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Why Segment A Population?

• Netflix has 200M+ (and growing) users, constituting a
diversity of potential population segments.

• Better understanding this eclectic user-base helps us to
• improve treatment schedule allocation in A/B experiments,
• understand and prioritize fairness of treatment impacts,
• assess differential impacts of proposed product alterations.

• Causal inference provides a formal language for discovering
and evaluating segments through their treatment effects.
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Defining Treatment Effect Heterogeneity

• For a given A/B test or quasi-experiment, we assume data on
each of the n units may be expressed O = (W,A,Y), where

• W: baseline (e.g., region, device type, viewing history),
• A ∈ {0, 1}: treatment assignment (i.e., A vs. B arm),
• Y: the outcome of interest (e.g., viewing hours).

• Among W, we choose a set of segmentation variables V ⊂ W,
whose realizations correspond to user segments of interest.

• The conditional average treatment effect (CATE) evaluates
the treatment effect within a stratum v ∈ V. The CATE is
CATE(v) = E[ E(Y | A = 1,W)− E(Y | A = 0,W)︸ ︷︷ ︸

counterfactual mean difference of A=1 vs. A=0

| V = v]
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• Note explicitly that marginalizing the inner expectation over W
again yields the ATE.

• So, any given algorithm can follow the same procedure for
estimating the ATE, except that it would marginalize only over
V ⊂ W in the last step.



Doubly Robust Estimation of Treatment Effect Heterogeneity

• Utilize doubly robust estimators of the CATE (Luedtke and
van der Laan 2017, VanderWeele et al. 2019).

• Accurate (i.e., consistent) estimate even when one of the two
nuisance quantities is modeled poorly.

• Efficient (minimal variance) estimate when both well-modeled.

• Ensemble machine learning (e.g., van der Laan et al. 2007)
for flexible estimation of nuisance quantities.

• Cross-fitting (Bickel et al. 1993, Zheng and van der Laan
2011) to identify “should-treat” segments while preserving
inference for effect measures estimated with machine learning.
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Detecting Segments Benefiting from Treatment

• Goal: identify segments T benefiting from treatment, where T
are a subset of strata v ∈ V.

• Absolute benefit, defined as T = {v : CATE(v) > θ} for a
given user-specified cutoff θ ∈ R+.

• Relative benefit (subject to cost or side-effects), in which only
strata benefiting from treatment (T ⊆ {v : CATE(v) > 0}) are
subjected to a constraint like

∑
v∈T cost(v)p(V) ≤ budget.

• Assign treatment based on CATE point estimates or through
hypothesis testing H0 : CATE(v) ≤ θ,H1 : CATE(v) > θ.
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Population Effects of Dynamically Treating Segments

• Dynamic rule: assign treatment only to segments T benefiting
from treatment in terms of CATE, i.e., A = d(V) = I(v ∈ T).

• Use doubly robust estimators of heterogeneous treatment or
optimal treatment effects (HTE, OTE).

• OTE: ψOTE = E[E(Y | A = d(V),W)− E(Y | A = 1,W)],
compare dynamic treatment to “treat-all” strategy.

• HTE: ψHTE compares treatment effects of “should-treat”
(V ∈ T) and “should-not-treat” (V /∈ T) segments.

• Both OTE and HTE characterize the efficacy of the learned
dynamic rule, informing how interventions should be deployed.
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The sherlock R Package

• Free and open source data science tool implementing our
causal segment discovery framework.

• Supports both causal segment detection and population effect
estimation of segment-specific dynamic treatment rules.

• Out-of-the-box machine learning via sl3 (Coyle et al. 2021)
and cross-validation via origami (Coyle and Hejazi 2018).

• Available at https://github.com/Netflix/sherlock, with
plans in place for a release on the CRAN repository.
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Illustration in a Quasi-Experimental Study

num_devices is_p2plus is_newmarket baseline_ltv baseline_viewing treatment outcome_viewing
3 0 1 0.539 0.000 1 0.406
2 1 1 1.328 1.637 0 2.328
3 1 0 0.000 0.000 1 3.400
2 1 0 1.027 0.000 0 1.934
2 1 1 0.000 0.000 0 1.376
3 0 1 0.000 1.401 0 2.683

Measurements on six random units from a synthetic dataset.

• Baseline covariates (W): account’s number of devices, whether a
newly enrolled member, being in a new market region, lifetime value
of account, account’s baseline viewing hours.
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Illustration in a Quasi-Experimental Study

num_devices is_p2plus is_newmarket baseline_ltv baseline_viewing treatment outcome_viewing
3 0 1 0.539 0.000 1 0.406
2 1 1 1.328 1.637 0 2.328
3 1 0 0.000 0.000 1 3.400
2 1 0 1.027 0.000 0 1.934
2 1 1 0.000 0.000 0 1.376
3 0 1 0.000 1.401 0 2.683

Measurements on six random units from a synthetic dataset.

• Segmentation variables (V ⊂ W): account’s number of devices
(num_devices), whether a newly enrolled member (is_p2plus).
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Illustration in a Quasi-Experimental Study

num_devices is_p2plus is_newmarket baseline_ltv baseline_viewing treatment outcome_viewing
3 0 1 0.539 0.000 1 0.406
2 1 1 1.328 1.637 0 2.328
3 1 0 0.000 0.000 1 3.400
2 1 0 1.027 0.000 0 1.934
2 1 1 0.000 0.000 0 1.376
3 0 1 0.000 1.401 0 2.683

Measurements on six random units from a synthetic dataset.

• Treatment (A, non-randomized): a new user interface.
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Illustration in a Quasi-Experimental Study

num_devices is_p2plus is_newmarket baseline_ltv baseline_viewing treatment outcome_viewing
3 0 1 0.539 0.000 1 0.406
2 1 1 1.328 1.637 0 2.328
3 1 0 0.000 0.000 1 3.400
2 1 0 1.027 0.000 0 1.934
2 1 1 0.000 0.000 0 1.376
3 0 1 0.000 1.401 0 2.683

Measurements on six random units from a synthetic dataset.

• Outcome (Y): metric of account’s viewing hours.
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Treatment Heterogeneity Across Segments
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Thank you!

https://nimahejazi.org

https://twitter.com/nshejazi

https://github.com/nhejazi

https://arxiv.org/abs/2111.01223
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