9 33.9c-3.1 3.1-3.1 8.2 0 11.3l17 17L424.8 223l17 17c3.1 3.1 8.2 3.1 11.3 0l33.9-34c3.1-3.1 3.1-8.2 0-11.3l-73.5-73.5 45.3-45.3 28.3 28.3c3.1 3.1 8.2 3.1 11.3 0l11.3-11.3c3.1-3.2 3.1-8.2 0-11.4z"></path></svg>] --- ## Exposure-shifting interventions  --- ## Stochastic interventions __Target Causal Parameter:__ * _Stochastic interventions\*_ as modified exposure policies: `$$d(s,l) = s + \delta,$$` where `\(\delta := 0\)` if `\(s + \delta\)` is .red[not] plausible for a given individual. * Our estimand is `\(\psi_{0, d} := \mathbb{E}_{P_0^d}\{Y_{d(S,L)}\}\)`, mean of counterfactual `\(Y_{d(S, L)}\)`. -- __Efficient Estimation:__ * _Doubly robust_ one-step and targeted minimum loss (TML) estimators rooted in semiparametric efficiency theory. * Allow state-of-the-art ML for flexible nuisance parameter estimation. .footnote[[*] [DÃaz & van der Laan (2012)]( https://doi.org/10.1111/j.1541-0420.2011.01685.x), [DÃaz & van der Laan (2018)](https://doi.org/10.1007/978-3-319-65304-4_14), [DÃaz & Hejazi (2020)](https://doi.org/10.1111/rssb.12362) ] ??? * _Stochastic interventions_ modify the value `\(S\)` would naturally assume by drawing from a modified exposure distribution. * Consider post-intervention value `\(S^{\star} \sim G^{\star}(\cdot \mid L)\)`; static interventions are a special case (degenerate distribution). * Such an intervention generates a counterfactual RV `\(Y_{G^{\star}} := f_Y(S^{\star}, L, U_Y)\)`, with distribution `\(P_0^{\delta}\)`. * Estimate `\(\psi_{0,\delta} := \mathbb{E}_{P_0^{\delta}} \{Y_{G^{\star}}\}\)`, the counterfactual mean under post-intervention distribution `\(G^{\star}\)`. --- ## Quantifying stochastic VE * Causal parameter based on vaccine efficacy (VE) estimands: $$ \text{SVE}(\delta) = 1 - \frac{\mathbb{E}[\mathbb{P}(Y = 1 \mid A = 1, S = s + \delta, L = l) \mid A = 1, L]}{\mathbb{P}(Y(0)=1)} $$ * `\(\mathbb{P}(Y(0)=1)\)`: counterfactual infection risk in the placebo arm. Under randomization, `\(\mathbb{P}(Y(0)=1) = \mathbb{P}(Y=1 \mid A=0)\)`. * Summarizes VE through stochastic shift interventions indexed by `\(\delta\)`. -- * _Inverse probability weighted augmentation\*_ to correct for sampling bias induced by two-phase, case-cohort design. * Open source `R` package\* at https://github.com/nhejazi/txshift * Analysis code at https://github.com/CoVPN/correlates_reporting .footnote[[*] [Rose & van der Laan (2011)](https://doi.org/10.2202/1557-4679.1217), [Hejazi et al. (2020)](https://doi.org/10.1111/biom.13375), [Hejazi & Benkeser (2020)](https://doi.org/10.21105/joss.02447) ] --- ## SVE: pseudo-neutralizing antibody <img src="data:image/png;base64,#/home/nsh/git/conf_ser2021_txshift_covpn/img/mcop_sve_Day57pseudoneutid80.png" width="77%" style="display: block; margin: auto;" /> --- ## SVE: spike protein binding antibody <img src="data:image/png;base64,#/home/nsh/git/conf_ser2021_txshift_covpn/img/mcop_sve_Day57bindSpike.png" width="77%" style="display: block; margin: auto;" /> --- ## Thank you! __Amazing statisticians:__ .pull-left[.tiny[ __Leadership__ * Dean Follmann (NIAID) * Yonghong Gao (BARDA) * .red[_Peter Gilbert (FHCRC, UW)_] __NIAID__ * Martha Nason * Mike Fay * All of NIAID Biostatistics __CoVPN__ * .red[_David Benkeser (Emory)_] * Marco Carone (UW) * Iván DÃaz (Weill Cornell) * Alex Luedtke (UW) * ...many others! ]] .pull-right[.tiny[ __Fred Hutch__ * Youyi Fong * Holly Janes * Michal Juraska * Yunda Huang * Ying Huang * Ollivier Hyrien * ...many others! __OWS Company Statisticians__ * Way too many to name! <img src="data:image/png;base64,#./img/covpn.png" width="110"/> ]]